第十六章多元函数的极限与连续习题集课
- 格式:doc
- 大小:1.04 MB
- 文档页数:12
第十六章 多元函数的极限与连续 练习题一、选择题1、 下列说法错误的是( A ) A .界点一定是聚点 B 内点一定是聚点 C 孤立点一定是界点D 界点不一定是聚点.2、 平面点集()}2,2,2,{>+<<y x y x y x 是( B )A. 有界闭区域B. 有界开区域C.无界集D. 无界开区域.3、平面点集),0()1,0(+∞⨯是( B )A. 有界区域B. 开集C.闭集D. 非开非闭的集合 4、设d c b a ,,,是不相等的实数,平面点集),[),[d c b a ⨯是( A ). A. 有界区域 B. 开集 C. 闭集 D. 无界区域 5、已知xy y x y x f ++=)cos(),(,则(,)+-=f x y x y ( B ) A. xy y x ++)cos( B. 222cos y x x -+ C. 22)cos(y x y x -++ D. xy x +2cos 6、 设=),(y x f xyyx +,则(,)+-=f y x y x ( B ) A.222x y x - B.222x y y - C.222y x x - D. 222yx y-7、设极限()()00,,lim (,)→=x y x y f x y A ,=ρ( C ).A.对,0>∀δ ,总,0>∃ε,当 δρ<<0 时,有 ε<-A x f )(;B. 若,0>∃ε,对 ,0>∀δ ,当 δρ<<0 时,有 ε<-A x f )(;C. 对每个,10<<ε总,0>∃δ 当 δρ<<0 时,有 ε<-A x f )(;D. 若,0>∃δ,,0>∀ε当 δρ<<0 时,有 ε<-A x f )(.8、下列说法错误的是( C ) A. 若),(lim lim 00y x f x x y y →→与()()00,,lim (,)→x y x y f x y 都存在,则两者相等.B. 若),(lim lim 00y x f y y x x →→与),(lim lim 00y x f x x y y →→ 都存在但不相等,则()()00,,lim (,)→x y x y f x y 不存在.C. 若),(lim lim 00y x f y y x x →→与),(lim lim 00y x f x x y y →→ 都存在且相等,则()()00,,lim (,)→x y x y f x y 必存在.D. 若),(lim lim 00y x f y y x x →→、),(lim lim 00y x f x x y y →→与()()00,,lim (,)→x y x y f x y 都存在,则三者相等.9、函数xy y x y x f 1sin 1sin),(+=在点)0,0(的二重极限与累次极限的情况为 ( D ). A. 两个都存在. B. 两个都不存在. C. 累次存在,二重不存在. D. 累次不存在,二重存在.10、(,)(0,0)limx y →=( D )A.21 B. 1 C. 2 D. -4111、22)0,0(),(limy x xyy x +→ ( D )A. 等于21 B. 等于0 C. 等于21kk + D. 不存在 12、(,)lim →=x y ( B ).A. ;1B. .0;C. ;21D. 不存在 13、下列错误的是( B ) A.01sin)(lim 22)0,0(),(=++→y x y x y x B. 0lim 22)0,0(),(=+→yx xyy x C. 0limlim 2200=+→→y x xy y x D.0lim lim 2200=+→→y x xyx y 14、=++→2222)0,0(),()sin(lim y x y x y x ( A )A. ;1B. .0;C. ∞D. 不存在也不是∞15、设22220(,)00+≠=+=⎩x y f x y x y ,则下列结论正确的是( D ).A.(,)(0,0)lim (,)→x y f x y 不存在. B.(,)(0,0)lim (,)1→=x y f x yC. (,)f x y 在()0,0不连续.D. (,)f x y 在2R 上连续.二、填空题1、点集{}10),(22<+<=y x y x E 的聚点集合为 答案:(){}22,1+≤x y xy2、 函数)2ln(),(x y y x f -=的定义域为 . 答案:()1,:2⎧⎫>⎨⎬⎩⎭x y y x 3、函数(,)f x y =的定义域是_____________. 答案:{}y x y x y x ≥<+41:).(22且4、函数(,)=f x y 的定义域是_____________. 答案:(){}2222,124,且+>+≠≤x y xy x y y x5、1142222-++--=y x y x z 的定义域是__________________.答案:(){}22,14<+≤x y xy6、)4ln(92222-++--=y x y x z 的定义域是______________答案:(){}22,49<+≤x y xy7、函数2222),(yx y x y x f -+=的定义域为_____________. 答案:(){},:≠x y x y8、11lim)0,0(),(-+→xy xy y x =__________.答案:2 9、22)0,1(),()ln(limyx e x y y x ++→=________.答案:2ln10、=++→2222)0,0(),()sin(lim yx y x y x ________.. 答案:1 11、()()()=→y xy y x sin lim0,2,_____________.答案:2 12、(,)(0,0)11lim sin sin x y x y y x →⎛⎫+ ⎪⎝⎭ = . 答案:0 13、()()()=++→220,0,1sinlimyx y x y x _____________. 答案:014、已知xy y x y x f ++=)cos(),(,则_________________),(=-+y x y x f . 答案:222cos y x x -+ 15、11sin),(22-+=y x y x f 的间断点是_____________.答案:(){}22,1x y xy +=三、证明题和计算题1、证明22222)0,0(),()(lim y x y x y x y x -+→ 不存在.证明:因为 ()()()22442222,0,00limlim 1→→===+-x y x y xx y x x x y x y 而 ()()()222222,0,00lim0→==+-x y y x y x y x y故22222)0,0(),()(lim y x y x y x y x -+→不存在. 2、证明y x yx y x -+→)0,0(),(lim不存在.证明: 因为()(),0,000limlim 1→→=+==-x y x y x y xx yx 而()(),0,000limlim 1→→=+==---x y x x x y yx yy 所有y x yx y x -+→)0,0(),(lim不存在.3、用定义证明()()222,0,0lim0→=+x y xy x y 证明 222220-≤⋅≤++xy xyy y x y x y所以对0∀>ε,取=δε,则当,(,)(0,0)且<<≠x y x y δδ时,有2220-<+xy x y ε由定义知()()222,0,0lim0→=+x y xy x y 4、用定义证明()()2222,0,0lim0→=+x y x y x y 证明()222222222220+-≤≤+++x y x y x y x y x y所以对0∀>ε,取=δ则当0<<δ时,有22+<x y ε从而22220-<+x y x yε,由定义知()()2222,0,0lim 0→=+x y x y x y 5、设2222(,)(0,0),(,)0,(,)(0,0),x y xy x y f x y x y x y ⎧-≠⎪=+⎨⎪=⎩,, 证明(,)(0,0)lim (,)0.x y f x y →=证明: 222222222202x y x y x y xy x y x y -+--≤++222211(),22x y x y =-≤+可知0,ε∀>0,δδ∃=<<当时有22220,x yxy x y ε--<+ 所以(,)(0,0)lim (,)0.x y f x y →=6、求极限.42lim)0,0(),(xy xy y x +-→解(,)(0,0)(,)limlimx y x y →→=(,)1lim4x y →==7、求极限.11lim2222)0,0(),(-+++→y x y x y x解22(,)(,)(0,0)limlimx y x y →→==(,)(0,0)lim 1)2x y →=8、求极限()()2222,0,01lim →+++x y x y x y解 因为()()2222,0,0lim01→+=++x y x y x y 所以()()2222,0,01lim→++=+∞+x y x y x y 9、求极限()()()22,0,01limsin→++x y x y x y解:()221sin+≤+≤++x y x y x y x y,而()()(),0,0lim 0→+=x y x y ()()()22,0,01limsin0→+=+x y x y x y ,从而()()()22,0,01lim sin 0→+=+x y x y x y10、求极限()()()2222,0,0sin 2lim→++x y x y x y解:令22=+t x y ,则()(),0,0→x y 等价于0→t所以()()()2222,0,000sin 2sin 2sin 2limlim2lim 22→→→+===+x y t t x y t tx y t t。
第十六章 多元函数的极限与连续习题课一 概念叙述题1.叙述0lim ()P P f P A →=,其中0,P P 的坐标为00(,),(,)x y x y .lim ()0,0,P P f P A εδ→=⇔∀>∃>当00(;)P U P D ∈I δ时,有()f P A ε-<(方形邻域)0,0,εδ⇔∀>∃>当0x x δ-<,0y y δ-<,00(,)(,)x y x y ≠,有(,)f x y A ε-<(圆形邻域)0,0,εδ⇔∀>∃>当0δ<,有(,)f x y A ε-<. 2. 叙述00(,)(,)lim (,)x y x y f x y →=+∞,00(,)(,)lim(,)x y x y f x y →=-∞,00(,)(,)lim(,)x y x y f x y →=∞的定义.000000(,)(,)lim(,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=+∞⇔∀>∃>-<-<≠>当时,有0,0,0(,)G f x y Gδδ⇔∀>∃><<>当时,有000000(,)(,)lim(,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=-∞⇔∀>∃>-<-<≠<-当时,有000000(,)(,)lim(,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=∞⇔∀>∃>-<-<≠>当时,有.3.叙述0(,)(,)lim (,)x y y f x y A →+∞=的定义.00(,)(,)lim(,)0,0,0,,(,)x y y f x y A M x M y y f x y A εδδε→+∞=⇔∀>∃>∃>>-<-<当时,有4.叙述0(,)(,)lim (,)x y x f x y →-∞=+∞的定义.00(,)(,)lim(,)0,0,0,,(,)x y x f x y G M x x y M f x y G δδ→-∞=+∞⇔∀>∃>∃>-<<->当时,有5. 叙述(,)(,)lim (,)x y f x y →-∞+∞=-∞的定义.(,)(,)lim (,)0,0,,(,)x y f x y G M x M y M f x y G →-∞+∞=-∞⇔∀>∃><-><-当时,有.注:类似写出(,)(,)lim(,)x y f x y →=VW d 的定义,其中d 取,,,A ∞+∞-∞,∆取0,,,x ∞+∞-∞,W 取0,,,y ∞+∞-∞.6.叙述f 在点0P 连续的定义.f 在点0P 连续⇔ε∀, 0δ∃>,只要0(;)P U P D δ∈I ,就有0()()f P f P ε-<⇔ε∀, 0δ∃>,当0x x δ-<,0y y δ-<,就有00(,)(,)f x y f x y ε-<⇔ε∀,0δ∃>,δ,就有00(,)(,)f x y f x y ε-<.7.叙述f 在D 上一致连续的定义.f 在D 上一致连续()0,,,P Q D εδε⇔∀>∃∀∈只要(,)P Q ρδ<,就有()().f P f Q ε-<8.叙述f 在D 上不一致连续的定义.f 在D 上不一致连续00,,,P Q D δδεδ⇔∃>∀∃∈尽管(,)P Q δδρδ<,但有0()().f P f Q δδε-≥二 疑难问题与注意事项1. 00{(,)|0,0}x y x x y y δδ<-<<-<表示空心邻域吗?答:不是.0000{(,)|,,(,)(,)}x y x x y y x y x y δδ-<-<≠只是00{(,)|,}x y x x y y δδ-<-<去掉一点00(,)x y ,而00{(,)|0,0}x y x x y y δδ<-<<-<是00{(,)|,}x y x x y y δδ-<-<去掉了两条线段,000{(,)|,}x y x x y y y δδ=-<<+,000{(,)|,}x y y y x x x δδ=-<<+.2. E 的界点是E 的聚点吗?答:不一定,E 的界点还可能是E 的孤立点.3. E 的聚点一定属于E 吗?答:不一定,例如,22{(,)|14}D x y x y =≤+<,满足224x y +=的一切点也是D 的聚点,但它们都不属于D .注 E 的内点,孤立点一定属于E ,E 的聚点,界点可能属于E ,也可能不属于E ,E 的外点一定不属于E .4.区域上每一点都是聚点吗?答 区域上每一点都是聚点,因为区域是连通的开集,既然连通,就能保证,区域上每一点的邻域有无穷多个点.5. 12x x -1212x x y y -+-之间有什么关系?答:()12121212x x y y x x y y --≤≤-+-或.6.用方形邻域证明00(,)(,)lim (,).x y x y f x y A →=的思路是什么?答:证明00(,)(,)lim (,).x y x y f x y A →=怎么证呢?------关键也是找δ.(用方形邻域的思路0,0,εδ∀>∃>当0x x δ-<,0y y δ-<,00(,)(,)x y x y ≠,有(,)f x y A ε-<.)当00(,)(,)x y x y →,有00(,)(,)x y x y ≠,把(,)f x y A -化简为下述形式:()()00(,),,f x y A x y x x x y y y ϕψ-=-+-(注意一定要出现0x x -,0y y -).然后将()(),,,x y x y ϕψ适当放大,有时先要限定01x x δ-<,01y y δ-<,估算得()(),,,x y M x y N ϕψ≤≤,则(最综化简到00(,)f x y A M x x N y y -≤-+-这个形式);0>∀ε,要使(,)f x y A -<ε,只要()00M x x N y y M N -+-<+δ<ε,即要M N εδ<+,取1min(,)M Nεδ=δ+,于是0,0,εδ∀>∃>当0x x δ-<,0y y δ-<,00(,)(,)x y x y ≠,有(,)f x y A ε-<.7. 证明判断二元函数(),f x y 在(,)(0,0)x y →时二重极限不存在? 答:1)当动点(,)x y 沿着直线y mx =而趋于定点(0,0)时,若(,)(0,0)lim (,)x y y mxf x y →=值与m有关,则二重极限(,)(0,0)lim (,)x y f x y →不存在.2)令cos x r θ=,sin y r θ=,0lim (cos ,sin )r f r r θθ→与θ有关,则二重极限(,)(0,0)lim (,)x y f x y →不存在.