二次根式的加减(含答案) 师生共用优秀教学案
- 格式:doc
- 大小:183.50 KB
- 文档页数:6
课题:16。
3 二次根式的加减教学时间:教学目标:知识与技能1、理解二次根式的加减运算法则。
2、掌握二次根式的加减运算步骤。
3、掌握二次根式的加减、乘除混合运算。
4、会借助公式进行二次根式的简化运算。
过程与方法1、经历探索二次根式的加减的过程,能解决一些实际问题。
2、经历探索二次根式的乘除的过程,能解决一些实际问题.情感、态度与价值观1、经历探索二次根式的加减乘除发展推理能力和有条理的表达能力;2、学习二次根式的加减乘除,提高解决问题的能力;3、在探究二次根式的加减乘除,发展推理能力和有条理的表达能力。
教学重点:1、会正确进行二次根式的加减运算。
2、会正确进行二次根式的混合运算.教学难点:1、如何合并最简二次根式.2、由整式运算知识迁移到二次根式的混合运算。
教学方法、手段、准备、课型等:1、启发引导式、问题探究式、合作交流式;2、多媒体教学;3、备教材和备学生;4、新授课。
教学时数:3课时教学过程:第一课时教学内容及步骤:一、导入新课活动1:二次根式的除法法则(学生回答或展示)教师点评:二次根式的除法法则反过来利用它可以进行二次根式的化简。
二、讲解新课 活动1:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
活动2:例题讲解例1 计算:;4580)1(- 。
a a 259)2(+;解:553544580)1(=-=- 。
a a a a a 853259)2(=+=+例2 计算:);0,0(>≥=b a b a ba ,)0,0(>≥=b a ba b a二、课堂练习 教科书第13页练习1题及2题(1)(2)。
三、作业布置教科书第13页练习2题(3)(4)。
四、板书设计五、教学反思第二课时教学内容及步骤:一、导入新课活动1:二次根式加减法法则(学生回答或展示) ;483316122)1(+-。
)53()2012)(2(-++4833234483316122)1(+-=+-解:3123234+-=;314=535232)53()2012)(2(-++=-++。
二次根式的加减教案《二次根式的加减教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题名称:二次根式的加减主题内容简介:在上一节学习的化简二次根式的基础上,进一步学习二次根式的加减,再化简二次根式的同时,引导学生概括出同类二次根式的概念,类比整式的加减运算中的合并同类项,给出二次根式的加减运算法则,从而进行二次根式的加减的混合运算。
学习目标分析知识与能力目标:1、了解同类二次根式的概念,掌握判断同类二次根式的方法;2、使学生能正确的合并同类二次根式,进行二次根式的加减运算。
过程与方法目标:正确掌握合并同类二次根式的方法。
情感态度与价值观目标:在探究合并同类二次根式的方法过程中,发展合作意识和合情推理能力。
学情分析前需知识掌握情况:由于初二学生的数学思维特征,由具体逻辑思维,逐步过渡到抽象逻辑思维,但仍有很大程度的经验性,而二次根式需要有一定的抽象思维能力,因此,本节课应用引导探究法,在老师引导下,学生进行自主探究的教学方法。
通过练习,检测学生对合并同类项及二次根式化简的掌握情况。
对微课的认识:我们是农村学校,学生从未经历过微课形式和使用微课学习的方式。
因为从未经历过这种方式的学习,所以我觉得学生们的接受程度可能只是一般。
学生特征分析学习态度:学生对将采用的自主学习和课堂学习模式感到新鲜,有浓厚的参与欲望。
学习风格:按照平常对学生的观察与接触,感觉他们会比较喜欢小组讨论、交流,比较多的参与到课堂,然后在较轻松的课堂氛围中进行学习,更能活跃学生的思维能力,提高学生的学习效率。
微课用于学生学习的教学策略分析微课用于学生学习的目的:使用微课用于学生学习,主要是复习二次根式的化简并由此引出同类二次根式的定义,注意引导学生对同类二次根式和同类项、二次根式的加减的合并同类项进行比较学习,在理解、掌握和应用二次根式的加减法则的学习过程中,逐步渗透类比、概括等数学思想,提高学生用数学方法解决实际问题的能力。
二次根式的加减法教案一、教学目标:1.掌握二次根式的加减法的定义与性质;2.能够灵活运用二次根式的加减法进行简化与化简运算;3.培养学生的数学思维和推理能力。
二、教学重点:1.二次根式的加减法的定义与性质;2.进行二次根式的加减法的简化与化简运算。
三、教学难点:1.运用二次根式的加减法进行复杂运算;2.培养学生的数学思维和推理能力。
四、教学准备:1.教师准备:黑板、彩色粉笔、教学课件;2.学生准备:教材、笔、纸。
五、教学过程:Step 1 自主探究:引入二次根式的加减法1.提问:你还记得二次根式的概念吗?2.学生回答:是指根号下有含有字母的式子。
