蜘蛛网对数螺线模型
- 格式:doc
- 大小:1.23 MB
- 文档页数:15
浅谈对数螺旋线(logarithmic spiral)摘要:我们常常可以在自然界中发现螺旋扩大的图形,比如:蜘蛛织的网、向日葵的花盘、鹦鹉螺外部切面等等。
这种图形叫做对数螺旋线。
本文,将从数学的视角,探讨对数螺旋线的来源、历史上数学家们对它的研究、如何建立模型、这种模型的性质和它在工业、农业、建筑业等方面的应用。
We often can find expanding spiral graphics in nature,such as:spider weaving a network, sunflower chrysanthemum,Nautilus external aspect and so on.This graph is called the logarithmic spiral.This article,from the perspective of mathematics to explore the source of logarithmic spiral,mathematicians in the history who studied it,how to build models,the nature of the models and the application it is in industry,agriculture,construction,etc.作者:陈红(200911233021)陈虹邑(200911233012)殷怡(200911233008)关键词:对数螺旋线、应用、蜗牛壳、对数螺旋线叶片二、螺旋线的来源1、在自然界中的踪影在自然界中对数螺旋线非常普遍,向日葵花盘上瘦果的对数螺旋线的弧形排列,这样就可以使果实排得最紧、数量最多、产生后代的效率也最高。
当我们观察着园蛛,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;蜘蛛在织网时,首先要在两地之间架“天索”,把丝固定在一定的地方,并在固定的丝上来回走几趟,使丝加粗。
第五届“认证杯”数学中国数学建模网络挑战赛承诺书我们仔细阅读了第五届“认证杯”数学中国数学建模网络挑战赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们允许数学中国网站()公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。
我们的参赛队号为:参赛队员(签名) :队员1队员2:队员3:参赛队教练员(签名):参赛队伍组别:第五届“认证杯”数学中国数学建模网络挑战赛编号专用页参赛队伍的参赛队号:竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):题目蜘蛛网的环形与螺旋结构摘要蜘蛛网的结构是由n条横线和多条纵线组成的,各纵线之间的夹角θ相等,夹在相邻纵线之间的横线是一条直线段,并且相邻横线之间的距离d都相等。
本文针对蜘蛛网的环形结构建立数学模型一,考虑到蜘蛛网的受力情况,把模型一分为两种情形。
第一种情形是昆虫被悬挂在蜘蛛网上,第二种情形是昆虫在正常飞行时意外撞击网而被粘住的过程。
我们使用的求解工具是,使用的画图工具是和程序。
模型一具有稳定性强并节约材料的特点。
在模型一的基础上,本文提出了模型二,在模型二中蜘蛛网的横线构成螺旋结构。
螺旋结构中蜘蛛网同样拥有n条横线,在纵线上搭一条螺旋延伸向外的曲线,这条螺旋线的起点在距离网心的d1并在水平正方向的骨架开始围绕着网心盘旋延伸向外,夹在相邻纵线之间的螺旋线是一段弧,螺旋模型具有覆盖面积广和蜘蛛织网快速方便的特点,这就为蜘蛛捕食带来方便。
蜘蛛的几何学作者:法布尔来源:《初中生·博览》2010年第11期当我们观察园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言各不相同,可这个规律适用于各种蜘蛛。
我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的。
当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网。
即使用圆规、尺子之类的工具,也没有一个设计家能画出一个比这更规范的网来。
我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。
每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。
而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。
不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。