注意 若0lim (cos ,sin )r f r r θθ→与θ无关,则二重极限(,)(0,0)lim (,)x y f x y →存在.3)找自变量的两种变化趋势,使两种方式下极限不同. 4)证明两个累次极限存在但不相等.8. 当动点(,)x y 沿着直线y mx =而趋于定点(0,0)时,若(,)(0,0) lim (,)x y y mxf x y →=值与m 无关,能说明二重极限(,)(0,0)lim (,)x y f x y →存在吗?答:不能,因为所谓二元函数存在极限,是指(,)x y 以任何方式趋于(0,0)时,函数(,)f x y 都无限接近于同一个常数,动点(,)x y 沿着直线y mx =而趋于定点(0,0)这只是一种方式,还有其它方式.9.计算二元函数极限有哪些方法?1) 利用有界函数与无穷小的乘积是无穷小;例 求22(,)(0,0)1lim ()sinx y x y x y→++. 解 因为(,)(0,0)lim ()0x y x y →+=,而221sin1x y≤+,利用有界函数与无穷小的乘积是无穷小,即知22(,)(0,0)1lim ()sin0x y x y x y→+=+. 2)利用变量替换化为已知极限或化为一元函数的极限;例 2222(,)(0,0)sin()lim x y x y x y→++. 解 利用变量替换.令22ux y =+,当(,)(0,0)x y →时,有0u →,因此2222(,)(0,0)0sin()sin lim lim 1x y u x y ux y u→→+==+. 3)利用极坐标变换.令cos x r θ=,sin y r θ=,如果(cos ,sin )f r r θθ沿径向路径关于[]0,2θπ∈一致成立,则(,)(0,0)lim (,)lim (cos ,sin )x y r f x y f r r θθ→→=;例 求222(,)(0,0)lim x y x yx y →+.解 利用极坐标变换.令cos x r θ=,sin y r θ=,当(,)(0,0)x y →时,有0r →,因此2322222(,)(0,0)00cos sin lim lim lim cos sin 0x y r r x y r r x y rθθθθ→→→===+. 4)利用不等式,使用夹逼准则.例 2244(,)(,)limx y x y x y →+∞+∞++ 解 因为2222442222110222x y x y x y x y y x ++≤≤≤++,而22(,)(,)11lim 022x y yx →+∞+∞⎛⎫+= ⎪⎝⎭ 因此2244(,)(,)lim 0x y x y x y →+∞+∞+=+.5)初等变形求极限,如1∞极限,凑()1e +→WW 1,0→W. 例2(,)(,0)1lim1x x yx y x +→+∞⎛⎫+ ⎪⎝⎭解 2(,)(,0)lim(,)(,0)(,)(,0)11lim 1lim 1x y x x xxx yx yx yx y x y ee x x →+∞+++→+∞→+∞⎧⎫⎪⎪⎛⎫⎛⎫+=+==⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭.10.重极限与累次极限有什么关系? 答:(1)重极限与累次极限没有必然的蕴含关系(除了若两个累次极限存在但不相等能推重极限存在);(2)若两个重极限与累次极限都存在时,则三者相等; (3)若重极限和其中一个累次极限存在时则这两者相等,另一个累次极限可能存在可能不存在.(4)两个累次极限可能都存在,可能都不存在,可能一个存在一个不存在,都存在时可能相等,也可能不相等.11.二元函数(),f x y 在()00,x y 连续,与一元函数()0,f x y 在0x 连续,一元函数()0,f x y 在0y 连续有什么关系? 答反例 二元函数1, 0,(,)0, 0xy f x y xy ≠⎧=⎨=⎩在原点处显然不连续.但由(0,)(,0)0,f y f x ==因此在原点处f 对x 和对y 分别都连续. 三 典型例题1.求下列平面点集的内点、边界点、聚点、孤立点形成的集合.(1)()22,144y E x y x ⎧⎫=≤+<⎨⎬⎩⎭; (2)()[]{},,0,1E x y x y =都是中的有理数; (3)(){},,E x y x y =都是整数;(4)()1,sinE x y y x ⎧⎫==⎨⎬⎩⎭. 解:(1)E 的内点集合是()22,144y E x y x ⎧⎫=<+<⎨⎬⎩⎭,边界点集合是()2222,1444y y E x y x x ⎧⎫=+=+=⎨⎬⎩⎭或,聚点集合是()22,144y E x y x ⎧⎫=≤+≤⎨⎬⎩⎭.没有孤立点.(2)E 没有内点,(因为E 中任意一点的邻域既含有有理数,也含有无理数); 边界点集合是[][]0,10,1⨯.聚点集合是[][]0,10,1⨯,没有孤立点.(3)E 没有内点,(因为E 中任意一点的空心邻域当距离很小时,不含整数点) 边界点集合是E ,没有聚点,孤立点集合是E . (4)E 没有内点,聚点是()1,sinE x y y x ⎧⎫==⎨⎬⎩⎭U (){},0,11x y x y =-≤≤,没有孤立点,界点是()1,sinE x y y x ⎧⎫==⎨⎬⎩⎭U (){},0,11x y x y =-≤≤.2. 证明0000(,)(,)(),()n n n n x y x y n x x y y n →→∞⇔→→→∞.证:(⇒)由于00(,)(,)()n n x y x y n →→∞,即对0ε∀>,N Z +∃∈,当n N >时ε<,因此有0||n x x ε-<,0||n y y ε-<,即00,()n n x x y y n →→→∞.(⇐)由于00,()n n x x y y n →→→∞,即对0ε∀>,N Z +∃∈,当n N >时有0||2n x x ε-<,0||2n y y ε-<,从而有00n n x x y y ε≤-+-<,即 00(,)(,)()n n x y x y n →→∞.3.(1)举出两个累次极限存在,但不相等的例子. (2)举出两个累次极限存在,且相等的例子. (3)举出两个累次极限一个存在一个不存在的例子. (4)举出两个累次极限都不存在的例子. 解:(1)例如(,)x yf x y x y-=+在(0,0)点的两个累次极限存在,但不相等. 000lim limlim11x y x x y x y →→→-==+,()000lim lim lim 11y x y x yx y →→→-=-=-+. (2)例如22(,)xyf x y x y =+在(0,0)点的两个累次极限存在,且相等.22000limlimlim00x y x xy x y →→→==+,2200lim lim 0y x xyx y→→=+. (3)例如1(,)sinf x y x y=在(0,0)点只有一个累次极限存在. 001limlim sin x y x y →→⎛⎫ ⎪⎝⎭不存在,001limlim sin 0y x x y →→⎛⎫= ⎪⎝⎭. (4)例如11(,)sinsin f x y x y y x=+在(0,0)点两个累次极限都不存在. 注 两个累次极限可能都存在,可能都不存在,可能一个存在一个不存在,都存在时可能相等,也可能不相等.4.试作函数(),f x y ,使当0x →,0y →时(1)两个累次极限存在而重极限不存在; (2)两个累次极限不存在而重极限存在; (3)重极限与累次极限都不存在;(4)重极限与一个累次极限存在,另一个累次极限不存在. 解(1)22(,)xyf x y x y=+,两个累次极限存在(见上题),但()()2222222,0,00 lim lim 1x y x y kxxy kx kx y x k x k →→===+++, 因为与k 有关系,因此重极限不存在. (2)11(,)sinsin f x y x y y x=+,在(0,0)点两个累次极限都不存在,但重极限存在 ()(),0,011lim sin sin =0x y x y y x →⎛⎫+ ⎪⎝⎭. (3)2211(,)f x y x y =+,在(0,0)点的两个累次极限,重极限都不存在. (4)1(,)sinf x y x y =或1(,)sin f x y y x=. 