低介电常数材料研究
- 格式:ppt
- 大小:1.72 MB
- 文档页数:35
低介电常数材料的特点、分类及应用胡扬摘要: 本文先介绍了低介电常数材料(Low k Materials)的特点、分类及其在集成电路工艺中的应用。
指出了应用低介电常数材料的必然性,举例说明了低介电常数材料依然是当前集成电路工艺研究的重要课题,并展望了其发展前景。
正文部分综述了近年研究和开发的low k材料,如有机和无机低k材料,掺氟低k材料,多孔低k材料以及纳米低k材料等,评述了纳米尺度微电子器件对低k 薄膜材料的要求。
最后特别的介绍了一种可能制造出目前最小介电常数材料的技术: Air-Gap。
关键词:低介电常数;聚合物;掺氟材料;多孔材料;纳米材料 ;Air-Gap1.引言随着ULSI器件集成度的提高,纳米尺度器件内部金属连线的电阻和绝缘介质层的电容所形成的阻容造成的延时、串扰、功耗就成为限制器件性能的主要因素,微电子器件正经历着一场材料的重大变革:除用低电阻率金属(铜)替代铝,即用低介电常数材料取代普遍采用的SiO2(k:3.9~4.2)作介质层。
对其工艺集成的研究,已成为半导体ULSI工艺的重要分支。
这些低k材料必须需要具备以下性质:在电性能方面:要有低损耗和低泄漏电流;在机械性能方面:要有高附着力和高硬度;在化学性能方面:要有耐腐蚀和低吸水性;在热性能方面:要有高稳定性和低收缩性。
2.背景知识低介电常数材料大致可以分为无机和有机聚合物两类。
目前的研究认为,降低材料的介电常数主要有两种方法:其一是降低材料自身的极性,包括降低材料中电子极化率(electronic polarizability),离子极化率(ionic polarizability)以及分子极化率(dipolar polarizability)。
在分子极性降低的研究中,人们发现单位体积中的分子密度对降低材料的介电常数起着重要作用。
材料分子密度的降低有助于介电常数的降低。
这就是第二种降低介电常数的方法:增加材料中的空隙密度,从而降低材料的分子密度。
书山有路勤为径,学海无涯苦作舟
低介电常数低介质损耗PCB 基材
本文讨论了低介电常数、低介质损耗印制电路板基材的制法、性能及
应用。
1、引言
在近期的专利文献资料特许公开2012-56994 プリプレグ、金属张金属板、プリント配线板及び半导体装置一文中讨论了低介电常数、低介质损耗PCB 基材的制法及性能等;采用该方法制作的覆铜板样品的介电常数在1GHz 条件下为3.44~3.77,而介质损耗为0.0024~ 0.0033。
2、实验部分
2.1、试样制法
实验应用的主要原料有环氧树脂、双马来酰亚胺化合物、氰酸酯树脂以
及填料等,另外还应用到固化剂,它是在间- 位上有着胺基的苯氧化物,如其具体结构如在实验中具体应用的固化剂名称、结构、型号等结合举例将进一步
说明。
同时在实验过程中的溶剂、玻纤布、铜箔等原材料,制作印制电路板要
应用相关工序的化学物品以及制作半导体组件要应用相应的芯片等,在各举例
中将具体介绍。
为了阐明本发明的要点,给出了实施和比较两组举例。
2.1.1、实施例
实施例1(1) 树脂溶液的配制取7.0 质量(下同)份的双-(3-乙基-5-甲基-4- 马来酰亚胺苯基)甲烷(ケイアイ化成公司制造,型号为BM
(2) 制造半固化片
用上面得出的树脂溶液浸渍玻纤布(厚度为0.032mm,旭化成エレクトロニクス公司制造),在180℃烘干约5 分钟,得出树脂组成物为83%(质量百分。
低介电常数材料在超大规模集成电路工艺中的应用摘要:本文概述了低介电常数材料(Low k Materials)的特点、分类及其在集成电路工艺中的应用。