3.教师解释:是的,二次根式是指根号下含有字母的式子。
那么,我们来思考一个问题:如果有两个二次根式,它们之间可以进行何种运算?Step 2 学习定义与性质1.教师板书:二次根式的加减法的定义。
2.学生默写:二次根式的加减法是指将两个二次根式进行加减运算,将其中的同类项进行合并。
3.教师解释:我们可以将二次根式看作是一种特殊的代数式,它们可以进行加法和减法运算。
在进行加减运算时,我们需要将二次根式中的同类项进行合并。
4.教师板书:二次根式的加减法的性质。
5.学生默写:二次根式的加减法具有交换律、结合律和分配律。
Step 3 进行实例讲解1.教师板书:根号2+根号2=?2.学生回答:2根号23.教师解释:很好,这里的根号2是同类项,可以进行合并。
所以,根号2+根号2=2根号24.教师板书:根号5-根号3=?5.学生回答:根号5-根号36.教师解释:是的,这里的根号5和根号3不是同类项,无法进行合并。
所以,根号5-根号3仍然是根号5-根号3Step 4 练习与巩固1.学生进行练习题,并把答案写在纸上。
2.教师进行点评与讲解。
Step 5 拓展与延伸1.教师提出拓展问题:如何进行复杂的二次根式的加减法运算?2.学生进行讨论。
3.教师展示解题方法与步骤。
六、教学总结1.复习本节课的学习内容;2.概括本节课的核心思想。
《二次根式的加减》精品教案【教学目标】1.知识与技能(1)理解和掌握二次根式加减的方法;(2)含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用。
2.过程与方法先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解。
再总结经验,用它来指导根式的计算和化简。
3.情感态度和价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识。
【教学重点】二次根式的乘除、乘方等运算规律。
【教学难点】最简二次根式的判断,及二次根式的混合运算。
【教学方法】自学与小组合作学习相结合的方法。
【课前准备】教学课件。
【课时安排】1课时【教学过程】一、复习导入【过渡】在之前的学习当中,我们学习了同类项的合并,大家还记得同类项合并的计算方法吗?我们来检测一下吧。
学生活动:计算下列各式。
(1)2x+3x;(2)2x5-5x5+5x5;(3)3x+2x+3y;(4)3a2-2a2+a3【过渡】上面题目的结果,实际上是我们以前所学的同类项合并。
同类项合并就是字母不变,系数相加减。
而我们本节内容,则主要是学习二次根式的加减,那么这两者之间有没有什么共同点呢?现在,就让我们一起来探究一下吧。
二、新课教学1.二次根式的加减【过渡】按照我们刚刚复习的同类项的合并,我们来试着思考一下,这样的同类项合并能否用于二次根式呢?我们来看看课本12页的思考题。
【过渡】问题是要判断能否截出两个正方形,转化为几何问题,即为判断两个正方形的边长和与长方形的边长的大小,若小于长方形的边长,则说明不能截出。
那么两个正方形的边长分别是√8和√18,两者之和为√8+√18。
该如何计算这个呢?(学生讨论回答)结合我们复习的同类项合并,可以这样计算。
课件展示计算过程。
【过渡】在这个问题之后,我们再来看几个简单的计算:(1)√5+3√5= (2)3√5-√5= (3)√8+√18= (4)√8-√18=(5)√2+√3= (6)√5+√3=【过渡】根据刚刚我们探究的内容,这几个计算很容易就能算出来,我们也发现,(5)(6)这两个是不能合并同类项的,而从(3)(4)中,在计算之前,我们需要将二次根式化简为最简根式。
二次根式的加减法【知识与技能】1.掌握同类二次根式的概念,会判断同类二次根式,会合并同类二次根式.2.掌握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:(1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减计算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、思考探究,获取新知例1计算:例2计算:【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并. 例3计算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.三、运用新知,深化理解.1.下列计算是否正确?为什么?【教学说明】这类计算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展示本节课学习的知识要点.1.布置作业:从教材相应练习和“习题21.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课通过复习整式的加减法合并同类项,引入二次根式的概念及二次根式的合并方法,对法则的教学与整式的加减比较学习,在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.。