变形:当x →∞,y →∞时,有10x→,10y →,(1)222211(,)11xyx y f x y x yx y ==++; (2)11(,)sin sin f x y y x x y=+; (3)22(,)f x y x y =+; (4)1(,)sin f x y y x=. 5. 讨论二元函数22,(,)(0,0)(,)0,(,)(0,0),x x y f x y x y x y α⎧≠⎪=+⎨⎪=⎩在(0,0)点的连续性.解 令cos x r θ=,sin y r θ=,222(,)(0,0)0cos lim lim x y r x r x y rαααθ→→=+ 当2α>,根据无穷小量乘有界量为无穷小量知()22(,)(0,0)lim00,0x y x f x y α→==+,因此(,)f x y 在(0,0)点连续;当2α=,由极限值与θ有关,二重极限不存在,因此(,)f x y 在(0,0)点不连续;当2α<,由20cos lim r r r ααθ→不存在,则二重极限不存在,因此(,)f x y 在(0,0)点不连续.6.设(,)f x y 定义在闭矩形域[,][,].S a b c d =⨯若f 对y 在[,]c d 上处处连续,对x 在[,]a b (且关于y )为一致连续.证明f 在S 上处处连续.分析:要证f 在S 上处处连续,只要证()00,x y S ∀∈,f 在()00,x y 连续,即证ε∀,0δ∃>,当0x x δ-<,0y y δ-<,就有00(,)(,)f x y f x y ε-<,因为条件中有一元函数连续,因此要出现偏增量,即证ε∀,0δ∃>,当0x x δ-<,0y y δ-<,0000(,)(,)(,)(,)f x y f x y f x y f x y ε-+-<(因为条件是f 对y 在[,]c d 上处处连续,对x 在[,]a b (且关于y )为一致连续,因此插入0(,)f x y .证明:因为f 对y 在[,]c d 上处处连续,则()0,f x y 在0y 连续,于是ε∀,0δ∃>, 当0y y δ-<,就有000(,)(,)2f x y f x y ε-<.因为对x 在[,]a b (且关于y )为一致连续,则有ε∀,0δ∃>,当0x x δ-<(对任意y 就有0(,)(,)2f x y f x y ε-<.因此ε∀,0δ∃>,当0x x δ-<,0y y δ-<,就有00000000(,)(,)(,)(,)(,)(,)(,)(,)f x y f x y f x y f x y f x y f x y f x y f x y ε-+-<-+-<.7. 设00lim ()()y y y y A ϕϕ→==,00lim ()()0x x x x ψψ→==,且在00(,)x y 附近有(),()()f x y y x ϕψ-≤,证明()()00,,lim (,)x y x y f x y A →=.分析:要证()()00,,lim(,)x y x y f x y A →=,只要证0,0,εδ∀>∃>当0x x δ-<,0y y δ-<,00(,)(,)x y x y ≠,有(,)f x y A ε-<.而(),f x y 与()y ϕ有关系,因此就要插入()y ϕ,即证(,)()()f x y y y A ϕϕε-+-<.证 由00lim ()()y y y y A ϕϕ→==得,0,0,εδ∀>∃>当0y y δ-<,有()2y A εϕ-<.由00lim ()()0x x x x ψψ→==得,0,0,εδ∀>∃>当0x x δ-<,有()2x εψ<.因为在00(,)x y 附近有(),()()f x y y x ϕψ-≤,于是当0x x δ-<,0y y δ-<有(),()2f x y y εϕ-<.因此0,0,εδ∀>∃>当0x x δ-<,0y y δ-<有(,)()()(,)()()f x y y y A f x y y y A ϕϕϕϕε-+-≤-+-<,因此()()00,,lim (,)x y x y f x y A →=.8. f 在E 上一致连续的充要条件是:对E 中的每一对点列{}{},k k P Q 如果()lim ,0k k k P Q ρ→∞=,便有()()lim 0k k k f P f Q →∞-=⎡⎤⎣⎦. 证 必要性 f 在E 上一致连续()0,,,P Q D εδε⇔∀>∃∀∈只要(,)P Q ρδ<,就有()().f P f Q ε-<()lim ,0k k k P Q ρ→∞=⇒对上述δ,(),,,k k N k N P Q ρδ∃∀><有,因此()().k k f P f Q ε-< 即()()lim 0k k k f P f Q →∞-=⎡⎤⎣⎦. 充分性 反证法,设f 在D 上不一致连续00,,,P Q D δδεδ⇔∃>∀∃∈尽管(,)P Q δδρδ<,但有0()().f P f Q δδε-≥则取1,1,2,,k k δ==L 总有相应的k k P Q D ∈、,虽然1(,)k k P Q kρ<,但是 0()().k k f P f Q ε-≥即()lim ,0k k k P Q ρ→∞=,()()lim 0k k k f P f Q →∞-≠⎡⎤⎣⎦,矛盾.因此f 在E 上一致连续.。
(整理)《数学分析》第十六章多元函数的极限与连续.第十六章多元函数的极限与连续 ( 1 0 时 )§1 平面点集与多元函数 ( 3 时 )一. 平面点集: 平面点集的表示: ),(|),{(y x y x E =满足的条件}.1. 常见平面点集:⑴ 全平面和半平面: }0|),{(≥x y x , }0|),{(>x y x , }|),{(a x y x >,}|),{(b ax y y x +≥等.⑵ 矩形域: ],[],[d c b a ?, 1|||| ),{(≤+y x y x }.⑶ 圆域: 开圆, 闭圆, 圆环. 圆的个部分. 极坐标表示, 特别是}cos 2|),{(θθa r r ≤和}sin 2|),{(θθa r r ≤.⑷ 角域: }|),{(βθαθ≤≤r .⑸ 简单域:-X 型域和-Y 型域.2. 邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域, 空心方邻域与集}||0 , ||0|),{(00δδ<-<<-<="">二. 点集的基本概念:1. 内点、外点和界点:集合E 的全体内点集表示为E int , 边界表示为E ?.集合的内点E ∈, 外点E ?, 界点不定.2. 聚点和孤立点: 孤立点必为界点 .例1 确定集} 4)2()1(1|),( {22<++-≤=y x y x E 的内点、外点集、边界和聚点.3. 开集和闭集: E int E =时称E 为开集,E 的聚点集E ?时称E 为闭集.存在非开非闭集.2R 和空集φ为既开又闭集.4. 开区域、闭区域、区域:以上常见平面点集均为区域 .5. 有界集与无界集:6. 点集的直径)(E d :两点的距离) , (21P P ρ.7. 三角不等式:||21x x -(或||21y y -)|||| )()(2121221221y y x x y y x x -+-≤-+-≤.三. 点列的极限:设) , (n n n y x P =, ) , (000y x P =.定义0l i m P P n n =∞→的定义 ( 用邻域语言 ) . 例2 ) , (n n y x → ) , (00y x ?0x x n →, 0y y n →, ) (∞→n .例3 设0P 为点集E 的一个聚点. 则存在E 中的点列} {n P , 使0lim P P n n =∞→. 四. 2R 中的完备性定理:1. Cauchy 收敛准则:先证{) , (n n y x }为Cauchy 列?} {n x 和} {n y 均为Cauchy 列.2. 闭集套定理: [1]P 89.3. 聚点原理: Weierstrass 聚点原理,列紧性.4. 有限复盖定理:五. 二元函数:1. 二元函数的定义、记法、图象:2. 定义域:例4 求定义域:ⅰ> ),(y x f 192222-+--=y x y x ; ⅱ> ),(y x f )1ln(ln 2+-=x y y . 3. 有界函数:4. n 元函数:Ex [1]P 92—93 1—8 .§2 二元函数的极限 ( 3 时 )一. 二元函数的极限:1. 