这种特性使我们想到数学家们所称的“对数螺线”。
这种曲线在科学领域是很著名的。
对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。
即使用最精密的仪器,我们也看不到一根完全的对数螺线。
这种图形只存在于科学家的假想中。
可令人惊讶的是,小小的蜘蛛也知道这线,它就是依照这种曲线的法则来绕它网上的螺线,而且做得很精确。
螺旋线还有一个特点。
如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会画成一个和原来的对数螺线相似的螺线,只是变换了一下位置。
这个定理是一位名叫雅各·伯努利的数学教授发现的。
他死后,人们把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一。
那么,难道有着这些特性的对数螺线只是几何学家的一个梦想吗?这真的仅仅是一个梦、一个谜吗?它究竟又有什么用呢?它不是偶然的巧合,它是普遍存在的,有许多动物的建筑都采取这一结构。
【高中数学】对数螺线与蜘蛛网曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐。
摆下八卦阵,只等飞来将。
”动一动脑筋,这说的是什么呢?原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情形。
我们知道,蜘蛛网既是它栖息的地方,也是它赖以谋生的工具。
而且,结网是它的本能,并不需要学习。
你见过蜘蛛网吗?它用什么工具织出这么精致的网?你脑子里有一系列问题吗?好吧,让我慢慢地告诉你。
在网的过程中,最突出的优点是它的腿。
首先,它用腿从喷丝头上抽出一些丝绸,然后把它固定在角落的一侧或树枝上。
然后,吐出一些丝,勾勒出整个蜘蛛网的轮廓,并用一种特殊的丝固定轮廓。
搭建脚手架继续穿线。
每次它拔出一根铁丝,都会小心地沿着脚手架走。
当它到达中心时,它会拉紧金属丝,并将多余的部分聚集到中心。
在从中心向侧面攀爬的过程中,在正确的位置添加几根辐条。
为了保持蜘蛛网的平衡,在另一侧添加几个对称辐条。
一般来说,不同种类的蜘蛛会产生不同数量的辐条。
丝蜘蛛,最多42只;第二位是32只带皮带的蜘蛛;有角蜘蛛的数量至少有21只。
同一物种的蜘蛛通常不会改变辐条的数量。
到目前为止,蜘蛛已经用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体相同的。
现在,整个蜘蛛网看起来是一些半径等分的圆周,画曲线的工作就要开始了。
蜘蛛从中心开始,用一条极细的丝在那些半径上作出一条螺旋状的丝。
这是一条辅助的丝。
然后,它又从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线。
在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上。
这样半径上就有许多小球。
从外面看上去,就是许多个小点。
好了,一个完美的蜘蛛网就结成了。
让我们好好看看这个精灵的杰作:从外环到中心的螺旋。
离中心越近,每周之间的距离就越近,直到它被打断。
只有中心部分的辅助线与中心紧密缠绕。
elf绘制的曲线在几何学上称为对数螺线。
对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角。
蜘蛛网撰文 / 邓晶(北京动物园)蜜蜂六边形的蜂巢是“最省劳动力、也最省材料的选择”,它可以用最少的材料,形成最大的面积,从而贮藏更多的蜂蜜;壁虎在捕食时,总是沿着一条螺旋形曲线爬行,这条曲线被数学家称为“螺旋线”,沿“螺旋线”爬行最利于壁虎捕食……原来,不是只有人类才懂数学,动物王国里也有各种“数学家”。
让我们以蜘蛛为例,一起来感受动物王国中的趣味数学吧。
蜘蛛网里的数学概念蜘蛛结的“八卦”网,既复杂又美丽,即使工匠用直尺和圆规也难画得如此匀称。
出现在蜘蛛网上的数学概念更是惊人——弦、平行线段、三角形、相似三角形、对数螺线等等。
蜘蛛网里的坐标系传说法国数学家笛卡尔从蜘蛛结网中获得灵感,发明了坐标系。
笛卡尔希望用几何图形来表示代数方程,但几何图形是直观的,代数方程是抽象的,要如何将二者联系起来呢?当他看到蜘蛛在墙角结网时,豁然开朗:可以用两面墙和天花板之间的交线,来确定蜘蛛的位置,于是直角坐标系应运而生。
这则故事的真实性有待考证,但是我们确实可以用蜘蛛结网来理解坐标系。
里的奇妙数学平行线段弦相似三角形对数螺线20226DEC.Copyright ©博看网. All Rights Reserved.直角坐标系与蜘蛛大自然如此神奇,动物将人类研究了百年的数学,轻松地应用到生活中。
你还知道哪些动物“数学家”,欢迎扫码给我们留言。
