《反比例函数》复习学案
- 格式:doc
- 大小:217.50 KB
- 文档页数:8
反比例函数复习优秀教案一、教学目标:1. 知识与技能:(1)理解反比例函数的定义及其性质;(2)掌握反比例函数图象的特点及应用;(3)能够运用反比例函数解决实际问题。
2. 过程与方法:(1)通过复习,加深对反比例函数知识的理解;(2)培养学生的数学思维能力,提高解决问题的能力。
3. 情感态度与价值观:二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其性质;(2)反比例函数图象的特点及应用。
2. 教学难点:(1)反比例函数图象的绘制;(2)反比例函数在实际问题中的应用。
三、教学过程:1. 导入:通过复习反比例函数的定义及性质,引导学生回顾已学知识,为新课的学习做好铺垫。
2. 课堂讲解:(1)讲解反比例函数的定义:y = k/x(k为常数,k≠0);(2)分析反比例函数的性质:as x changes, y changes in the opposite direction;(3)展示反比例函数图象的特点:经过原点,双曲线形状,两分支分别趋向于x轴和y轴;(4)讲解反比例函数在实际问题中的应用:通过实例分析,让学生掌握反比例函数在实际问题中的解题方法。
3. 课堂练习:布置一些有关反比例函数的练习题,让学生在课堂上完成,检测学生对反比例函数知识的掌握程度。
四、课后作业:2. 绘制一个反比例函数的图象,并描述其特点;3. 选择一道实际问题,运用反比例函数解决。
五、教学反思:本节课通过复习反比例函数的知识,使学生巩固了反比例函数的定义、性质及应用。
在课堂讲解过程中,注重培养学生的数学思维能力,提高解决问题的能力。
通过课堂练习和课后作业,检测学生对反比例函数知识的掌握程度。
在今后的教学中,要继续关注学生的学习情况,针对性地进行辅导,提高教学质量。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究反比例函数的性质;2. 通过多媒体演示反比例函数图象的特点,增强学生的直观感受;3. 利用实际例子,让学生学会将反比例函数应用于解决实际问题;4. 注重个体差异,给予学生充分的思考时间和空间,鼓励学生提出问题;5. 采用小组合作学习的方式,培养学生的团队合作意识。
反比例函数复习课教案第一章:反比例函数的定义及性质1.1 反比例函数的定义引导学生回顾反比例函数的定义:形如y = k/x (k 为常数,k ≠0) 的函数,称为反比例函数。
强调反比例函数中x 和y 成反比例关系,即xy = k。
1.2 反比例函数的性质分析反比例函数的图像特征:反比例函数的图像是一条通过原点的曲线,称为双曲线。
探讨反比例函数的渐近线:当x 趋向于正无穷或负无穷时,y 趋向于0,x 轴和y 轴是反比例函数的渐近线。
讲解反比例函数的单调性:在第一象限和第三象限,反比例函数是减函数;在第二象限和第四象限,反比例函数是增函数。
第二章:反比例函数的图像与几何意义2.1 反比例函数的图像利用图形软件绘制反比例函数的图像,引导学生观察图像的形状和特点。
引导学生理解反比例函数图像的四个象限特点:当k > 0 时,图像位于第一象限和第三象限;当k < 0 时,图像位于第二象限和第四象限。
2.2 反比例函数的几何意义解释反比例函数表示的是点(x, y) 在坐标平面上的分布情况,且这些点满足xy = k。
引导学生思考反比例函数与面积的关系:反比例函数图像与坐标轴围成的封闭区域的面积等于k 的绝对值。
第三章:反比例函数的性质与应用3.1 反比例函数的性质引导学生利用反比例函数的性质解决问题,如判断两个函数是否为反比例函数、确定反比例函数的单调区间等。
3.2 反比例函数的应用举例说明反比例函数在实际问题中的应用,如物理学中的电流与电压的关系、化学中的浓度与体积的关系等。
引导学生运用反比例函数解决实际问题,培养学生的数学应用能力。