二重极限A P f D P P P =∈→)(lim 0的定义: 也可记为),(lim ),(),(00y x f y x y x →A =或A y x f y y x x =→→),(lim 00例1 用“δε-”定义验证极限7)(lim 22)1,2(),(=++→y xy x y x .[1]P 94 E1.例2 用“δε-”定义验证极限 0lim 2220=+→→y x xy y x . 例3 设??=≠+-=).0,0(),( , 0),0,0(),( ,),(2222y x y x y x y x xy y x f证明0),(lim )0,0(),(=→y x f y x .(用极坐标变换 ) [1]P 94 E2.Th 1 A P f DP P P =∈→)(lim 0?对D 的每一个子集E ,只要点0P 是E 的聚点,就有A P f E P P P =∈→)(lim 0. 推论1 设D E ?1,0P 是1E 的聚点.若极限)(lim 10P f E P P P ∈→不存在, 则极限)(lim 0P f DP P P ∈→也不存在. 推论2 设D E E ?21,,0P 是1E 和2E 的聚点.若存在极限1)(lim 10A P f E P P P =∈→,2)(lim 20A P f E P P P =∈→, 但21A A ≠,则极限)(lim 0P f DP P P ∈→不存在. 推论3 极限)(lim 0P f DP P P ∈→存在?对D 内任一点列} {n P ,0P P n →但0P P n ≠,数列)}({n P f 收敛 .2 方向极限:方向极限A y x f =+++→)sin , cos (lim 000θρθρρ的定义. 通常为证明极限)(lim 0P f P P →不存在,可证明沿某个方向的极限不存在,或证明沿某两个方向的极限不相等, 或证明方向极限与方向有关; 或沿两条特殊的路径的极限存在而不相等.但应注意, 沿任何方向的极限存在且相等?/ 二重极限存在( 以下例5 ).例4 设??=≠+=. )0,0(),( , 0),0,0(),( , ),(22y x y x y x xy y x f 证明极限),(lim )0,0(),(y x f y x →不存在. (考虑沿直线kx y =的方向极限). [1]P 95 E3.例5 设+∞<<-∞<<=.,0,0,1),(2其余部分时,当x x y y x f 证明极限),(lim )0,0(),(y x f yx →不存在. [1]P 95 E4.二重极限具有与一元函数极限类似的运算性质.例6 求下列极限:ⅰ> )0,0(),(lim →y x 222yx y x +; ⅱ> )0,3(),(lim →y x y xy sin ; ⅲ> )0,0(),(lim →y x xy xy 11-+; ⅳ> )0,0(),(lim →y x 2222)1ln(yx y x +++. 3.极限),(lim),(),(00y x f y x y x →+∞=的定义: 其他类型的非正常极限,→),(y x 无穷远点的情况.例7 验证)0,0(),(lim →y x +∞=+22321yx . Ex [1]P 99—100 1⑴—⑹,4,5.二. 累次极限:1. 累次极限的定义: 定义.例8 设22),(yx xy y x f +=, 求在点) 0 , 0 (的两个累次极限 . [1]P 97 E6. 例9 设2222),(yx y x y x f +-=, 求在点) 0 , 0 (的两个累次极限 . 例10 设xy y x y x f 1sin 1sin ),(+=, 求在点) 0 , 0 (的两个累次极限与二重极限. 2. 二重极限与累次极限的关系:⑴ 两个累次极限存在时, 可以不相等. ( 例9 )⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数yx y x f 1sin ),(=在点) 0 , 0 (的情况 .⑶ 二重极限存在时, 两个累次极限可以不存在. (例10)⑷ 两个累次极限存在(甚至相等) ?/二重极限存在. ( 参阅例4和例8 ).综上, 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.Th 2 若全面极限),(lim ),(),(00y x f y x y x →和累次极限),(lim lim0y x f y y x x →→(或另一次序)都存在,则必相等. ( 证 ) [1]P 98. 推论1 二重极限和两个累次极限三者都存在时, 三者相等.注: 推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时, 全面极限不存在.注: 两个累次极限中一个存在,另一个不存在?/全面极限不存在. 参阅⑵的例.Ex [1]P 99 2§3 二元函数的连续性 (2 时 )一.二元函数的连续概念:由一元函数连续概念引入.1.2.连续的定义:定义用邻域语言定义连续.注: 函数),(y x f 有定义的孤立点必为连续点 .例1 设=++≠++=. 0 , 1, 0 , ),(2222222y x m m y x y x xy y x f证明函数),(y x f 在点) 0 , 0 (沿方向mx y =连续 .例1 设+∞<<∞-<<=., 0, ,0 , 1),(2其他x x y y x f ( [1]P 101)证明函数),(y x f 在点) 0 , 0 (不全面连续但在点) 0 , 0 (f 对x 和y 分别连续.2. 函数的增量: 全增量、偏增量.用增量定义连续性.3. 函数在区域上的连续性.4. 连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性. (仅证复合函数连续性[1]P102).二.一致连续性: 定义.三.四.有界闭区域上连续函数的性质:1.有界性与最值性. ( 证)2.3.一致连续性. ( 证)4.介值性与零点定理. ( 证)Ex [1]P104—105 1 ⑴—⑸,2,4,5.。
第十六章多元函数的极限与连续1.证明: 对任何, 它的导集必为闭集.2.设是中两个不相交的开集, 证明.3.证明: 对任何, 它的边界必为一闭集.4.证明闭域必为闭集.5.讨论下列函数在时的极限不存在:(1); (2) ;(3).6. 设在点的某邻域内有定义, 且满足:(1) 在中, 对每个, 存在;(2) , 关于中的一致.试证明:.7. 设. 证明:(1) , 使得在或上, 有;(2) .8. 设. 证明:(1) ;(2) 不存在.9. 证明: 在上一致连续.10. 设是上的实值函数. 证明: 在上连续的充要条件是对于中的每个开集, 集合亦必为开集.11. 证明: 若为一有界开集, 则在上一致连续的充要条件是:在上连续, 且对任何点, 极限都存在(即在上的连续性能延拓到).12. 设为连续函数. 试证: 存在(), 则在上一致连续.13. 设, . 试证在上一致连续的充要条件是: 对中每一对点列, , 如果, 便有.第十六章多元函数的极限与连续一、选择题(每小题2分)1、极限的涵义是()A、对,总,当时,有。
B、若,对,当时,有。
C、对每个,总,当时,有。
D、若,,当时,有。
2、设,则()A、存在且等于0B、不存在C、存在可能不为0D、可能存在,也可能不存在3、函数在间断,则()A、函数在处一定无定义B、函数在处极限一定不存在C、函数在处可能有定义,也可能有极限D、函数在处一定有定义,且有极限,但极限值不等于该点的函数值4、()A、 1B、不存在C、D、05、函数在处存在二重极限是函数在该点连续的()A、必要条件B、充分条件C、充要条件D、既非充分又非必要条件6、函数在原点(0,0)间断,是因为()A、在原点无定义B、在原点无极限C、在原点有极限,无定义D、在原点有极限但不等于其函数值7、下面断语正确的是()A、点集的界点一定是其聚点B、开集一定是开域C、闭域一定是闭集D、闭集一定是闭域8、下面断语正确的是()A、区域上的连续函数必有界B、区域上的连续函数必有最大值和最小值C、区域上的连续函数必一致连续D、在区域上连续,为 D 的内点,且,则对必,使二、判断题(每小题2分)1、若函数在连续,则其二重极限必存在。