(责任编辑 / 张丽静 高琳 美术编辑 / 韦英章)蛛丝在蜘蛛体内以丝浆的形式存在,结网时,蛛丝从蜘蛛尾部的纺器中喷出,遇到空气后会变成有黏性的丝。
有些蜘蛛拥有多达7种类型的丝腺(在蜘蛛腹部内),能够产生不同类型的丝,其用处也不一样。
蛛丝被称为强度最高的天然丝,跟同样粗细的钢丝相比,蛛丝的强度是后者的5倍。
如果用铅笔粗细的蛛丝结成网,其张力可以阻止波音747这种大型喷气式客机起飞。
而且蛛丝的韧性也极高,直径为人类头发1/30的蜘蛛丝,拉长两倍以上才会被拉断。
可惜,至今我们还无法完全复制蛛丝这种兼具强度和韧性的物质。
在人类看来,动物们头脑似乎都比较简单。
其实,有许多动物的头脑并非像人们想象的那样愚钝,有许多动物很聪明,它们懂得计算、计量或算数等等,还有很多动物在数学方法的研究上做了很大的贡献。
下面就让你见识一下自然界中动植物中的天才!1.蜘蛛网曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐。
摆下八卦阵,只等飞来将。
”动一动脑筋,这说的是什么呢?原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情形。
我们知道,蜘蛛网既是它栖息的地方,也是它赖以谋生的工具。
而且,结网是它的本能,并不需要学习。
你观察过蜘蛛网吗?它是用什么工具编织出这么精致的网来的呢?你心中是不是有一连串的疑问,好,下面就让我来慢慢告诉你吧。
在结网的过程中,功勋最卓著的要属它的腿了。
首先,它用腿从吐丝器中抽出一些丝,把它固定在墙角的一侧或者树枝上。
然后,再吐出一些丝,把整个蜘蛛网的轮廓勾勒出来,用一根特别的丝把这个轮廓固定住。
为继续穿针引线搭好了脚手架。
它每抽一根丝,沿着脚手架,小心翼翼地向前走,走到中心时,把丝拉紧,多余的部分就让它聚到中心。
从中心往边上爬的过程中,在合适的地方加几根辐线,为了保持蜘蛛网的平衡,再到对面去加几根对称的辐线。
一般来说,不同种类的蜘蛛引出的辐线数目不相同。
丝蛛最多,42条;有带的蜘蛛次之,也有32条;角蛛最少,也达到21条。
同一种蜘蛛一般不会改变辐线数。
到目前为止,蜘蛛已经用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体相同的。
现在,整个蜘蛛网看起来是一些半径等分的圆周,画曲线的工作就要开始了。
蜘蛛从中心开始,用一条极细的丝在那些半径上作出一条螺旋状的丝。
这是一条辅助的丝。
然后,它又从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线。
在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上。
这样半径上就有许多小球。
从外面看上去,就是许多个小点。
好了,一个完美的蜘蛛网就结成了。
让我们再来好好观察一下这个小精灵的杰作:从外圈走向中心的那根螺旋线,越接近中心,每周间的距离越密,直到中断。
蛛网模型及其在经济学只能感的应用摘要:蛛网模型是十分重要的数学模型之一,它在经济学中得到了广泛的应用。
本文运用了经济学原理和数学原理分析了蛛网模型,同时论证劳动力市场工程师数量与工资率波动形成的收敛型蛛网和我国近二十年小麦价格与产量波动形成的发散型蛛网。
从中得到如下的结论:1.在工程师市场中,工资率的变动对工程师数量供给的影响小于需求量的影响,也就是需求曲线的斜率的绝对值小于供给曲线斜率的绝对值,形成收敛型蛛网。
2.在农产品市场中,小麦的价格变动对供给量的影响大于需求量的影响,也就是需求曲线的斜率的绝对值小于供给曲线斜率的绝对值,形成发散型蛛网。
关键词:蛛网模型 求曲线 均衡 弹性引言:引进时间变化的因素,通过对属于不同时期的需求量,供给量和价格之间相互作用的考察,用动态分析的方法论述诸如劳动力市场调整,农产品市场等周期较长的产量和价格在偏离均衡状态以后的实际波动过程及其结果。
自改革开放以来,行业人才数量的培养和需求存在周期性变化,数量增多时,必然有工资率的下降;小麦价格的频繁波动和其产量的变化以及其他商品供求变化存在周期性的,都应该运用蛛网模型准确地把握变化趋势,采取灵活对策。
当然,供给弹性和需求弹性是这些波动的根本原因。
运用蛛网模型研究社会中的经济现象具有一定的指导意义。
1蛛网模型的经济学原理1.1条件假设蛛网模型所描述的数量和价格循环波动的现象是在一定的假设条件下出现的。
第一:本期产量供给不影响本期价格,本期产量供给s t Q 决定于前期价格1t P ;第二:本期的需求量td Q 决定于本期的价格t P ;第三:需求量弹性不变。
蛛网模型假定需求弹性不变,主要是指需求的价格弹性不变,特别是在农产品市场上,农产品的需求弹性小,假设其不变。
第四:一种完全自由竞争的市场,任何生产者和消费者都是被动地接受价格。