第四章:反比例函数的运算4.1 反比例函数的基本运算复习反比例函数的基本运算规则,如反比例函数的加减乘除、乘积和商的运算。
4.2 反比例函数的复合运算讲解反比例函数的复合运算,如反比例函数与一次函数、二次函数的复合运算。
引导学生运用反比例函数解决复合运算问题,提高学生的数学运算能力。
反比例函数复习课教案第一章:反比例函数的定义与性质1.1 反比例函数的定义1.2 反比例函数的性质1.3 反比例函数的图像第二章:反比例函数的图像与性质2.1 反比例函数的图像特点2.2 反比例函数的性质解析2.3 反比例函数的图像与性质综合应用第三章:反比例函数的解法与应用3.1 反比例函数的解法3.2 反比例函数的应用案例3.3 反比例函数解法与应用的拓展第四章:反比例函数与一元二次方程4.1 反比例函数与一元二次方程的关系4.2 反比例函数在一元二次方程中的应用4.3 反比例函数与一元二次方程的综合问题第五章:反比例函数的综合练习5.1 反比例函数的基本概念练习5.2 反比例函数的图像与性质练习5.3 反比例函数的解法与应用练习第六章:反比例函数与几何图形6.1 反比例函数与圆的关系6.2 反比例函数与双曲线的联系6.3 反比例函数在其他几何图形中的应用第七章:反比例函数与实际问题7.1 反比例函数在实际问题中的应用概述7.2 反比例函数在面积问题中的应用7.3 反比例函数在其他实际问题中的应用第八章:反比例函数的变换与性质8.1 反比例函数的平移变换8.2 反比例函数的缩放变换8.3 反比例函数的性质在变换中的应用第九章:反比例函数的专题讨论9.1 反比例函数的奇偶性9.2 反比例函数的周期性9.3 反比例函数与指数函数、对数函数的关系第十章:反比例函数的综合训练与拓展10.1 反比例函数的综合训练题10.2 反比例函数的拓展问题10.3 反比例函数在不同学科领域的应用探讨重点和难点解析重点一:反比例函数的定义与性质解析:反比例函数的定义容易理解,但要让学生深刻理解其性质,特别是图像的特点,需要通过大量的示例和练习来巩固。
重点二:反比例函数的图像与性质解析:反比例函数的图像是一条通过原点的直线,但其性质在不同的象限中有所不同,需要学生通过绘制图像和分析性质来掌握。
重点三:反比例函数的解法与应用解析:反比例函数的解法涉及到的数学运算较为复杂,需要学生熟练掌握。
第26章-反比例函数复习教案一、【教材分析】
二、【教学流程】
2.双曲线y1、y2在第一象限的图象如
3.病人按规定的剂量服用某种药物,得服药后2小时,每毫升血液中的含药量达到最大值为4 毫克.已知服药后,2 小时前每毫升血液中的含药量y(单位:毫克)与时间x(单位:小时
2.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主
三、【板书设计】
四、【教后反思】
通过本节课的复习,有成功的地方,也有不足之处.
成功之处:
一、定位较准,立足于本校学情。
由于是复习课,学生对知识点的掌握相对而言就稍微轻松些。
我目的是落实知识点和掌握一些基本的题型.
二、习题设计合理,立足于思维训练。
本节课每个知识点都设计了针对性的变式练习,通过练习,学生的解题技巧、方法、思维都得到了一定训练.
三、注重了数学思想方法的渗透。
在复习反比例函数的性质时,我紧紧抓住关键词语,突破难点.性质强调“在同一象限内”,几何意义强调k的绝对值,而我们学生往往忽略这些问题,对此,采用讨论的观点,结合图像观察,让学生不仅看到还要理解到.这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结.这样来渗透数学思想方法:分类讨论和数形结合的思想方法.
不足之处:
一、讲的太多。
这主要体现在知识点回顾时,本来打算一点而过,结果学生的回答偏离了我的预想,让学生讲解我总怕学生不会,自己来讲从而浪费了学生练习的时间。
不能大胆放心把课堂交还给学生.
