高等数学 多元函数的极限与连续
- 格式:pptx
- 大小:413.26 KB
- 文档页数:22
大专大一高数知识点高等数学作为大一学生的必修课程,是一门基础且重要的学科。
掌握了高数的基本知识点,对于后续专业课程的学习以及日常生活中的实际问题解决都有着重要的帮助。
本文将对大专大一高数的知识点进行系统整理和介绍。
一、函数与极限1. 函数与映射关系:函数的定义,自变量、因变量和函数值的概念,函数图像的性质等。
2. 极限与连续:数列的极限概念,函数极限的定义与性质,常见极限运算法则,连续函数的定义与判定等。
3. 一元函数的导数与微分:导数的定义与性质,常见导数运算法则,函数的微分与微分近似计算等。
二、一元函数的应用1. 函数的增减性与极值:函数单调性的判定方法,函数的极大值与极小值的求解等。
2. 函数的单调性与曲线的凹凸性:函数的凹凸性与拐点的判定方法,曲线的拐点与凹凸区间等。
3. 常用函数与数学模型:幂函数、指数函数、对数函数、三角函数等常见函数的性质与应用。
三、二元函数与多元函数1. 二元函数的概念与性质:二元函数的定义与图像,二元函数的极限、连续与偏导数等。
2. 多元函数的极限与连续:多元函数的定义与性质,多元函数的极限定义与计算,多元函数的连续性与判定等。
3. 多元函数的偏导数与全微分:多元函数的偏导数与偏导数的计算方法,全微分的概念与计算等。
四、多元函数的应用1. 多元函数的极值与条件极值:多元函数的极值与条件极值的求解方法,拉格朗日乘数法等。
2. 多元函数的偏导数与梯度:多元函数的偏导数在几何上的意义,梯度的概念与性质等。
3. 二重积分与三重积分:二重积分的定义与计算方法,三重积分的定义与计算方法等。
五、常微分方程1. 常微分方程的基本概念:常微分方程的定义与分类,初值问题的理解与解的存在唯一性定理等。
2. 一阶常微分方程的解法:可分离变量方程、线性方程、齐次方程、一阶齐次线性方程等的求解方法。
3. 高阶线性常微分方程:高阶常微分方程的解法,常系数线性齐次方程的解法,常系数线性非齐次方程的特解与通解等。
第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=fx, x ∈D定义域: Df, 值域: Zf.2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: Fx,y= 04.反函数: y=fx → x=φy=f -1y y=f -1 x定理:如果函数: y=fx, Df=X, Zf=Y 是严格单调增加或减少的; 则它必定存在反函数:y=f -1x, Df -1=Y, Zf -1=X且也是严格单调增加或减少的;㈡ 函数的几何特性1.函数的单调性: y=fx,x ∈D,x 1、x 2∈D 当x 1<x 2时,若fx 1≤fx 2,则称fx 在D 内单调增加 ;若fx 1≥fx 2,则称fx 在D 内单调减少 ;若fx 1<fx 2,则称fx 在D 内严格单调增加 ;若fx 1>fx 2,则称fx 在D 内严格单调减少 ;2.函数的奇偶性:Df 关于原点对称 偶函数:f-x=fx 奇函数:f-x=-fx3.函数的周期性:周期函数:fx+T=fx, x ∈-∞,+∞ 周期:T ——最小的正数4.函数的有界性: |fx|≤M , x ∈a,b ㈢ 基本初等函数1.常数函数: y=c , c 为常数2.幂函数: y=x n , n 为实数3.指数函数: y=a x , a >0、a ≠14.对数函数: y=log a x ,a >0、a ≠15.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=fu , u=φxy=f φx , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算加、减、乘、除和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限; 或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:AxfxfAxfxxxxxx==⇔=+-→→→)(lim)(lim)(lim㈡无穷大量和无穷小量1.无穷大量:+∞=)(lim xf称在该变化过程中)(xf为无穷大量;X再某个变化过程是指:2.无穷小量:)(lim=xf称在该变化过程中)(xf为无穷小量;3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim)(lim≠+∞=⇔=xfxfxf4.无穷小量的比较:lim,0lim==βα⑴若lim=αβ,则称β是比α较高阶的无穷小量;⑵若c=αβlimc为常数,则称β与α同阶的无穷小量;⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim ,则称β是比α较低阶的无穷小量; 定理:若:;,2211~~βαβα则:2121limlim ββαα=㈢两面夹定理1. 数列极限存在的判定准则:设:n n n z x y ≤≤ n=1、2、3…且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2. 