1.2 经济学分析蛛网模型以经济变量的时间先后分析了商品的价格和产量的波动,在其他有周期性的供给量和价格波动的市场也有类似的分析。
浅谈对数螺旋线(logarithmic spiral)摘要:我们常常可以在自然界中发现螺旋扩大的图形,比如:蜘蛛织的网、向日葵的花盘、鹦鹉螺外部切面等等。
这种图形叫做对数螺旋线。
本文,将从数学的视角,探讨对数螺旋线的来源、历史上数学家们对它的研究、如何建立模型、这种模型的性质和它在工业、农业、建筑业等方面的应用。
We often can find expanding spiral graphics in nature,such as:spider weaving a network, sunflower chrysanthemum,Nautilus external aspect and so on.This graph is called the logarithmic spiral.This article,from the perspective of mathematics to explore the source of logarithmic spiral,mathematicians in the history who studied it,how to build models,the nature of the models and the application it is in industry,agriculture,construction,etc.作者:陈红(200911233021)陈虹邑(200911233012)殷怡(200911233008)关键词:对数螺旋线、应用、蜗牛壳、对数螺旋线叶片二、螺旋线的来源1、在自然界中的踪影在自然界中对数螺旋线非常普遍,向日葵花盘上瘦果的对数螺旋线的弧形排列,这样就可以使果实排得最紧、数量最多、产生后代的效率也最高。
当我们观察着园蛛,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;蜘蛛在织网时,首先要在两地之间架“天索”,把丝固定在一定的地方,并在固定的丝上来回走几趟,使丝加粗。
数学建模网络挑战赛承诺书我们仔细阅读了第五届“认证杯”数学中国数学建模网络挑战赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们允许数学中国网站()公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。
我们的参赛队号为:参赛队员(签名) :队员1:队员2:队员3:参赛队教练员(签名):参赛队伍组别:数学建模网络挑战赛编号专用页参赛队伍的参赛队号:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2012年第五届“认证杯”数学中国数学建模网络挑战赛题目对数螺线型蜘蛛网状的结构分析关键词蜘蛛网对数螺线蒙特卡洛方法 ANSYS分析法摘要本文针对蜘蛛网合适结构的问题,考虑吐丝量一定,外界环境较理想条件下,建立以对数螺线为核心的数学模型,追求蜘蛛网结构最优。
运用蒙特卡洛方法,模拟昆虫触网的过程,考虑了在蜘蛛丝长度一定的条件下,对数螺旋比圆围成的面积大,但疏而不漏,应用随机过程近似昆虫触网的过程,得出了对数螺线更利于捕食的结论。
另一方面,也对对数螺线型面联接理论和联接界面强度进行了分析与计算,利用ANSYS进行接触分析,得出了对数螺线型面联接的接触应力和接触强度条件的表达式。
采用随机数产生算法,利用MATLAB 7.0.1和C++编程,分别对模型进行求解,并对所得结果进行分析比较,以此来帮助设计最有蜘蛛网结构。
参赛队号 2138 所选题目 A 参赛密码(由组委会填写)AbstractOur article aims to study the question about the best structure of the spider webs ,it is on the condition of certain output of the spinning the and quite ideal conditions ,establish mathematical model in the core of the logarithmic spiral to find the best way of the spider webs .We also analyze Logarithm of solenoid type surface connection theory, Interface connection strength and ANSYS to get the expression.we apply Monte Carlo method to simulate the process about Net insert and adopt the Random number produce algorithm ,we also use the software of Matlab 7.0.1 、Mathematica and Microsoft Visual C++ 6.0 to give the answer to the question about the model and analyze about the result from model ,so we establish the best structure of the spider webs by means of these datas.