二、对学生的情感关注太少.在教学过程中对少数同学的回答能及时给予表扬和激励,对大部分学生关注太少.不能激大部分发学生的兴趣,坚定他们学习的信心.。
反比例函数 复习学案【一、学习目标】:1.系统复习《反比例函数》并应用;2.在复习过程中,渗透待定系数法、分类、数形结合等数学思想方法. 【二、学习重点与难点】:重点:反比例函数知识的应用; 难点:反比例函数知识的综合运用【三、教学过程设计与内容】:一、 反比例函数的解析式 基础知识回顾一般地,形如 ______________( )的函数称为反比例函数.(其中,自变量x 的取值范围为___________________________ )反比例函数解析式还可以表示为_____________和_________________考点突破:1.下列函数中哪些是反比例函数?① y=3x; ② y=2x 2; ③ xy=-2; ④ y=2x -1; ⑤ 2y 3x =; ⑥3y 2x= .2.若函数是反比例函数,则n=______. 变式:若函数 是反比例函数,则n=______.3.已知y 与x 成反比例,当x=2时,y=3,则 y 与x 的关系式为________. 变式:已知y 与x+2成反比例,当x=1时,y=-3,则 y 与x 的关系式为_______.4.k 为何值时,函数y=322)(--+k k xk k 是反比例函数?5.若双曲线y =-6/x 经过点A (m ,-2m ),则m 的值为______.6.一个反比例函数图像过点P ( 5 ,1)和Q (-1 ,2m )那么m=______ 二、 反比例函数的图象以及性质基础知识回顾反比例函数的图象是 .7.若双曲线经过点(-3 ,2),则其解析式是______.8.函数 的图象在第______象限,当x<0时,y 随x 的增大而______ .12n y x -=221n y n x -=-()x y 5=9.函数 的图象在二、四象限内,则m 的取值范围是______ .10.已知点A(x 1,y 1),B(x 2,y 2)(x 1<0<x 2 )都在反比例函数的图象上,则y 1与y 2的大小关系(从大到小)为 .变式:已知点A(-2,y 1),B(-1,y 2),C(4,y 3)都在反比例函数的图象上,则y 1 、y 2 、y 3 的大小关系(从大到小)为 .三、反比例函数中的面积问题11.如图1,点P 是反比例函数 图象上任意一点,PA ⊥x 轴于A ,PB ⊥y 轴于B.则矩形PAOB 的面积为___________.变式:如图2,点P 是反比例函数 图象上任意一点,PA ⊥x 轴于A ,连接PO,则S △PAO 为_____.归纳:点P 是反比例函数 (k ≠0)图象上任意一点,PA ⊥x 轴于A ,PB ⊥y 轴于B.则矩形PAOB(如图1)的面积为_______,S △PAO (如图2)为_____. 12.如图1,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,PB ⊥y 轴于B, 四边形PAOB 的面积为12,则这个反比例函数的关系式是________ . 变式:如图2,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,连接PO,若S △PAO =8,则这个反比例函数的关系式是________ .四、反比例函数与一次函数的综合运用13.(2010东莞.中考)如图,一次函数 的图象和反比例函数 的图象交于A 、B 两点,其中A 点坐标为(2,1)(1)试确定k 、m 的值; (2)连接AO,求△AOP 的面积;(3)连接BO,若B 的横坐标为-1,求△AOB 的面积x m y 2-=)0(<=k xky )0(>=k xky xy 2-=图1 图2xy k =xy 2-=1y kx =-my x =变式:如图,一次函数 的图象与反比例函数 的图象交于M(2,m)、N(-1,-4)两点.(1)求反比例函数和一次函数的解析式;(2)当x 为何值时,反比例函数的函数值大于一次函数的函数值?五、反比例函数在实际问题中的应用:14.为了预防“非典”,燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物5分钟燃毕, 此时室内空气中每立方米的含药量为10毫克.请根据题中所提供的信息,解答下列问题:(1)药物燃烧时y 关于x 的函数关系式为: ________ 。
初中数学反比例函数复习导学案【复习目标】1.掌握反比例函数的定义,会用反比例函数的图象及性质解决有关问题2.经历探究问题的过程,体会解决反比例函数和一次函数综合题的方法。