函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 点x 0除外有:且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§ 连续一、主要内容㈠ 函数的连续性 1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o 0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续;在端点a 和b 连续是指:)()(lim a f x f ax =+→ 左端点右连续;)()(lim b f x f b x =-→ 右端点左连续;a + 0b - x 5. 函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点;间断点有三种情况:1o)(x f在0x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→;两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在;可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义;2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在;无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o)()()()(lim 000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2. 复合函数的连续性:则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值;fx0 a b xm-M0 ab x2.有界定理:) (xf在],[ba上连续⇒)(x f在],[b a上一定有界;3.介值定理:) (xf在],[ba上连续⇒在),(b a内至少存在一点ξ,使得:cf=)(ξ,其中:Mcm≤≤y yCfx0 a ξm0 a ξ1 ξ2 b x 推论:)(x f 在],[b a 上连续,且)(a f 与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf ;4.初等函数的连续性:初等函数在其定域区间内都是连续的; 第二章 一元函数微分学 § 导数与微分 一、主要内容 ㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义, 2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:00)()(lim )(0x x x f x f x f x x --='+→+ 定理:)(x f 在0x 的左或右邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-或:)(lim )(00x f x f x x '='+→+3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在;5.导函数: ),(x f y '=' ),(b a x ∈)(x f 在),(b a 内处处可导; y )(0x f '6.导数的几何性质: y ∆)(0x f '是曲线)(x f y =上点 ∆()00,y x M 处切线的斜率; o x 0㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)(2ov u v u v u '⋅+⋅'='⋅)(3o2v v u v u v u '⋅-⋅'='⎪⎭⎫⎝⎛ )0(≠v 3.复合函数的导数:dxdu du dy dx dy ⋅=,或 )()]([})]([{x x f x f ϕϕϕ'⋅'=' ☆注意})]([{'x f ϕ与)]([x f ϕ'的区别:})]([{'x f ϕ表示复合函数对自变量x 求导;)]([x f ϕ'表示复合函数对中间变量)(x ϕ求导;4.高阶导数:)(),(),()3(x f x f x f 或'''''函数的n 阶导数等于其n-1导数的导数; ㈢微分的概念 1.微分:)(x f 在x 的某个邻域内有定义,其中:)(x A 与x ∆无关,)(x o ∆是比x ∆较高阶的无穷小量,即:0)(lim 0=∆∆→∆x x o x 则称)(x f y =在x 处可微,记作:2.导数与微分的等价关系: 定理:)(x f 在x 处可微)(x f ⇒在x 处可导,且:)()(x A x f ='3.微分形式不变性:不论u 是自变量,还是中间变量,函数的微分dy 都具有相同的形式;§ 中值定理及导数的应用 一、主要内容 ㈠中值定理1.罗尔定理: )(x f 满足条件:y)(ξf ' )(x fa o ξb x a o x2.拉格朗日定理:)(x f 满足条件:㈡罗必塔法则:∞∞,型未定式 定理:)(x f 和)(x g 满足条件:1o)或)或∞=∞=→→(0)(lim (0)(lim x g x f ax ax ;2o 在点a 的某个邻域内可导,且0)(≠'x g ;3o)(或∞=''∞→,)()(lim )(A x g x f a x则:)(或∞=''=∞→∞→,)()(lim )()(lim )()(A x g x f x g x f a x a x☆注意:1o 法则的意义:把函数之比的极限化成了它们导数之比的极限; 2o若不满足法则的条件,不能使用法则;即不是型或∞∞型时,不可求导;3o 应用法则时,要分别对分子、分母 求导,而不是对整个分式求导; 4o 若)(x f '和)(x g '还满足法则的条件,可以继续使用法则,即: 5o 若函数是∞-∞∞⋅,0型可采用代数变形,化成或∞∞型;若是0,0,1∞∞型可采用对数或指数变形,化成或∞∞型;㈢导数的应用 1.