第三章-工业机器人静力计算及动力学
- 格式:ppt
- 大小:2.42 MB
- 文档页数:12
试论述机器人静力学,动力学,运动学的关系
机器人学是一门研究机器人的运动、力学和控制的学科。
其中,机器人的静力学、动力学和运动学是机器人学中的三个重要分支,它们之间存在着密不可分的关系。
静力学是研究机器人在静止状态下的力学特性,主要包括机器人的力学结构、质心位置、静态稳定性等。
在机器人的设计和控制中,静力学是非常重要的,因为只有在机器人的静态稳定性得到保证之后,机器人才能进行安全和可靠的运动。
静力学的研究成果,可以为机器人的控制系统提供重要的参考依据。
动力学是研究机器人在运动状态下的力学特性,主要包括机器人的动力结构、速度、加速度、惯性等。
在机器人的控制和规划中,动力学是一个非常重要的研究方向,因为只有了解机器人的动态特性,才能更加有效地控制机器人的运动。
动力学的研究成果,可以为机器人的控制系统和运动规划提供重要的参考依据。
运动学是研究机器人运动的几何特性和空间关系的学科,主要包括机器人的位置、朝向、运动轨迹等。
在机器人的控制和规划中,运动学是非常重要的研究方向,因为只有了解机器人的运动特性,才能更加有效地控制机器人的运动。
运动学的研究成果,可以为机器人的运动规划和控制系统提供重要的参考依据。
综上所述,机器人的静力学、动力学和运动学之间存在着密不可分的关系。
在机器人的设计、控制和运动规划中,这三个分支相互作用,相互影响,共同推动了
机器人技术的不断发展。
教案首页课程名称农业机器人任课教师李玉柱第3章机器人运动学和动力学计划学时 3教学目的和要求:1.概述,齐次坐标与动系位姿矩阵,了解平移和旋转的齐次变换;2.机器人的运动学方程的建立与求解*;3.机器人的动力学*重点:1.机器人操作机运动学方程的建立及求解;2.工业机器人运动学方程3.机器人动力学难点:1. 机器人动力学方程及雅可比矩阵基本原理思考题:1.简述齐次坐标与动系位姿矩阵基本原理。
2.连杆参数及连杆坐标系如何建立?3.机器人动力学方程及雅可比矩阵基本原理是什么?第3章机器人运动学和动力学教学主要内容:3.2 齐次坐标与动系位姿矩阵3.3 齐次变换3.4 机器操作机运动学方程的建立与求解3.5 机器人运动学方程3.6 机器人动力学本章将主要讨论机器人运动学和动力学基本问题。
先后引入了齐次坐标与动系位姿矩阵、齐次变换,通过对机器人的位姿分析,介绍了机器人运动学方程;在此基础上有对机器人运动学方程进行了较为深入的探讨。
3.1 概述机器人,尤其是关节型机器人最有代表性。
关节型机器人实质上是由一系列关节连接而成的空间连杆开式链机构,要研究关节型机器人,必须对运动学和动力学知识有一个基本的了解。
分析机器人连杆的位置和姿态与关节角之间的关系,理论称为运动学,而研究机器人运动和受力之间的关系的理论则是动力学。
3.2 齐次坐标与动系位姿矩阵3.2.1 点的位置描述在关节型机器人的位姿控制中,首先要精确描述各连杆的位置。
为此,先定义一个固定的坐标系,其原点为机器人处于初始状态的正下方地面上的那个点,如图3-1(a)所示。
记该坐标系为世界坐标系。
在选定的直角坐标系{A}中,空间任一点P的位置可以用3×1的位置向量A P表示,其左上标表示选定的坐标系{A},此时有A P=XYZ P P P ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦式中:P X、P Y、P Z—点P在坐标系{A}中的三个位置坐标分量,如图3-1(b)。
3.2.2 齐次坐标将一个n维空间的点用n+1维坐标表示,则该n+1维坐标即为n维坐标的齐次坐标....。
第3章工业机器人运动学和动力学概要工业机器人运动学和动力学概要工业机器人是现代工业生产中的重要设备之一,它通过精确的运动控制来实现各种复杂的操作,如搬运、装配和焊接等。