3.培养自主探究的意识和合作交流的习惯,树立正确的情感态度和价值观【知识梳理】一、有关概念:1.什么叫反比例函数?形如(k为常数,且k≠0)的函数称为反比例函数。
其中自变量的取值范围是2.反比例函数有哪些等价形式?二、反比例函数的图象和性质:三、k值与面积【考点训练】考点一、反比例函数的定义1.已知函数mx-=23)(-my是反比例函数,则m= .2. 若反比例函数)0(≠=kxky经过点(-1,3)则这个函数一定经过()A(1,-3) B(31-,3) C (−3,−1 ) D (31,3)考点二:反比例函数的图象与性质例①已知反比例函数x-y8=下列结论:①图象必经过(-2,4);②图象在二、四象限内;③y随x的增大而增大;④当x>-1时,则y>8.其中错误的结论有() A.3B.2C.1D.0例②已知反比例函数y=|a|+1x的图象上有三点(−3,y1)(1,y2),(2,y3), 则y1y2,y3的大小关系是【变式训练】已知反比例函数y=−a2−1x的图象上有三点(−3,y1)(1,y2),(2,y3), 则y1y2,y3的大小关系是考点三:k值的含义CS四边形ABCD =B ADADBCS四边形ABCD=1.如图,点A 是反比例函数y =kx图象上的一动点,过点A 作x ⊥AB 轴,垂足为B ,点C 为y 轴上一点,链接AC 、BC ,若∆ABC 的面积为4,则k 的值是四、反比例函数与一次函数的综合应用例③ 如图,在平面直角坐标系中,直线 b ax y +=1 与双曲线 )0(2≠=k xky 分别相交与第二、四象限内的A(m,4),B(6,n )两点,与x 轴相交与C 点,已知OC=3,tan∠ACO=32 求:(1)21y y 、对应的函数解析式 (2)求∆AOB 的面积【2020泰安中考】如图,已知一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于点A(3,a),点B(14-2a ,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求∠ACD的面积.变式1:连接OB ,求∆BOC 的面积;变式2:若点P 在x 轴上,连接AP ,将∆ABO 分成1:3两部分,求此时点P 的坐标;变式3:若点P 是x 轴上一动点,当PA+PB 的值最小时,求此时点P 的坐标;变式4:若OD=OB ,求直线BD:y =ax +c 的表达式,且直接写出mx>ax +c 的取值范围;变式5:若点Q 为点C 上方y 轴上一点,当∆QCA 与∆ABO 的面积相等时,求点Q 的坐标。
精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
反比例函数复习学案
八年级数学教案
●一、反比例函数的概念:
1、一般地,形如的函数叫做反比例函数。
注意:(1)常数k 称为比例系数,k 是非零常数;
(2)解析式有三种常见的表达形式:
(A) (B) (C)
1.下列函数,① ②.③ ④. ⑤ ⑥ ;其中是y关于x的反比例函数的有:_________________.
2.函数是反比例函数,则的值是
3.已知函数,其中与成正比例, 与成反比例,且当=1时, =1; =3时, =5.求:(1)求关于的函数解析式; (2)当=2时, 的值.
●二、反比例函数的图象和性质:
1.形状:图象是双曲线。
2.位置:(1)当k>0时,双曲线分别位于第________象限内.
(2)当k<0时, 双曲线分别位于第________象限内。
3.增减性:(1)当k>0时,_________________, y随x的增大而________.
(2)当k<0时,_________________,y随x的增大而______。
4.变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交
5.对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点
____________.
1.若反比例函数的图象在第二、四象限,则的值是( )
A、-1或1;
B、小于的任意实数;
C、-1;
D、不能确定
2. 函数y=-ax+a与(a≠0)在同一坐标系中的图象可能是( )
3.正比例函数和反比例函数的图象有个交点.
4.。
反比例函数复习学案(一)
一. 反比例函数的概念:
例1.下列函数中,哪些是y 关于x 的反比例函
数?