切线方程和法线方程:设:),(),(00y x M x f y =切线方程:))((000x x x f y y -'=-法线方程:)0)((),()(10000≠'-'-=-x f x x x f y y 2. 曲线的单调性:⑴),(0)(b a x x f ∈≥'内单调增加;在),()(b a x f ⇒⑵),(0)(b a x x f ∈>'内严格单调增加;在),(b a ⇒3.函数的极值: ⑴极值的定义:设)(x f 在),(b a 内有定义,0x 是),(b a 内的一点;若对于x 的某个邻域内的任意点x x ≠,都有:则称)(0x f 是)(x f 的一个极大值或极小值,称x 为)(x f 的极大值点或极小值点;⑵极值存在的必要条件:定理:)()(.2)()(.1=⇒⎭⎬⎫'xfxfxfxf存在。
第九章 多元函数微分学§9.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点()D y x P ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以()y x f z ,=,D 称为定义域。
二元函数()y x f z ,=的图形为空间一卦曲面,它在xy 平面上的投影区域就是定义域D 。
例如 221y x z --=,1:22≤+y x D , 此二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是 xy 平面上以原点为圆心,半径为1的闭圆。
2.三元函数与n 元函数()z y x f u ,,= ()Ω∈z y x ,,空间一个点集称为三元函数()n x x x f u ,,21 = 称为n 元函数它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。
条件极值中,可能会遇到超过三个自变量的多元函数。
二、二元函数的极限设函数),(y x f 在区域D 内有定义,),(000y x P 是D 的聚点,如果存在常数A ,对于任意给定的0>ε,总存在0>δ,当),(y x P 满足δ<-+-=<20200)()(0y y x x PP 时,恒有ε<-A y x f ),(成立。
则记以()A y x f y y x x =→→,lim 0或()()()A y x f y x y x =→,lim00,,。
称当()y x ,趋于()00,y x 时,()y x f ,的极限存在,极限值A ,否则称为极限不存在。
值得注意:这里()y x ,趋于()00,y x 是在平面范围内,可以按任何方式沿任意曲线趋于()00,y x ,所以二元函数的极限比一元函数的极限复杂;但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值,不像一元函数求极限要求掌握各种方法和技巧。
湖南高等数学教材答案详解一、函数与极限1. 函数的定义及表示法在数学中,函数是一种将一个集合映射到另一个集合的关系。
表示函数的常用方式有算式表示、图像表示和表格表示等。
例如,对于函数f(x),我们可以用以下方式表示:- 算式表示:f(x) = x^2 + 1- 图像表示:在坐标系中绘制f(x) = x^2 + 1的曲线- 表格表示:列出不同的x值和相应的f(x)值2. 极限的定义及性质在数学分析中,极限是研究函数趋于某个值时的行为和性质。
极限的定义如下:给定一个函数f(x),当自变量x无限接近某个值a时,如果对于任意一个给定的正数ε,总存在另一个正数δ,使得当0 < |x - a| < δ时,有|f(x) - A| < ε成立,那么我们就说当x趋于a时,函数f(x)的极限是A。
3. 求函数的极限求函数的极限需要根据极限的定义方法进行推导和计算。
常用的极限计算方法有代数运算法、夹逼法和无穷小量法。
4. 极限的性质在计算极限时,可以利用一些基本的极限性质简化计算过程。
常用的极限性质有四则运算性质、复合函数极限性质和函数极限的保号性等。
二、导数与微分1. 导数的定义及性质在微积分中,导数表示函数在某一点的变化率或斜率。
导数的定义如下:给定一个函数y = f(x),如果函数在点x处的导数存在,那么导数定义为f'(x) = lim┤(Δx→0) [f(x + Δx) - f(x)]/Δx。
导数的几何意义是函数曲线在该点的切线的斜率。
2. 使用导数求函数的极值和凹凸性通过求函数的导数,可以找到函数的极值点和凹凸性。
如果函数在某一点的导数为零,那么该点就是函数的极值点;如果函数的导数单调递增或递减,那么函数就具有凹性或凸性。
3. 高阶导数及其应用高阶导数表示对函数的导数再次求导的结果。
高阶导数在函数的加速度、曲率等问题中具有重要的应用。
4. 微分的定义及性质微分是导数的一种应用,表示函数在某个点处的变化量。
第八章:多元函数微分8.1 多元函数的极限与连续性8.1.1 定义设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x,y)是D的内点或边界点。
如果对于任意给定的正数ε,总存在正数δ,使得对于适合不等式的一切点P(x,y)∈D,都有|f(x,y)-A|<ε成立,则称常数A为函数f(x,y)当 x→x0,y→y时的极限,记作或f(x,y) →A (ρ→0),这里ρ=|PP|。
例设(x2+y2≠0),求证。
因为,可见,对任何ε>0,取,则当时,总有成立,所以。