二次根式的加减教案一、教学目标(一)知识与能力1.能正确理解二次根式的概念。
2.能灵活运用二次根式的加减运算法则。
(二)过程与方法通过小组合作学习、探究、归纳法等方法,培养学生的观察能力、实际运算能力和分析问题的能力。
(三)情感态度与价值观培养学生能独立思考和解决问题的能力,培养合作意识,培养对知识的积极态度和负责任的态度。
二、教学过程(一)预习导入教师提问:假如有√2个数相加得到√18,这两个数是多少?让学生想一想是什么原因保证了这两个数相加的结果是等于√18的。
通过学生的解答,引出今天的主题:二次根式的加减。
(二)自主探究学生分小组自主探究二次根式的加减法则,并总结出规律。
探究思路:设a、b为正实数,那么有以下结论:1. 两个二次根式相等的条件是当且仅当它们的和的平方等于它们的积。
即,当a+b=√2时,(a+b)²=(√2)²=2。
故有a²+2ab+b²=2。
即,a²+b²+2ab=2。
故有a²+b²=2-2ab。
因此,得出结论:当a+b=√2时,a²+b²=2-2ab。
2. 两个二次根式的和是二次根式的条件是当且仅当它们的被开方数相同。
即,当a+b=√2时,且a≠b。
那么,可得出结论:a²+b²=2-2ab,即(a+b)²=a²+b²+2ab=2。
即a²+b²=2-2ab-2ab=2-(a²+b²)。
(1)左边的-2ab是指√2与√2的积的2倍;右边的2是指√2与√2的和的2倍。
即-2ab=2,ab=-1。
因为a、b是正实数,所以ab=1.我们知道1的两个约数是1和-1.由于ab=1,所以a、b可以是互为相反数的两个数,即a=-b。
由此,得出结论:当a+b=√2时,a、b是互为相反数的两个数,即a=-b。
完成情况 二次根式的加减
班级:_____________姓名:__________________组号:_________
第一课时
1.有一个三角形,它的两边长分别为20和80,如果该三角形的周长为59,你能求出第三边吗?
2.计算下列各式:
(1)x ,你会计算吗?)
(2)802059--。
(被开方数不相同时,如何合并?)
学前准备
(3)思考二次根式的加减和整式的加减有什么联系和区别?
3.计算:(1)=+3
1312_________; (2)=-x x 43_________。
4.计算:(1).48512739-+ (2)4518328-++
(3).1878523x x x +- (4)
★通过预习你还有什么困惑?
一、课堂活动、记录
如何进行二次根相加减,在运算中应注意哪些问题?
二、精练反馈
A 组:
课堂探究
1.化简后,与2的被开方数相同的二次根式是( )
A .10
B .12
C .21
D .6
1 2.下列说法正确的是( )
A .被开方数相同的二次根式可以合并
B .8与80可以合并
C .只有根指数为2的根式才能合并
D .2与50不能合并 3.计算:
(1)1820325-+-; (2)
⋅++81821;
(3)
4
6932x x + ; (4)325038a a a a +。
B 组: 4.化简后求值:y y x y x
x 3241+-+,其中4=x ,91=y
三、课堂小结
(1)在有理数范围内成立的运算律,在实数范围内仍然成立。
(2)在二次根式加减时,先将二次根式化为最简二次根式。
四、拓展延伸(选做题)
1.已知最简二次根式b a b +4与b a +3能进行合并,则3a +2b 的值是_________。
2.最简二次根式与2n 是同类二次根式,则m=_________,n=________________。
3.321
-=x 时,求代数式x 2-4x +2的值。
【答案】
【学前准备】
1.59-20-80=53
2.(1)52 (2)35
(3)联系:方法相同,也含有类似“合并同类项”的结构特征 区别:二次根式加减要先化简再运算
3.(1)33(2)x
4.(1)33(2)5329-(3)x 214(4)x 3
【课堂探究】
课堂活动、记录
略
精练反馈
1.C
2.A
3.(1)2753- (2)4
211 (3)x 5 (4)a a 2172 4. =y x 32
+ =2
课堂小结
略
拓展延伸(选做题)
1.5
2.22±;3±
3.解:x 2
-4x +2=()22-x 32321
+=-=x
原式=3。