六年级式与方程、比和比例
- 格式:doc
- 大小:15.00 KB
- 文档页数:2
小升初六年级数学比和比例专题讲解第二讲比和比例教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a:b=c:d,则(a+c):(b+d)=a:b=c:d;性质2:若a:b=c:d,则(a-c):(b-d)=a:b=c:d;性质3:若a:b=c:d,则(a+xc):(b+xd)=a:b=c:d;(x 为常数)性质4:若a:b=c:d,则a×d=b×c;(即外项积等于内项积) 正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例xaabybxy①;;;XXXxamxaxma②(其中m);;XXXxaxax ya bx ya b③。
ybx ya bx ya bxaxaycxac④,;x:y:zXXXcdadbc⑤x的等于y的,则x是y的,y是x的.abbcad三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照a:b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x axbx的比分别为a:a b和b:a b,以是甲分派到个,乙分派到个.a ba b⑵两组物体的数量比和数量差,求各个种别数量的问题ax比方:两个种别A、B,元素的数量比为a:b(这里a b),数量差为x,那么A的元素数量为,B的a bbx元素数量为,以是解题的关键是求出a b与a或b的比值.a b四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。
题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。
六年级数学下复习备考计划一、复习内容1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、图形与几何:图形的认识与测量、图形的运动、图形与位置。
3、统计与概率:三种统计图的特点和适用范围、数据的收集步骤和方法、统计表、平均数等。
4、数学思考:找规律、推理、等量代换。
二、复习目标:1、通过复习熟练掌握和运用本册教材内容和知识,书上的习题达到人人全部过关,同步上的习题过关率达到90%。
书上概念人人过关。
2、集中将全册数学知识进行系统整理,建立数学知识体系和框架。
人人会画单元知识点思维导图,并能将全册知识与前面知识联系起来。
3、提升学生的数学综合能力。
计算准确度发达到90%——98%,解决问题基本模型学生掌握率达到98%,并能根据模型编写相应题目。
空间与图形基本公式达到100%掌握。
并能进行举一反三和适当拓展。
4、提升学生做题速度和准确度。
结合单元试卷和综合试卷,对学生进行训练,每张卷子争取达到满分。
三、复习重点:1、夯实概念。
2、提升做题速度和准确度。
四、复习难点:对后进生的数学知识的掌握和熟练运用能力的提升。
五、复习形式1、第一轮复习分四个板块复习,知识点系统的复习一遍,突出重点,突破难点,夯实基础知识,共用27课时。
2、第二轮复习重点是有针对的练习、做模拟试卷、评讲试卷,计划用12课时。
3、第三轮复习回归课本,梳理重点知识,深究典型例题,计划用6课时六、时间进度安排将知识分为五个板块:数与代数、图形与几何、统计与概率、数学思考、综合与实践。
进度按排如下:第一轮复习:数与代数:4月22日------5月10日(共10课时)数的认识 2课时数的运算 3课时式与方程 2课时比和比例 2课时板块1测试 1课时图形与几何:5月11日------5月20日(共7课时)图形的认识与测量 2课时图形的运动 2课时图形与位置 2课时板块2测试 1课时统计与概率:5月21日------5月23日(共3课时)数学思考: 5月24日------5月28日(共3课时)综合与实践:5月29日------5月31日(共4课时)第二轮复习:6月1日------6月14日第三轮复习:6月15日------6月21日七、复习方法措施与评价1、紧扣教材,系统复习。
小学六年级比和比例比和比例比的概念是借助于除法的概念建立的。
两个数相除叫做两个数的比。
例如,5÷6可记作5∶6。
比值。
表示两个比相等的式子叫做比例(式)。
如,3∶7=9∶21。
判断两个比是否成比例,就要看它们的比值是否相等。
两个比的比值相等,这两个比能组成比例,否则不能组成比例。
在任意一个比例中,两个外项的积等于两个内项的积。
即:如果a∶b=c∶d,那么a×d=b×c。
两个数的比叫做单比,两个以上的数的比叫做连比。
例如a∶b∶c。
连比中的“∶”不能用“÷”代替,不能把连比看成连除。
把两个比化为连比,关键是使第一个比的后项等于第二个比的前项,方法是把这两项化成它们的最小公倍数。
例如,甲∶乙=5∶6,乙∶丙=4∶3,因为[6,4]=12,所以5∶ 6=10∶ 12, 4∶3=12∶9,得到甲∶乙∶丙=10∶12∶9。
例1已知3∶(x-1)=7∶9,求x。
解: 7×(x-1)=3×9,x-1=3×9÷7,例2六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。
求现在的男、女生人数之比。
分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。