指出了应用低介电常数材料的必然性,最后举例说明了低介电常数材料依然是当前集成电路工艺研究的重要课题,并展望了其发展前景。
1引言半导体集成电路技术的飞速发展推动了新材料、新技术的不断进步,也使得半导体工业成长为工业界不可忽视的力量。
随着线宽的不断减小、晶体管密度的不断提升,越来越多的人把目光投向了低介电常数材料在超大规模集成电路中的应用。
当Intel,IBM,AMD,Motorola,Infineon,TSMC以及UMC等公司相继宣布将在0.13 mm及其以下的技术中使用低介电常数材料时,对低介电常数材料(Low k materials)及其工艺集成的研究,就逐渐成为半导体集成电路工艺的又一重要分支。
在集成电路工艺中,有着极好热稳定性、抗湿性的二氧化硅(SiO2)一直是金属互联线路间使用的主要绝缘材料。
而金属铝(Al)则是芯片中电路互联导线的主要材料。
然而,随着集成电路技术的进步,具有高速度、高器件密度、低功耗以及低成本的芯片越来越成为超大规模集成电路制造的主要产品。
此时,芯片中的导线密度不断增加,导线宽度和间距不断减小,互联中的电阻(R)和电容(C)所产生的寄生效应越来越明显。
图1是集成工艺技术与信号传输延迟的关系。
随着集成工艺技术的提高(线宽的减小),由互联引起的信号延迟也就成为制约芯片性能提升的重要因素。
当器件尺寸小于0.25mm后,克服阻容迟滞(RC Delay)而引起的信号传播延迟、线间干扰以及功率耗散等,就成为集成电路工艺技术发展不可回避的课题。
金属铜(Cu)的电阻率(~1.7μΩ·cm)比金属铝的电阻率(~2.7μΩ·cm)低约40%。
因而用铜线替代传统的铝线就成为集成电路工艺发展的必然方向。
如今,铜线工艺已经发展成为集成电路工艺的重要领域。
低介电常数微波介质陶瓷研究进展摘要:当前,电子元件正在向小型化、片式化、集成化方向发展,使得低温共烧陶瓷(Low-temperaturecofiredceramic,LTCC)技术越来越引起人们的关注。
目前,新一代基于LTCC技术的电子元件已经成为当前主流的电子元件,而该技术要求微波介质陶瓷能够与高电导率的银、铜等电极材料实现低温共烧。
然而,大多数性能优异的微波介质陶瓷的烧结温度都比较高,难以达到与金属电极低温共烧的要求。
为了降低其烧结温度,通常在基体中加入一定量低熔点的烧结助剂,但过多的烧结助剂往往会引起材料介电性能劣化。
因此,探索新型固有烧结温度低的微波介质陶瓷仍将是研究微波介质陶瓷材料领域的一个热点方向。
高频化是微波元器件发展的必然趋势,随着通讯设备工作频率向毫米波段拓展,信号延迟问题会变得更加突出,因此,对作为通讯设备关键材料的微波介质陶瓷性能参数提出了更高的要求。
与中、高介电常数材料相比,低介电常数材料能够降低基板与金属电极间的交互耦合损耗,缩短芯片间信号传播的延迟时间。
关键词:低介电常数;微波介质;陶瓷研究1钨酸盐体系目前对钨酸盐低介电常数微波介质陶瓷的研究主要集中在AWO4(A=Mg、Mn、Zn、Ca、Sr、Ba、Cd)体系上,其晶体结构与A2+的半径有关。
当A2+的半径较大时(如Ca、Ba、Sr),易形成四方相白钨矿结构,空间点群为I41/a;当A2+的半径较小时(如Mg、Zn、Mn、Cd),则会形成单斜相黑钨矿结构,空间点群为P2/c。
1988年,Nishigaki等[8]研究WO3对BaO-4TiO2陶瓷微波介电性能影响时,发现掺杂少量WO3显著提高了陶瓷的品质因数,这是因为形成了BaWO4第二相。