我们必须注意,所谓二重极限存在,是指P(x,y)以任何方式趋于P0(x,y)时,函数都无限接近于A。
定义设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x,y)是D的内点或边界点且P∈D。
如果则称函数f(x,y)在点P0(x,y)连续。
8.1.2 性质性质1(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最小值和最大值。
性质2(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。
一切多元初等函数在其定义区域内是连续的。
所谓定义区域,是指包含在定义域内的区域或闭区域。
由多元初等函数的连续性,如果要求它在点P0处的极限,而该点又在此函数的定义区域内,则极限值就是函数在该点的函数值,即。
8.2 偏导数的定义及计算法8.2.1 定义设函数z=f(x,y)在点(x0,y)的某一邻域内有定义,当y固定在y而x在x0处有增量Δx时,相应的函数有增量f(x+Δx,y)-f(x,y),如果存在,则称此极限为函数z=f(x,y) 在点(x0,y)处对x的偏导数,记作或 fx (x,y)。
对于函数z=f(x,y),求时,只要把y暂时看作常量而对y求导。
例求z=x2sin2y的偏导数。
解。
8.2.2 高阶偏导数定理如果函数z=f(x,y)的两个二阶混合偏导数在区域D内连续,那末在该区域内这两个二阶混合偏导数必相等。
高等数学常用基础知识点一、极限与连续极限是高等数学中的重要概念之一。
当自变量趋于某个确定值时,函数的极限描述了函数在这个点附近的表现。
极限的计算方法包括利用极限的四则运算法则、夹逼定理和洛必达法则等。
连续是指函数在某个点上无间断的性质。
如果函数在某个点上连续,那么其极限存在且与函数在该点的取值相等。
连续函数的性质包括介值定理、零点定理和罗尔定理等。
二、导数与微分导数是函数在某一点的变化率,可以理解为函数曲线在该点处的切线斜率。
导数的计算方法包括利用导数的四则运算法则、链式法则和隐函数求导等。
微分是函数在某一点的局部线性逼近。
微分的计算方法包括利用微分的四则运算法则、高阶导数和泰勒公式等。
三、不定积分与定积分不定积分是导数的逆运算。
不定积分的计算方法包括利用基本积分公式、换元积分法和分部积分法等。
定积分是函数在某一区间上的累积效应。
定积分的计算方法包括利用定积分的性质、换元积分法和分部积分法等。
四、级数与幂级数级数是无穷个数的和。
级数的收敛与发散是级数理论中的重要问题。
级数的测试方法包括比值判别法、根值判别法和积分判别法等。
幂级数是形如∑(a_n*x^n)的级数。
幂级数的收敛半径是幂级数理论中的重要概念。
幂级数的运算方法包括利用幂级数的性质、求和运算和乘法运算等。
五、常微分方程与偏微分方程常微分方程是描述物理、经济和工程等领域中变化规律的数学工具。
常微分方程的求解方法包括利用分离变量法、一阶线性微分方程的求解和二阶线性齐次微分方程的求解等。
偏微分方程是描述多变量函数的方程。
偏微分方程的求解方法包括利用分离变量法、变量代换和特征线法等。
六、空间解析几何与向量代数空间解析几何是研究空间中点、直线和平面的性质和关系的数学分支。
空间解析几何的内容包括点的坐标表示、向量的运算和平面的方程等。
向量代数是研究向量及其运算的数学分支。
向量代数的内容包括向量的加法、数量积和向量积等。
七、多元函数与多元函数微分学多元函数是多个自变量的函数。
文科高等数学第三版教材答案第一章:函数及其图像1. 函数的概念及性质函数是一种特殊的关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。
函数有定义域和值域,可以用图像来表示。
2. 函数的表示方法函数可以用函数表、公式、图像等方式表示。
其中,函数表是一种列出定义域与值域对应关系的方式,而函数公式则是通过数学表达式来表示。
3. 常见的函数类型常见的函数类型包括线性函数、幂函数、指数函数、对数函数、三角函数等。
不同类型的函数有不同的性质和特点。
4. 函数的性质函数有奇偶性、单调性、周期性等性质。
奇偶性指的是函数的对称性,单调性指的是函数在定义域内的增减性,周期性指的是函数具有重复性。
5. 函数的限制函数的限制是指函数在某些条件下的取值范围。
常见的限制包括定义域的限制、值域的限制以及其他约束条件的限制。
第二章:导数与微分1. 导数的定义与性质导数是函数在某一点处的变化率,表示函数曲线在该点处的切线斜率。
导数具有线性性、乘法性、和法则、差法则等性质。
2. 导数的计算方法导数的计算方法包括求导法则、链式法则、参数法则等。
其中,求导法则包括常规函数的求导公式,链式法则适用于复合函数的求导,参数法则适用于含有参数的函数的求导。
3. 函数的凹凸性与拐点函数的凹凸性与拐点与其导数的变化有关。
例如,函数的二阶导数大于零时,函数凹,二阶导数小于零时,函数凸,二阶导数为零时,可能存在拐点。
4. 微分的概念与应用微分表示函数在某一点处的变化量,是导数的微小改变量。
微分在近似计算、极值问题等方面有广泛的应用。
第三章:不定积分与定积分1. 不定积分的基本概念不定积分是确定函数的原函数的过程,表示函数在一个区间内的积分。
不定积分可以通过求导的逆运算来求得。
2. 基本积分法和基本积分公式基本积分法包括基本积分公式、分部积分法、换元积分法等。
基本积分公式是一些常见函数的不定积分公式,可以直接应用于计算。
3. 定积分的基本概念与性质定积分是确定函数在一个区间内的面积的过程,可以看作是在坐标轴下所夹图形的面积。