(填方号)
1
x ① y= 2y x =-②
③ xy=5 21y x =+④
13y x -=⑤ ⑥ y=6x-4
定义:形如 叫做反比例函数。
表现形式:①
② ③
练习1.
2
3
m
m +-已知y=x (m 为常数)是反比例函数,
求m 的值。
二.反比例函数的图象
总结: 练习2
44
x x
例3.作函数y=和y=-的大致图象
例4、焦老师家离学校的距离为5400米,每天上班时的速度为v (米/分),所需时间为t (分)
(1)则速度v 与时间t 之间有怎样的函数关系?
(2)若到达单位用了30分钟,那么焦老师的平均速度是多少? (3)如果焦老师的速度为270米/分,则需要几分钟到达学校?
应用变式:。
《反比例函数》复习
班级: 姓名:
【一、学习目标】:
1.系统复习《反比例函数》并应用;
2.在复习过程中,渗透待定系数法、分类、数形结合等数学思想方法. 【二、学习重点与难点】:
重点:反比例函数知识的应用; 难点:反比例函数知识的综合运用 【三、教学过程设计与内容】: 一、 反比例函数的解析式 基础知识回顾(课前完成)
一般地,形如 ______________( )的函数称为反比例函数.
(其中,自变量x 的取值范围为___________________________ )
反比例函数解析式还可以表示为_____________和_________________ 注:反比例函数需要满足的两个条件:1._________ ,2._______________. 考点突破:
1.下列函数中哪些是反比例函数?
① y=3x; ② y=2x 2; ③ xy=-2; ④ y=2x -1; ⑤ 2y 3x =; ⑥3
y 2x
= .
2.若函数
是反比例函数,则n=______. 变式:若函数 是反比例函数,则n=______.
3.已知y 与x 成反比例,当x=2时,y=3,则 y 与x 的关系式为________. 变式:已知y 与x+2成反比例,当x=1时,y=-3,则 y 与x 的关系式为_______. 二、 反比例函数的图象以及性质
基础知识回顾(课前完成)反比例函数的图象是 . 函数 k 图象
象限 x 增大,y 如何变化 (k ≠0)
k>0
______________,y 随x 的增大而_________.
k<0
______________,y 随x 的增大而_________.
12n y x -=2
21n y n x -=-()x
k y =
y
x
o
y
x
o
考点突破:
4.若双曲线经过点(-3 ,2),则其解析式是______.
5.函数 的图象在第______象限,当x<0时,y 随x 的增大而______ .
6.函数 的图象在二、四象限内,则m 的取值范围是______ .
7.已知点A(x 1,y 1),B(x 2,y 2)(x 1<0<x 2 )都在反比例函数
的图象上,则y 1与y 2的大小关系(从大到小)为 .
变式:已知点A(-2,y 1),B(-1,y 2),C(4,y 3)都在反比例函数
的图象上,则y 1 、y 2 、y 3 的大小关系(从大到小)为 . 三、反比例函数中的面积问题
8.如图1,点P 是反比例函数 图象上任意一点,PA ⊥x 轴于A ,PB ⊥y 轴于
B.则矩形PAOB 的面积为___________.
变式:如图2,点P 是反比例函数 图象上任意一点, PA ⊥x 轴于A ,连接
PO,则S △PAO 为_____.
归纳:点P 是反比例函数 (k ≠0)图象上任意一点,PA ⊥x 轴于A ,PB ⊥y 轴
于B.则矩形PAOB(如图1)的面积为_______,S △PAO (如图2)为_____.
9.如图1,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,PB ⊥y 轴于B, 四边形PAOB 的面积为12,则这个反比例函数的关系式是________ . 变式:如图2,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,连接PO,
若S △PAO=8,则这个反比例函数的关系式是________ .
四、反比例函数与一次函数的综合运用
x y 5=x m y 2-=)0(<=k x
k
y )0(>=k x
k
y x
y 2-=y A O x
P (x,y ) B
y
A O x
P (x,y )
图1 图2
x y k =x
y 2-=
A y
x
B
O
P M
10.(2010东莞.中考)如图,一次函数 的图象和反比例函数 的图
象交于A 、B 两点,其中A 点坐标为(2,1).