由此求出女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为 24∶20=6∶5。
在例2中,我们用到了按比例分配的方法。
将一个总量按照一定的比分成若干个分量叫做按比例分配。
按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。
例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。
分析:总量是2700千克,各分量的比是1∶2∶12,总份数是1+2+12=15,答:生石灰、硫磺粉、水分别需要180,360和2160千克。
六年级总复习知识点——数与代数专题数与代数(一)数的认识1数的分类1.自然数:表示物体个数的0,1,2,3…都是自然数。
最小的自然数是0,没有最大的自然数,自然数有无限个。
2.正数和负数:正数和负数表示一对具有相反意义的量。
正号可以省略,负号不可省略。
0既不是正数也不是负数;负数<0<正数。
3.整数:负整数和自然数统称整数。
最小的一位数是1,不是0.4.小数:把整数“1”平均分成10份,100份,1000份······这样的一份或几份是0.1、0.01、0.001。
5.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数就是分数单位。
6.百分数:表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫百分率或百分比。
[成数]几成就是十分之几,三成五:35%。
[折扣]几折就是十分之几,三五折:35%。
7.因数与倍数:(1)因数与倍数:因数和倍数是相互依存的,因数和倍数只针对非0自然数,如:1,2,3,…。
[因数的特征]一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
[倍数的特征]一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大公倍数。
[最大公因数](最大的小弟)[最小公倍数](最小的大哥)练一练:13和7的最大公因数是(),最小公倍数是();18和54的最大公因数是(),最小公倍数是();9和15的最大公因数是(),最小公倍数是();2A=2×2×3,B=2×3×5,那么A和B最大公因数是(),A和B最小公倍数是()。
3(2)2、3、5的倍数特征[2的倍数特征]个位上是0,2,4,6或8;[5的倍数特征]个位上是0或5;[3的倍数特征]各个数位上的数字之和是3的倍数;[既是2的倍数,又是5的倍数特征]个位是0;(3)奇数与偶数[含义]整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
北师大版六年级数学下册总复习——式与方程正比例与反比例正比例和反比例是数学中重要的概念,在解决很多实际问题和数学题目中经常会遇到。
在六年级数学下册总复习中,我们需要掌握正比例和反比例的概念、性质以及解题方法。
1. 正比例关系:正比例关系是指两个变量之间的比例是恒定的,当其中一个变量增加时,另一个变量也随之增加;当其中一个变量减少时,另一个变量也随之减少。
例如:如果一个物体的重量和体积成正比,那么当体积增加时,重量也会增加;当体积减少时,重量也会减少。
正比例关系可以用一个等式来表示:y = kx,其中y和x是两个变量,k称为比例系数。
比例系数k表示两个变量之间的比例关系,是一个常数,永远不会变化。
解题方法:当已知比例关系中的一个变量和比例系数时,可以根据等式求解另一个变量。
如果已知有三个数a、b、c满足比例关系a:b = c:x,可以用等式a/b = c/x来求解x 的值。
2. 反比例关系:反比例关系是指两个变量之间的乘积是恒定的,当其中一个变量增加时,另一个变量会相应地减少;当其中一个变量减少时,另一个变量会相应地增加。
例如:一个车以恒定的速度行驶,在相同的时间内,行驶的距离与速度成反比。
速度越快,行驶的距离越短;速度越慢,行驶的距离越长。
反比例关系可以用一个等式来表示:y = k/x,其中y和x是两个变量,k称为比例系数。
和正比例关系一样,比例系数k是一个常数,永远不会变化。
解题方法:当已知反比例关系中的一个变量和比例系数时,可以根据等式求解另一个变量。
如果已知有三个数a、b、c满足反比例关系a:b = c:x,可以用等式a/b = c/x来求解x的值。
总结:在解决正比例问题时,常用的解题方法是根据已知的比例系数和一个变量求解另一个变量;在解决反比例问题时,常用的解题方法是根据已知的比例系数和一个变量求解另一个变量。
16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。
在计算中,要注意各种量的单位要统一。
二、按比例分配的应用题把一个数量按照一定的比分配成几部分。
按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。
关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。
三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。
四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。
2.设未知数为x,并注明单位名称。
3.根据比值(一定)或积(一定)建立比例式,并解比例。