随后,他们以Ba-CO3和WO3粉末为原料于1200℃制备出BaWO4单相陶瓷,并首次报道其微波介电性能:εr=8.2,Q×f=18000GHz,τf=-33×10-6/℃。
低K材料在半导体集成电路中的应用与展望在超大规模集成电路工艺中,有着极好热稳定性、抗湿性的二氧化硅一直是金属互连线路间使用的主要绝缘材料,金属铝则是芯片中电路互连导线的主要材料。
然而,相对于元件的微型化及集成度的增加,电路中导体连线数目不断的增多,使得导体连线架构中的电阻(R)及电容(C)所产生的寄生效应,造成了严重的传输延迟(RC delay),在130纳米及更先进的技术中成为电路中讯号传输速度受限的主要因素。
因此,在降低导线电阻方面,由于金属铜具有高熔点、低电阻系数及高抗电子迁移的能力,已被广泛地应用于连线架构中来取代金属铝作为导体连线的材料。
另一方面,在降低寄生电容方面,由于工艺上和导线电阻的限制,使得我们无法考虑籍有几何上的改变来降低寄生电容值。
因此,具有低介电常数(low k)的材料便被不断地发展。
在将低介电常数材料应用于集成电路的整合工艺时,对于低介电常数材料特性的要求,除了要具备有低的介电常数之外,还需具有良好的物理,材料及电特性。
通常有两种主要的方法被使用来降低材料的介电常数,第一种方法是设法降低材料本身的极性(polarization),包括降低材料中的电子极化、离子极化以及分子极化。
另外一种则是在介电材料内制造空隙(Porosity) 。
工艺上,低介电常数材料的制造分为化学气相沉积法与旋涂式两大主流,即CVD与SOD法。
但SOD方法在45纳米工艺技术之前不会被业界用于批量生产。
业界已成功研发出沉积多种低介电常数薄膜的技术能力,包括氟硅玻璃(FSG)、碳掺杂的氧化硅(如:Black Diamond)、以及氮掺杂的碳化硅(如:BLOK )。
Black Diamond膜 是一种以氧化硅为基础的化学气相沉积薄膜,有效介电常数小于3.0。
而BLOK则是一种低介电常数的铜金属阻挡层与蚀刻终止层,在双镶嵌工艺应用中可作为氮化硅低介电常数的替代材料。
在与氟硅玻璃及Black Diamond薄膜完成双镶嵌工艺整合后,相较于氧化硅/氮化硅材料而言,电容值可降低达25%至35%。
05018功 燧 讨 科 2021年第5期(52)卷文章编号:1001-9731 (2021 )05-05018-07低介电常数改性聚酰亚胺材料的研究进展*黄兴文朋小康刘荣涛廖松义12,刘屹东12,闵永刚12(1.广东工业大学材料与能源学院,广州510006; 2.东莞华南设计创新院,广东东莞523808)摘 要: 聚酰亚胺(PI )广泛应用于电子集成电路的绝缘材料领域。
随着电子通信行业的不断更新换代,信号传输频率逐渐往高频发展(例如5G 通讯),为了满足信号传输速度快、介电损耗低的要求,需要不断地降低印刷线路板(PCB )绝缘材料的介电常数。
常规聚酰亚胺介电常数偏高,不适合直接用于PCB 的绝缘材料,为满足未来5G 高频通信要求,必须对其进行改性,因此本文综述了低介电常数聚酰亚胺改性的研究进展,并对其进行了展望。
关键词:改性聚酰亚胺;高频通信;低介电常数;低介电损耗;5G 通讯中图分类号:TM215.3 文献标识码:A DOI :10.3969/j.issn.1001-9731.2021.05.0040引言聚酰亚胺是指一类含有酰亚胺环的聚合物⑴,由 二酐和二胺经过逐步聚合反应、亚胺化而成,其分子通 式如图1所示。
美国杜邦公司首次商业化聚酰亚胺,商品名为Kpton,到现在聚酰亚胺已经衍生了很多的产品,如联苯型聚酰亚胺⑵和硫醚型聚酰亚胺[]等等。
