AnsysWorkbench动力学分析
- 格式:ppt
- 大小:5.22 MB
- 文档页数:61
如何简单的区分ANSYS Workbench 有限元分析中的静力学与动力学问题四川 曹文强“力”是一个很神秘的字,是个象形字,形体极像古代的犁形,上部为犁把,下部为耕地的犁头,也形象的解释“力”含义 ,将无形不可见,不可描述的现象充分的表达了出来。
从初中物理我们就学习过,力是物体之间的相互作用,是使物体获得加速度和发生形变的外因,单独就力而言,有三个要素力的大小、方向和作用点。
力学是研究物体的机械运动和平衡规律及其应用的,力学可分为静力学、运动学和动力学三部分。
而今天主要是简单介绍一个静力学与动力学。
首先,静力学与动力学区别是什么?答案很简单,一个是“静”,一个是“动”,动静的含义就是时间的问题。
故,静力学实际是在研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题,其中的静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。
当然“静”动力学静力学实际上只是相对而言,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态,也就是平衡的状态。
对于平衡的状态阐述,牛顿第一运动定律(牛顿第一定律,又称惯性定律、惰性定律)就有一个完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。
此外,静力学的有五大公理公理一力的平行四边形法则:作用在物体上同一点的两个力,可合成一个合力,合力的作用点仍在该点,其大小和方向由以此两力为边构成的平行四边形的对角线确定,即合力等于分力的矢量和。
公理二二力平衡公理:作用在物体上的两个力,使物体平衡的必要和充分条件是:两个力的大小相等,方向相反,作用线沿同一直线。
公理三加减平衡力系公理:在已知力系上加或减去任意平衡力系,并不改变原力系对刚体的作用。
公理四牛顿第三定律:两物体间的相互作用力,大小相等,方向相反,作用线沿同一直线。
此公理概括了物体间相互作用的关系,表明作用力与反作用力成对出现,并分别作用在不同的物体上。
workbench 谐响应扫频转子动力学
我猜你想了解的是 Workbench 进行谐响应扫频和转子动力学分析的相关内容。
Workbench 是 ANSYS 公司推出的一款协同仿真环境,广泛应用于结构、流体、电磁等领域的仿真分析。
在 Workbench 中进行谐响应扫频和转子动力学分析的基本流程如下:
1. 建立模型:首先需要建立分析模型,包括几何模型和网格划分等。
可以使用Workbench 中的 DesignModeler 或 SpaceClaim 等工具进行建模和网格划分。
2. 施加激励:在模型上施加激励,例如力、压力、位移等。
可以使用 Workbench 中的Static Structural 或 Modal 等模块进行激励的施加。
3. 设置分析选项:设置谐响应分析的选项,例如频率范围、求解器等。
可以使用Workbench 中的 Harmonic Response 模块进行设置。
4. 进行分析:运行谐响应分析,得到模型的频率响应曲线。
可以使用 Workbench 中的Results 模块查看分析结果。
5. 进行转子动力学分析:如果需要进行转子动力学分析,可以在模型上添加轴承、轴等组件,并设置相应的边界条件和激励。
可以使用 Workbench 中的 Rotordynamics 模块进行分析。
需要注意的是,具体的分析流程和方法可能会因模型的不同而有所差异,建议你根据实际情况进行调整。
ANSYSWorkbench基础教程与工程分析详解第五章显式动力学分析通过第4章动力学分析的学习,相信读者对ANSYS Workbench 中的隐式动力学已经有一定的了解了,本章主要讲解显式动力学,包括三个模块,ANSYS LS-DYNA,主要完成在Workbench下的前处理工作;ANSYS AUTODYN,其功能是提供一个全面的多解决方案;ANSYS Explicit,主要用于满足固体、流体、气体及它们之间相互作用的非线性动力学仿真。
同样,本章通过图例详解来讲解显式动力学的分析流程。
本章所要学习的内容包括:了解显式动力学分析基础熟悉显式动力学分析的操作流程掌握ANSYS Workbench显式动力学中命令选项的应用了解显式动力学分析的应用场合5.1 显式动力学分析基础显式动力学通常的应用领域主要有:汽车工业,如碰撞分析、气囊设计等;航天航空,如飞机结构冲击动力分析、碰撞和坠毁、火箭级间分离模拟分析、冲击爆炸及动态载荷和特种复合材料设计等;制造业,如冲压、锻造、铸造和切割等;建筑业,如爆破拆除、地震安全和混凝土结构等;国防工业,如穿甲弹与破甲弹设计、冲击波传播和空气,水与土壤中爆炸等;电子领域,如跌落分析、包装设计和电子封装等。