4.检验,写答语。
考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。
一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。
要分的总数是390,总份数是42+45+43=130。
其中一班占总数的42130,二班占总数的45130,三班占总数的43130,要求各班应植树的棵数,实际上是分别求390的42130,45130,43130各是多少。
【答案】解法一:按比例分配法42+45+43=130390×42130=126(棵)390×45130=135(棵)390×43130=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。
六年级数学比和比例
(实用版)
目录
1.比和比例的定义
2.比和比例的性质
3.比和比例的应用
4.提高比和比例的解题技巧
正文
1.比和比例的定义
比和比例是数学中常见的概念,比是指两个数相除的结果,比例则是指两个比相等的式子。
比如,如果我们说一个长度为 10 厘米的线段是另一个长度为 5 厘米的线段的两倍,我们就可以说这两个线段的比是 2:1,也可以说这两个线段的比例是 2/1。
2.比和比例的性质
比和比例有一些基本的性质。
比如,如果两个比的比值相等,那么这两个比就是相等的,也就是说,如果 a:b=c:d,那么 a/b=c/d。
另外,比例也有一个基本性质,那就是如果两个比例相等,那么它们的乘积也相等,也就是说,如果 a:b=c:d,那么 a*d=b*c。
3.比和比例的应用
比和比例在实际生活中应用广泛,比如在商业中,我们常常需要通过比例来计算成本和利润;在科学研究中,我们常常需要通过比来描述两个量的关系。
此外,比和比例也是解决许多数学问题的基础,比如在解方程时,我们常常需要通过比例来找到未知数的值。
4.提高比和比例的解题技巧
要提高比和比例的解题技巧,首先我们需要理解比和比例的概念,熟悉它们的基本性质。
其次,我们需要多做一些有关比和比例的练习题,这样可以帮助我们加深对比和比例的理解,提高我们的解题能力。
最后,我们需要学会灵活运用比和比例的知识,比如在解题时,我们可以通过比例来简化方程,这样更容易找到未知数的值。
总的来说,比和比例是数学中非常重要的概念,它们在实际生活中的应用也非常广泛。
六年级数学数的运算、式与方程、比和比例教案一、教学目标:1. 让学生掌握数的运算的基本法则,能够正确进行整数、分数和小数的四则混合运算。
2. 使学生理解式与方程的概念,能够解一元一次方程和简单的二元一次方程组。
3. 让学生理解比和比例的意义,能够正确计算比和比例,并能应用于实际问题中。
二、教学内容:1. 数的运算:加法、减法、乘法、除法、乘方、开方等基本运算,以及四则混合运算。
2. 式与方程:代数式的概念,一元一次方程的解法,二元一次方程组的解法。
3. 比和比例:比的概念,比例的概念,比和比例的计算,比和比例在实际问题中的应用。
三、教学方法:采用讲解法、示范法、练习法、问题解决法等教学方法,引导学生通过自主学习、合作学习、探究学习的方式,掌握数的运算、式与方程、比和比例的知识。
四、教学步骤:1. 数的运算:(1)讲解加法、减法、乘法、除法、乘方、开方等基本运算的法则。
(2)通过示例,让学生理解四则混合运算的顺序和法则。
(3)设计练习题,让学生进行数的运算的练习。
2. 式与方程:(1)讲解代数式的概念,使学生理解代数式的组成和意义。
(2)通过示例,让学生理解一元一次方程的解法和二元一次方程组的解法。
(3)设计练习题,让学生进行式与方程的练习。
3. 比和比例:(1)讲解比的概念,使学生理解比的意义和计算方法。
(2)讲解比例的概念,使学生理解比例的意义和计算方法。
(3)设计练习题,让学生进行比和比例的练习,并应用于实际问题中。
五、教学评价:通过课堂练习、作业、测验等方式,评价学生对数的运算、式与方程、比和比例的掌握程度,及时发现并解决学生学习中存在的问题,提高学生的数学素养。
六、教学重点与难点:重点:数的运算的法则,式与方程的解法,比和比例的计算与应用。
难点:式与方程的解法,特别是二元一次方程组的解法,以及比和比例在实际问题中的应用。
七、教学准备:1. 教学PPT或黑板。
2. 教学练习题。
3. 教学工具,如计算器等。
0507
一.式与方程
(一)
1.用字母表示数。
班里有男生a人,女生b人,一共有()人。
2.有字母表示数量关系。
路程=速度·时间。
3.用字母表示计算公式。
长方形的周长、面积、体积。
4.用字母表示运算定律。
5.用字母表示计算法则。
同分母分数加减法
6.用字母表示一般规律。
(二)等式与方程
1.等式是表示相等关系的式子。
方程式含有未知数的等式。
所有的方程都是等式,但等式不全是方程。
2.方程的解和解方程
(三)等式的性质
1.两边同加减
2.两边同乘除(0除外)
(四)列方程解决问题的步骤
二.比和比例
(一)比和比例的关系
1.比表示两个数相除。
前项和后项同时乘除同一个数(0除外),比值不变。
2.比例表示两个必相等的式子。
内项之积等于外向之积。
(二)
1.与分数、除法的关系
2.比的基本性质、分数的基本性质、商不变的规律。
三者的性质实际上是一致的
(三)求比值和化简比
1.比值:是一个数(整数、分数或小数)
2.化简比:比的最简形式,还是一个比(四)比例尺
1.比例尺
2.图形的放大与缩小
(五)正比例和反比例
(六)用比和比例的知识解决问题(七)。