第十六章 多元函数的极限与连续§1 平面点集与多元函数1. 判断下列平面点集中哪些是开集、闭集、有界集、区域?并分别指出他们的聚点与界点。
(1)[,)[,);a b c d ´ (2){(,)0};x y xy ¹(3){(,)|0};x y xy = (4)2{(,)|}x y y x > (5){(,)|2,2,2}x y x y x y <<+> (6)22{(,)|10,01}x y x y y x +==#或; (7)22{(,)|10,12};x y x y yx +?#或(8){}N +Î(x,y)|x,y ; (9)1{(,)|sin };x y y x=解:(1)有界集、区域,其聚点为{(,)|,}.E x y a x b c y d =##(2)开集,聚点为2,E R =界点为{(,)|0};x y xy = (3)闭集,{(,)|0},E x y xy ==界点为{(,)|0}.EE x y xy ?==(4)区域,开集,其聚点为2{(,)|},E x y x y = 界点为2{(,)|}.x y y x = (5)有界集,区域,开集,其聚点为{(,)|2,2,2},E x y x yxy =#?界点为{(,)2,02{(,)|2,02}{(,)|2,02}x y x yx y y xx y x y x=#=#+=#(6)有界集,闭集,其聚点为22{(,)10,01},E x y x y y x =+==#或界点为EE ?。
(7)有界集、闭集,其聚点为22{(,)|10,12};E x y x y yx =+?#或界点为22{(,)|10,12}.Ex y x y y x ?+==#或(8)闭集,其聚点是空集,界点为{(,)|,}.x y x y z Î (9)闭集1{(,)|sin ,0}{(0,)1}E x y y x y y x==> ,界点为.EE ?2.试问集合{(,)|0,0}x y x a y b d d <-<<-<与集合{(,)|,},(,)(,)x y x a y b x y a b d d -<-< 是否相同? 解:不相同,第一个点集为第二个点集的子集。
第十六章 多元函数的极限与连续一、 选择题(每小题2分) 1、极限00(,)(,)lim (,)x y x y f x y A →= 的涵义是( )A 、 对 0δ∀> ,总 0ε∃>,当 0ρδ<< 时,有 (,)f x y A ε-<。
B 、 若0ε∃>,对 0δ∀> ,当 0ρδ<< 时,有 (,)f x y A ε-<。
C 、 对每个01ε<< ,总 0δ∃>,当 0ρδ<< 时,有 (,)f x y A ε-<。
D 、 若0δ∃>, 0ε∀>,当 0ρδ<< 时,有 (,)f x y A ε-<。
2、设 0lim (,0)0,lim (0,)0,lim (,)0x x y y kx f x f y f x y →→→=→===,则(,)(0,0)lim (,)x y f x y →( )A 、存在且等于0B 、不存在C 、存在可能不为0D 、可能存在,也可能不存在 3、函数 (,)f x y 在 000(,)P x y 间断,则( ) A 、 函数在 000(,)P x y 处一定无定义 B 、 函数在 000(,)P x y 处极限一定不存在C 、 函数在 000(,)P x y 处可能有定义,也可能有极限D 、 函数在 000(,)P x y 处一定有定义,且有极限,但极限值不等于该点的函数值 4、(,)limx y →=( )A 、 1B 、不存在C 、12D 、0 5、函数 (,)f x y 在 000(,)P x y 处存在二重极限是函数在该点连续的( ) A 、必要条件 B 、充分条件 C 、充要条件 D 、既非充分又非必要条件6、函数 2222220(,)00xy x y x yf x y x y ⎧+≠⎪+=⎨+=⎪⎩在原点(0,0)间断,是因为(,)f x y ( )A 、在原点无定义B 、在原点无极限C 、在原点有极限,无定义D 、在原点有极限但不等于其函数值 7、下面断语正确的是 ( )A 、点集的界点一定是其聚点B 、开集一定是开域C 、闭域一定是闭集D 、 闭集一定是闭域 8、下面断语正确的是 ( ) A 、 区域上的连续函数必有界B 、区域上的连续函数必有最大值和最小值C 、区域上的连续函数必一致连续D 、f 在区域2D R ⊂上连续, 12,P P 为D 的内点,且12()()f P f P <, 则对12:()()f P f P μμ∀<< 必 0P D ∃∈ ,使0()f P μ=二、 判断题 (每小题2分)1、若函数 (,)f x y 在00(,)x y 连续,则其二重极限必存在。
第十六章 多元函数的极限与连续习题课一 概念叙述题1.叙述0lim ()P P f P A →=,其中0,P P 的坐标为00(,),(,)x y x y .lim ()0,0,P P f P A εδ→=⇔∀>∃>当00(;)P U P D ∈I δ时,有()f P A ε-<(方形邻域)0,0,εδ⇔∀>∃>当0x x δ-<,0y y δ-<,00(,)(,)x y x y ≠,有(,)f x y A ε-<(圆形邻域)0,0,εδ⇔∀>∃>当0δ<,有(,)f x y A ε-<.2. 叙述00(,)(,)lim (,)x y x y f x y →=+∞,00(,)(,)lim(,)x y x y f x y →=-∞,00(,)(,)lim(,)x y x y f x y →=∞的定义.000000(,)(,)lim(,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=+∞⇔∀>∃>-<-<≠>当时,有0,0,0(,)G f x y Gδδ⇔∀>∃><<>当时,有000000(,)(,)lim(,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=-∞⇔∀>∃>-<-<≠<-当时,有000000(,)(,)lim(,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=∞⇔∀>∃>-<-<≠>当时,有.3.叙述0(,)(,)lim (,)x y y f x y A →+∞=的定义.00(,)(,)lim(,)0,0,0,,(,)x y y f x y A M x M y y f x y A εδδε→+∞=⇔∀>∃>∃>>-<-<当时,有4.叙述0(,)(,)lim (,)x y x f x y →-∞=+∞的定义.00(,)(,)lim(,)0,0,0,,(,)x y x f x y G M x x y M f x y G δδ→-∞=+∞⇔∀>∃>∃>-<<->当时,有5. 叙述(,)(,)lim (,)x y f x y →-∞+∞=-∞的定义.(,)(,)lim (,)0,0,,(,)x y f x y G M x M y M f x y G →-∞+∞=-∞⇔∀>∃><-><-当时,有.注:类似写出(,)(,)lim(,)x y f x y →=VW d 的定义,其中d 取,,,A ∞+∞-∞,∆取0,,,x ∞+∞-∞,W 取0,,,y ∞+∞-∞.6.叙述f 在点0P 连续的定义.f 在点0P 连续⇔ε∀, 0δ∃>,只要0(;)P U P D δ∈I ,就有0()()f P f P ε-<⇔ε∀, 0δ∃>,当0x x δ-<,0y y δ-<,就有00(,)(,)f x y f x y ε-<⇔ε∀,0δ∃>,当2200()()x x y y δ-+-<,就有00(,)(,)f x y f x y ε-<. 7.叙述f 在D 上一致连续的定义.f 在D 上一致连续()0,,,P Q D εδε⇔∀>∃∀∈只要(,)P Q ρδ<,就有()().f P f Q ε-<8.叙述f 在D 上不一致连续的定义.f 在D 上不一致连续00,,,P Q D δδεδ⇔∃>∀∃∈尽管(,)P Q δδρδ<,但有0()().f P f Q δδε-≥二 疑难问题与注意事项1. 00{(,)|0,0}x y x x y y δδ<-<<-<表示空心邻域吗?