(1)试确定k 、m 的值; (2)连接AO,求△AOP 的面积;
(3)连接BO,若B 的横坐标为-1,求△AOB 的面积. 变式:
如图:一次函数 的图象与反比例函数 的图象交于M(2,
m)、N(-1,-4)两点.
(1)求反比例函数和一次函数的解析式;
(2)当x 为何值时,反比例函数的函数值大于一次函数的函数值?
b ax y +=x
k
y =1y kx =-m y x
=x
y
-1 0 2
N (-1,-4)
M (2,m )
提高题:
如图所示,在直角坐标系中,点A 是反比例函数 的图象上一点,AB x ⊥轴的正半轴于B 点,C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C
两点,并交y 轴于点()02D -,,
若4AOD S =△. (1)求反比例函数和一次函数的解析式; (2)观察图象,请指出在y 轴的右侧,当12y y >时,
x 的取值范围.
1k
y x
=
y x
C B A
D O
反比例函数复习教案
刘寨镇初级中学吕军委
一、复习目标
1、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概
念
2、培养学生从函数图象中获取信息的能力,探索并理解反比例函数的主要性质性质。
重点难点分析:
重点:反比例函数的概念及性质。
难点:反比例图像的性质
二、复习过程
★知识点一、反比例函数与正比例函数的联系与区别是什么?
填下表
反比例函数正比例函数
解析式
k>0 k>0
图像
k<0 k<0
增减性k>0 k>0
k<0 k<0
对称性(从轴对称性和中心对称两方面思考)。
若是指出对称轴或对称中心
思考:在讨论反比例函数的增减性时为什么必须强调在每一个象限内? 【设计目的】通过类比让学生填表,掌握反比例与正比例的联系与区别 ★知识点二、反比例函数的概念
1、反比例函数的三种表达式 ① ;② ③
例1 下面函数中是反比例函数的有 .(填入序号即可)
①5y x =; ②x y -=5; ③2x y =; ④2=xy ; ⑤πx y =; ⑥y =26x
;⑦1
2-=x y ; ⑧x y 52-=
; ⑨)0(2≠=
a a x
a
y 为常数且;⑩y =1+21x 2. 例2:k 为何值时,函数y =3
22
)(--+k k
x k k 是反比例函数?【设计目的】复习反比例的概念
★知识点三、反比例图像性质 例3若双曲线y =-6x 经过点A (m ,-2m ),则m 的值为
例4如图,点A是双曲线x
k
y =
与直线y=-x-(k+1)在第二象限内的交点,AB⊥x 轴于B ,且S△ABO
=
2
3. (1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标
(3)x 取何值时,一次函数的值大于反比例函数的值,
(4)求△AOC 的面积.
【设计目的】通过题目的综合进一步掌握反比例的性质 反馈练习
1、点(1,6)在双曲线y= 上,则k=_____.
2、一个反比例函数图像过点P ( 5 ,1)和Q (-1 ,2m )那么m =______
3、已知点A(-2,y 1),B(-1,y 2)(1,y 3)都在反比例函数 的图象上,则y 1与y 2 , y 3的大小关系 反思与收获
当堂测评
【基础】1、下列各题中,哪些是反比例函数关系。
(1)三角形的面积S 一定时,它的底a 与这个底边上的高h 的关系; (2)多边形的内角和与边数的关系; (3)正三角形的面积与边长之间的关系; (4)直角三角形中两锐角间的关系;
(5)正多边形每一个中心角的度数与正多边形的边数的关系;
(6)有一个角为30
的直角三角形的斜边与一直角边的关系。
【能力】2、已知反比例函数x
k
y =
(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数y=kx-k 的图象经过( )
A 、第一、第二、三象限
B 、第一、二、三象限
C 、第一、三、四象限
D 、第二、三、四象限 【提高】3、已知反比例函数x
k
y 2=
和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+1,b+k )两点.
(1)求反比例函数的解析式;
(2)如图4,已知点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;
(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.
61。