在实际应用中,了解工业机器人的运动学和动力学是至关重要的。
本文将介绍工业机器人运动学和动力学的概要,以便读者对其有一个全面的了解。
1. 运动学概述工业机器人的运动学研究机器人的位置、速度和加速度之间的关系。
它涉及到坐标系的定义、机器人臂的关节角度、位置和姿态的表示等内容。
1.1 坐标系的定义工业机器人常用的坐标系有世界坐标系、基坐标系和工具坐标系。
世界坐标系是一个固定不变的参考系,用来描述物体在整个工作区域内的位置。
基坐标系是机器人臂的起始位置的参考系,它通常位于机器人基座上。
工具坐标系是机器人末端执行器的参考系,它用于描述机器人进行任务时末端执行器的位置和姿态。
1.2 关节角度、位置和姿态的表示工业机器人的姿态可以用欧拉角、四元数或旋转矩阵表示。
关节角度表示机器人各个关节的角度值,它反映了机器人臂的当前状态。
位置表示机器人末端执行器的空间位置,可以用笛卡尔坐标系或关节坐标系表示。
2. 动力学概述工业机器人的动力学研究机器人的力学特性和运动状态之间的关系。
它涉及到力学模型、运动方程和运动控制等内容。
2.1 力学模型工业机器人的力学模型是描述机器人在运动过程中所受到的力和力矩的数学模型。
常用的力学模型有刚体模型和柔性模型。
刚体模型假设机器人的各个部件都是刚性的,柔性模型考虑了机器人部件的弯曲和振动等变形情况。
2.2 运动方程工业机器人的运动方程用来描述机器人的力学特性和运动状态之间的关系。
它由动力学方程和约束方程组成。
动力学方程描述机器人关节角度、速度和加速度之间的关系,约束方程描述机器人末端执行器的位置和姿态。
2.3 运动控制工业机器人的运动控制是指通过控制机器人的电机和执行器来实现机器人的预定运动轨迹。
常用的运动控制方法有逆运动学、轨迹规划和力控制等。
第3章工业机器人运动学和动力学机器人操作臂可看成一个开式运动链,它是由一系列连杆通过转动或移动关节串联而成。
开链的一端固定在基座上,另一端是自由的,安装着工具,用以操作物体,完成各种作业。
关节由驱动器驱动,关节的相对运动导致连杆的运动,使手爪到达所需的位姿。
在轨迹规划时,最感兴趣的是末端执行器相对于固定参考系的空间描述。
为了研究机器人各连杆之间的位移关系,可在每个连杆上固接一个坐标系,然后描述这些坐标系之间的关系。
Denavit和Hartenberg提出一种通用方法,用一个4*4的齐次变换矩阵描述相邻两连杆的空间关系,从而推导出“手爪坐标系”相对于“参考系”的等价齐次变换矩阵,建立出操作臂的运动方程。
称之为D-H矩阵法。
3.1 工业机器人的运动学教学时数:4学时教学目标:理解工业机器人的位姿描述和齐次变换;掌握齐次坐标和齐次变换矩阵的运算;理解连杆参数、连杆变换和运动学方程的求解;教学重点:掌握齐次变换及运动学方程的求解教学难点:齐次变换及运算教学方法:讲授教学步骤:齐次变换有较直观的几何意义,而且可描述各杆件之间的关系,所以常用于解决运动学问题。
已知关节运动学参数,求出末端执行器运动学参数是工业机器人正向运动学问题的求解;反之,是工业机器人逆向运动学问题的求解。
3.1.1 工业机器人位姿描述1.点的位置描述在选定的指教坐标系{A}中,空间任一点P的位置可用3*1的位置矢量表示,其左上标代表选定的参考坐标系。
2.点的齐次坐标如果用四个数组成4*1列阵表示三维空间直角坐标系{A}中点P,则该列阵称为三维空间点P的齐次坐标,如下:必须注意,齐次坐标的表示不是惟一的。
我们将其各元素同乘一个非零因子后,仍然代表同一点P,即其中:,,。
该列阵也表示P点,齐次坐标的表示不是惟一的。
3.坐标轴方向的描述用i、j、k分别表示直角坐标系中X、Y、Z坐标轴的单位向量,用齐次坐标来描述X、Y、Z轴的方向,则有,,从上可知,我们规定:4*1列阵中第四个元素为零,且,则表示某轴(某矢量)的方向。