答:不是.0000{(,)|,,(,)(,)}x y x x y y x y x y δδ-<-<≠只是00{(,)|,}x y x x y y δδ-<-<去掉一点00(,)x y ,而00{(,)|0,0}x y x x y y δδ<-<<-<是00{(,)|,}x y x x y y δδ-<-<去掉了两条线段,000{(,)|,}x y x x y y y δδ=-<<+,000{(,)|,}x y y y x x x δδ=-<<+.2. E 的界点是E 的聚点吗?答:不一定,E 的界点还可能是E 的孤立点.3. E 的聚点一定属于E 吗?答:不一定,例如,22{(,)|14}D x y x y =≤+<,满足224x y +=的一切点也是D 的聚点,但它们都不属于D .注 E 的内点,孤立点一定属于E ,E 的聚点,界点可能属于E ,也可能不属于E ,E 的外点一定不属于E .4.区域上每一点都是聚点吗?答 区域上每一点都是聚点,因为区域是连通的开集,既然连通,就能保证,区域上每一点的邻域有无穷多个点.5. 12x x -2212()x x y y +-12(-)1212x x y y -+-之间有什么关系? 答:()221212121212()x x y y x x y y x x y y --≤+-≤-+-12或(-). 6.用方形邻域证明00(,)(,)lim (,).x y x y f x y A →=的思路是什么?答:证明00(,)(,)lim (,).x y x y f x y A →=怎么证呢?------关键也是找δ.(用方形邻域的思路0,0,εδ∀>∃>当0x x δ-<,0y y δ-<,00(,)(,)x y x y ≠,有(,)f x y A ε-<.)当00(,)(,)x y x y →,有00(,)(,)x y x y ≠,把(,)f x y A -化简为下述形式:()()00(,),,f x y A x y x x x y y y ϕψ-=-+-(注意一定要出现0x x -,0y y -).然后将()(),,,x y x y ϕψ适当放大,有时先要限定01x x δ-<,01y y δ-<,估算得()(),,,x y M x y N ϕψ≤≤,则(最综化简到00(,)f x y A M x x N y y -≤-+-这个形式);0>∀ε,要使(,)f x y A -<ε,只要()00M x x N y y M N -+-<+δ<ε,即要M N εδ<+,取1min(,)M Nεδ=δ+,于是0,0,εδ∀>∃>当0x x δ-<,0y y δ-<,00(,)(,)x y x y ≠,有(,)f x y A ε-<.7. 证明判断二元函数(),f x y 在(,)(0,0)x y →时二重极限不存在? 答:1)当动点(,)x y 沿着直线y mx =而趋于定点(0,0)时,若(,)(0,0)lim(,)x y y mxf x y →=值与m有关,则二重极限(,)(0,0)lim (,)x y f x y →不存在.2)令cos x r θ=,sin y r θ=,0lim (cos ,sin )r f r r θθ→与θ有关,则二重极限(,)(0,0)lim (,)x y f x y →不存在.注意 若0lim (cos ,sin )r f r r θθ→与θ无关,则二重极限(,)(0,0)lim (,)x y f x y →存在.3)找自变量的两种变化趋势,使两种方式下极限不同. 4)证明两个累次极限存在但不相等.8. 当动点(,)x y 沿着直线y mx =而趋于定点(0,0)时,若(,)(0,0) lim(,)x y y mxf x y →=值与m 无关,能说明二重极限(,)(0,0)lim (,)x y f x y →存在吗?答:不能,因为所谓二元函数存在极限,是指(,)x y 以任何方式趋于(0,0)时,函数(,)f x y 都无限接近于同一个常数,动点(,)x y 沿着直线y mx =而趋于定点(0,0)这只是一种方式,还有其它方式.9.计算二元函数极限有哪些方法?1) 利用有界函数与无穷小的乘积是无穷小; 例 求22(,)(0,0)1lim ()sinx y x y x y→++. 解 因为(,)(0,0)lim ()0x y x y →+=,而221sin1x y≤+,利用有界函数与无穷小的乘积是无穷小,即知22(,)(0,0)1lim ()sin0x y x y x y→+=+.2)利用变量替换化为已知极限或化为一元函数的极限;例 2222(,)(0,0)sin()lim x y x y x y→++. 解 利用变量替换.令22ux y =+,当(,)(0,0)x y →时,有0u →,因此2222(,)(0,0)0sin()sin lim lim 1x y u x y ux y u→→+==+. 3)利用极坐标变换.令cos x r θ=,sin y r θ=,如果(cos ,sin )f r r θθ沿径向路径关于[]0,2θπ∈一致成立,则(,)(0,0)lim (,)lim (cos ,sin )x y r f x y f r r θθ→→=;例 求222(,)(0,0)lim x y x yx y →+.解 利用极坐标变换.令cos x r θ=,sin y r θ=,当(,)(0,0)x y →时,有0r →,因此2322222(,)(0,0)00cos sin lim lim lim cos sin 0x y r r x y r r x y rθθθθ→→→===+. 4)利用不等式,使用夹逼准则.例 2244(,)(,)limx y x y x y →+∞+∞++ 解 因为2222442222110222x y x y x y x y y x ++≤≤≤++,而22(,)(,)11lim 022x y yx →+∞+∞⎛⎫+= ⎪⎝⎭ 因此2244(,)(,)lim 0x y x y x y →+∞+∞+=+.5)初等变形求极限,如1∞极限,凑()1e +→WW 1,0→W. 例2(,)(,0)1lim1x x yx y x +→+∞⎛⎫+ ⎪⎝⎭解 2(,)(,0)lim(,)(,0)(,)(,0)11lim 1lim 1x y x x xxx yx yx yx y x y ee x x →+∞+++→+∞→+∞⎧⎫⎪⎪⎛⎫⎛⎫+=+==⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭.10.重极限与累次极限有什么关系?答:(1)重极限与累次极限没有必然的蕴含关系(除了若两个累次极限存在但不相等能推重极限存在);(2)若两个重极限与累次极限都存在时,则三者相等;(3)若重极限和其中一个累次极限存在时则这两者相等,另一个累次极限可能存在可能不存在.(4)两个累次极限可能都存在,可能都不存在,可能一个存在一个不存在,都存在时可能相等,也可能不相等.11.二元函数(),f x y 在()00,x y 连续,与一元函数()0,f x y 在0x 连续,一元函数()0,f x y 在0y 连续有什么关系? 答反例 二元函数1, 0,(,)0, 0xy f x y xy ≠⎧=⎨=⎩在原点处显然不连续.但由(0,)(,0)0,f y f x ==因此在原点处f 对x 和对y 分别都连续. 三 典型例题1.求下列平面点集的内点、边界点、聚点、孤立点形成的集合.(1)()22,144y E x y x ⎧⎫=≤+<⎨⎬⎩⎭;(2)()[]{},,0,1E x y x y =都是中的有理数; (3)(){},,E x y x y =都是整数;(4)()1,sinE x y y x ⎧⎫==⎨⎬⎩⎭. 解:(1)E 的内点集合是()22,144y E x y x ⎧⎫=<+<⎨⎬⎩⎭,边界点集合是()2222,1444y y E x y x x ⎧⎫=+=+=⎨⎬⎩⎭或,聚点集合是()22,144y E x y x ⎧⎫=≤+≤⎨⎬⎩⎭.没有孤立点.(2)E 没有内点,(因为E 中任意一点的邻域既含有有理数,也含有无理数); 边界点集合是[][]0,10,1⨯.聚点集合是[][]0,10,1⨯,没有孤立点.(3)E 没有内点,(因为E 中任意一点的空心邻域当距离很小时,不含整数点) 边界点集合是E ,没有聚点,孤立点集合是E . (4)E 没有内点,聚点是()1,sinE x y y x ⎧⎫==⎨⎬⎩⎭U (){},0,11x y x y =-≤≤,没有孤立点,界点是()1,sinE x y y x ⎧⎫==⎨⎬⎩⎭U (){},0,11x y x y =-≤≤.2. 