聚酰亚胺由于具有耐高温、耐电晕、耐辐射性、高强度、高绝缘、低吸湿率、低介电常数和低介电损耗等优异的 综合性能,作为特种高分子材料被广泛应用于印刷线路板的绝缘领域。
图1聚酰亚胺分子通式Fig 1 General polyimide molecular formula对于高频天线用的印刷线路板,其信号传输速度 与材料的介电常数成反比关系,可用以下公式来描述⑷:“ C 0其中V 为传输速率,C 。
为真空光速为材料介电常 数,从式可以看出相对介电常数越小,信号传输速度越快;而另一方面介电损耗则与介电常数成正比关系[5],介电常数越大,损耗也越大。
高频低介电材料
1.无机陶瓷材料:无机陶瓷材料具有优异的高频性能,例如氧化铝、氮化硼、氮化铝等。
它们具有低介电常数、低损耗和良好的热稳定性,适用于高频电子器件和射频通信系统。
2.聚合物材料:聚合物材料是一种结构松散、分子链可自由转动的有机物质,具有较低的介电常数和损耗。
例如聚四氟乙烯(PTFE)、聚酰亚胺(PI)、聚苯硫醚(PPS)等,它们被广泛应用于高频电路板、天线和射频连接器等器件中。
3.氧化物和氮化物复合材料:氧化物和氮化物复合材料在高频电子器件中也具有广泛的应用。
例如氧化铝和氮化硅的复合材料、氧化铝和氮化铝的复合材料等。
这些复合材料综合了不同材料的优点,具有更低的介电常数和更低的损耗。
4.非晶合金材料:非晶合金材料是一种具有无序结构的金属合金材料,它具有较低的介电常数和高的导电性能。
非晶合金材料可以在高频电子器件中用作导体和屏蔽材料,减少信号的干扰和电磁波的损耗。
不同条件下低介电常数材料机械性研究【摘要】目前最新的组件结构均采用低介电常数材料及铜导线技术来降低多层金属联机中时间延迟效应。
低介电常数材料多为组织松散,机械强度不理想,故低介电常数材料是多层金属导线,外力将易于跨越材料之降伏强度,势必导致断线之危机,进而破坏组件的运作。
针对低介电常数材料的机械性质,首先探讨低介电常数材料本身的机械性质;其次探讨低介电常数材料和相邻材料的附着性质。
【关键词】电常数材料;铜导线;多层金属导线1.简介在先进的集成电路多层金属导线设计准则中,0.18世代之最小金属间距已小于0.25微米;为了降低集成电路组件操作时的时间延迟及功率消耗,金属间的隔绝材料使用低介电常数材料乃是必要的。
另一方面,芯片封装技术亦伴随着集成电路多层金属导线尺寸的快速缩小,而面临相同的困境。
由于低介电常数材料使用的必然性及可预期的广大市场需求,过去几年来,全世界半导体材料供货商及研发中心均致力于发展质量合乎新世代集成电路要求的低介电常数材料。
大约有100种左右不同的低介电常数材料,以化学气相沉积、旋涂式沉积或其他方式制备而成,然而经由电性质、热性质及机械性质鉴定后,仅有少数低介电常数材料符合基本物理及化学性质要求;对于制程整合的考虑更进一步淘汰了一些物性及化性稳定的低介电常数材料。
所以目前建议可能使用的低介电常数材料,大致上仅剩(I)有机硅酸盐类和(II)有机高分子相关材料两大类。
尽管如此,这两大类低介电常数材料并非完美,基本结构的改进仍有许多空间需努力。
针对低介电常数材料的机械性质。
低介电常数材料的机械性质包含两个主要部分;第一部分为材料本身的机械性质,硬度及薄膜应力为两个重要指标。
一般而言,为了达到低介电性质,低介电常数材料多为组织松散的多孔性材质,弹性模数只有传统二氧化硅(72 GPa)的1/10到1/5倍,热膨胀系数则比传统二氧化硅大4到10倍;低介电常数薄膜应力通常为相对值不大的张应力,此特性亦有别于传统二氧化硅。