当数值仿真问题涉及瞬态、大应变、大变形、材料的破坏,材料完全失效或者伴随复杂接触的结构问题时,通过显式动力学求解可以解决这些问题。
拉格朗日法,其网格是在计算模型上,受力后网格随计算模型变化而变化。
应用拉格朗日法的单元类型有三种:实体单元、壳单元和梁单元。
拉式法主要用于计算结构响应。
不同于拉格朗日法,欧拉法的网格是固定于空间,在计算力学模型流动或变形时是经过空间固定的网格,从而在计算时通常可以避免问题的网格畸变。
欧拉法主要用于计算流该软件为功能成熟、输入要求复杂的程序,是一个单独的程序,提供方便、实用的接口技术来连接有多年应用实践的显式动力学求解器。
1996年一经推出,ANSYS LS-DYNA 就帮助众多行业的客户解决了诸多复杂的设计问题。
ANSYS workbench齿轮啮合瞬态动力学分析齿轮传动是机械系统传动方式中应用最为广泛的一种,今天给介绍一下如何利用workbench实现齿轮啮合的瞬态动力学分析。
有限元分析流程分为3大步、3小步,如下图所示。
今天将以这种方式介绍使用workbench实现齿轮啮合的分析流程。
图1 有限元分析流程一、前处理1.1 几何模型的构建本文几何模型在SolidWorks中创建,并导入workbench中,如图所示图2 齿轮对几何模型1.2 材料定义材料选用结构钢:密度:7850kg/m3,杨氏模量:2.1e11Pa,泊松比:0.31.3 有限元模型的构建有限元模型的构建包括材料赋予、网格划分以及连接关系的构建1.3.1 材料赋予双击瞬态动力学分析流程中的Model,进入Mechanical界面,单击项目树Geometry 下的两个零件,左下角细节框中,Material处指派steel材料1.3.2 网格划分为便于分析及收敛,对网格进行一个简单的控制:首先在左侧项目树Mesh处插入一个method,选中两个齿轮,划分方法为MultiZone;然后插入两个Size,对几个参与啮合的齿面进行尺寸控制,得到了如图所示的网格模型。
图3 网格模型1.3.3 连接关系的构建连接关系包括两部分:接触和运动副,运动副可以实现齿轮的转动,接触可以实现齿轮的传力。
由于workbench会自动创建向邻近位置之间的接触,但默认接触为绑定接触,不符合实际情况,故直接删除,后续手动创建相应接触。
首先在左侧项目树Connections下插入一个Frictional contact,接触面选择其中一个齿轮参与接触的几个齿面,目标面选择另一个齿轮参与接触的几个齿面。
摩擦系数为0.15,Normal Stiffness为1,Update Stiffness为Each iteration,Time Step Controls为Automatic Bisection。
基于ANSYS Workbench的刚体动力学-静力学分析在机械系统中,大量构件处于运动状态。
在构件的运动过程中,在某些时刻,它处于最危险的工况。
那么,如何对于一个运动的机构中某个别构件进行强度分析呢?按照以往的方法,是先使用多体动力学软件例如ADAMS进行刚体动力学分析,得到铰链处的约束力,然后再在有限元软件例如ANSYS中对感兴趣的构件划分网格,并导入从ADAMS中得到的载荷,对之进行强度分析。
ANSYS提供了一套完善的解决方案,使得直接在WORKBENCH中就可以完成全过程。
其方法如下:1. 从工具箱中,拖拽一个刚体动力学模板到项目示意图中,然后按照正常步骤创建一个刚体动力学分析,施加力,力偶等,然后插入所需要的求解结果物体。
2. 在图形窗口中确定感兴趣的时间点。
3. 选择某个求解结果物体,然后在右键菜单中选择Export Motion Loads,并指定一个载荷文件名。
4. 在项目示意图中,拷贝一个rigid dynamics分析系统。
并把它用static structural 分析系统进行取代。
5.编辑static structural分析系统,压制不需要的构件,而只留下需要分析其强度刚度的构件。
6. 把该构件的刚度行为从rigid改变成flexible.7. 把网格求解器设置从ANSYS Rigid Dynamics改成ANSYS Mechanical8. 删除或者压制所有在Rigid Dynamics分析中所使用的载荷。
9.选择static structural分支,然后在其右键菜单汇总选择Insert> Motion Loads....,从而导入前面文件中的载荷。
10.删除原有的结果物体,添加新的应力,变形等物体。
11. 求解得到此时刻(t=0.49495s)构件的应力和变形。
12.返回workbench工作平面。