证明0000(,)(,)(),()n n n n x y x y n x x y y n →→∞⇔→→→∞.证:(⇒)由于00(,)(,)()n n x y x y n →→∞,即对0ε∀>,N Z +∃∈,当n N >时ε<,因此有0||n x x ε-<,0||n y y ε-<<,即00,()n n x x y y n →→→∞.(⇐)由于00,()n n x x y y n →→→∞,即对0ε∀>,N Z +∃∈,当n N >时有0||2n x x ε-<,0||2n y y ε-<,从而有00n n x x y y ε-+-<,即 00(,)(,)()n n x y x y n →→∞.3.(1)举出两个累次极限存在,但不相等的例子. (2)举出两个累次极限存在,且相等的例子. (3)举出两个累次极限一个存在一个不存在的例子. (4)举出两个累次极限都不存在的例子. 解:(1)例如(,)x yf x y x y-=+在(0,0)点的两个累次极限存在,但不相等. 00lim limlim11x y x x y x y →→→-==+,()000lim lim lim 11y x y x yx y →→→-=-=-+.(2)例如22(,)xyf x y x y=+在(0,0)点的两个累次极限存在,且相等. 2200limlimlim00x y x xy x y →→→==+,2200lim lim 0y x xyx y →→=+. (3)例如1(,)sinf x y x y=在(0,0)点只有一个累次极限存在. 001limlim sin x y x y →→⎛⎫ ⎪⎝⎭不存在,001limlim sin 0y x x y →→⎛⎫= ⎪⎝⎭. (4)例如11(,)sinsin f x y x y y x=+在(0,0)点两个累次极限都不存在. 注 两个累次极限可能都存在,可能都不存在,可能一个存在一个不存在,都存在时可能相等,也可能不相等.4.试作函数(),f x y ,使当0x →,0y →时(1)两个累次极限存在而重极限不存在; (2)两个累次极限不存在而重极限存在; (3)重极限与累次极限都不存在;(4)重极限与一个累次极限存在,另一个累次极限不存在. 解(1)22(,)xyf x y x y =+,两个累次极限存在(见上题),但()()2222222,0,00 lim lim 1x y x y kxxy kx kx y x k x k →→===+++, 因为与k 有关系,因此重极限不存在. (2)11(,)sinsin f x y x y y x=+,在(0,0)点两个累次极限都不存在,但重极限存在 ()(),0,011lim sin sin =0x y x y y x →⎛⎫+ ⎪⎝⎭. (3)2211(,)f x y x y =+,在(0,0)点的两个累次极限,重极限都不存在. (4)1(,)sinf x y x y =或1(,)sin f x y y x=. 变形:当x →∞,y →∞时,有10x→,10y →,(1)222211(,)11xyx y f x y x yx y ==++; (2)11(,)sin sin f x y y x x y=+; (3)22(,)f x y x y =+;(4)1(,)sin f x y y x=. 5. 讨论二元函数22,(,)(0,0)(,)0,(,)(0,0),x x y f x y x y x y α⎧≠⎪=+⎨⎪=⎩在(0,0)点的连续性.解 令cos x r θ=,sin y r θ=,222(,)(0,0)0cos lim lim x y r x r x y r αααθ→→=+当2α>,根据无穷小量乘有界量为无穷小量知()22(,)(0,0)lim00,0x y x f x y α→==+,因此(,)f x y 在(0,0)点连续;当2α=,由极限值与θ有关,二重极限不存在,因此(,)f x y 在(0,0)点不连续;当2α<,由20cos lim r r r ααθ→不存在,则二重极限不存在,因此(,)f x y 在(0,0)点不连续.6.设(,)f x y 定义在闭矩形域[,][,].S a b c d =⨯若f 对y 在[,]c d 上处处连续,对x 在[,]a b (且关于y )为一致连续.证明f 在S 上处处连续.分析:要证f 在S 上处处连续,只要证()00,x y S ∀∈,f 在()00,x y 连续,即证ε∀,0δ∃>,当0x x δ-<,0y y δ-<,就有00(,)(,)f x y f x y ε-<,因为条件中有一元函数连续,因此要出现偏增量,即证ε∀,0δ∃>,当0x x δ-<,0y y δ-<,0000(,)(,)(,)(,)f x y f x y f x y f x y ε-+-<(因为条件是f 对y 在[,]c d 上处处连续,对x 在[,]a b (且关于y )为一致连续,因此插入0(,)f x y .证明:因为f 对y 在[,]c d 上处处连续,则()0,f x y 在0y 连续,于是ε∀,0δ∃>, 当0y y δ-<,就有000(,)(,)2f x y f x y ε-<.因为对x 在[,]a b (且关于y )为一致连续,则有ε∀,0δ∃>,当0x x δ-<(对任意y就有0(,)(,)2f x y f x y ε-<.因此ε∀,0δ∃>,当0x x δ-<,0y y δ-<,就有00000000(,)(,)(,)(,)(,)(,)(,)(,)f x y f x y f x y f x y f x y f x y f x y f x y ε-+-<-+-<.7. 设00lim ()()y y y y A ϕϕ→==,00lim ()()0x x x x ψψ→==,且在00(,)x y 附近有(),()()f x y y x ϕψ-≤,证明()()00,,lim (,)x y x y f x y A →=.分析:要证()()00,,lim(,)x y x y f x y A →=,只要证0,0,εδ∀>∃>当0x x δ-<,0y y δ-<,00(,)(,)x y x y ≠,有(,)f x y A ε-<.而(),f x y 与()y ϕ有关系,因此就要插入()y ϕ,即证(,)()()f x y y y A ϕϕε-+-<.证 由00lim ()()y y y y A ϕϕ→==得,0,0,εδ∀>∃>当0y y δ-<,有()2y A εϕ-<.由00lim ()()0x x x x ψψ→==得,0,0,εδ∀>∃>当0x x δ-<,有()2x εψ<.因为在00(,)x y 附近有(),()()f x y y x ϕψ-≤,于是当0x x δ-<,0y y δ-<有(),()2f x y y εϕ-<.因此0,0,εδ∀>∃>当0x x δ-<,0y y δ-<有(,)()()(,)()()f x y y y A f x y y y A ϕϕϕϕε-+-≤-+-<,因此()()00,,lim (,)x y x y f x y A →=.8. f 在E 上一致连续的充要条件是:对E 中的每一对点列{}{},k k P Q 如果()lim ,0k k k P Q ρ→∞=,便有()()lim 0k k k f P f Q →∞-=⎡⎤⎣⎦. 证 必要性 f 在E 上一致连续()0,,,P Q D εδε⇔∀>∃∀∈只要(,)P Q ρδ<,就有()().f P f Q ε-<()lim ,0k k k P Q ρ→∞=⇒对上述δ,(),,,k k N k N P Q ρδ∃∀><有,因此()().k k f P f Q ε-<即()()lim 0k k k f P f Q →∞-=⎡⎤⎣⎦. 充分性 反证法,设f 在D 上不一致连续00,,,P Q D δδεδ⇔∃>∀∃∈尽管(,)P Q δδρδ<,但有0()().f P f Q δδε-≥则取1,1,2,,k k δ==L 总有相应的k k P Q D ∈、,虽然1(,)k k P Q kρ<,但是 0()().k k f P f Q ε-≥即()lim ,0k k k P Q ρ→∞=,()()lim 0k k k f P f Q →∞-≠⎡⎤⎣⎦,矛盾.因此f 在E 上一致连续.。