一、问题重述世界上生存着许多种类的蜘蛛,而其中的大部分种类都会通过结网来进行捕食。
数学建模网络挑战赛承诺书我们仔细阅读了第五届“认证杯”数学中国数学建模网络挑战赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们允许数学中国网站()公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。
我们的参赛队号为:参赛队员(签名) :队员1:队员2:队员3:参赛队教练员(签名):参赛队伍组别:数学建模网络挑战赛编号专用页参赛队伍的参赛队号:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2012年第五届“认证杯”数学中国数学建模网络挑战赛题目对数螺线型蜘蛛网状的结构分析关键词蜘蛛网对数螺线蒙特卡洛方法 ANSYS分析法摘要本文针对蜘蛛网合适结构的问题,考虑吐丝量一定,外界环境较理想条件下,建立以对数螺线为核心的数学模型,追求蜘蛛网结构最优。
运用蒙特卡洛方法,模拟昆虫触网的过程,考虑了在蜘蛛丝长度一定的条件下,对数螺旋比圆围成的面积大,但疏而不漏,应用随机过程近似昆虫触网的过程,得出了对数螺线更利于捕食的结论。
另一方面,也对对数螺线型面联接理论和联接界面强度进行了分析与计算,利用ANSYS进行接触分析,得出了对数螺线型面联接的接触应力和接触强度条件的表达式。
采用随机数产生算法,利用MATLAB 7.0.1和C++编程,分别对模型进行求解,并对所得结果进行分析比较,以此来帮助设计最有蜘蛛网结构。
参赛队号 2138 所选题目 A 参赛密码(由组委会填写)AbstractOur article aims to study the question about the best structure of the spider webs ,it is on the condition of certain output of the spinning the and quite ideal conditions ,establish mathematical model in the core of the logarithmic spiral to find the best way of the spider webs .We also analyze Logarithm of solenoid type surface connection theory, Interface connection strength and ANSYS to get the expression.we apply Monte Carlo method to simulate the process about Net insert and adopt the Random number produce algorithm ,we also use the software of Matlab 7.0.1 、Mathematica and Microsoft Visual C++ 6.0 to give the answer to the question about the model and analyze about the result from model ,so we establish the best structure of the spider webs by means of these datas.一、问题重述世界上生存着许多种类的蜘蛛,而其中的大部分种类都会通过结网来进行捕食。
通过对蜘蛛网所形成的结构的分析,通过建立模型,设计一种更为合适的蜘蛛网结构。
二、问题分析题目中主要研究的是:蜘蛛网织成怎样的结构才是最合适的。
因此我们通过查阅资料,了解蜘蛛网的结构等方面内容,根据结构形状的不同,蛛网可以分为片网、不规则网和圆网等几种类型。
由于圆网在蛛网进化上的地位特殊,且结构简单、规则。
因此,到目前为止对蛛网的研究大都集中在圆网上。
圆网并不是标准的圆,而是近似于数学上的螺旋线。
所谓合适的蜘蛛网结构就是利于蜘蛛捕食、防御、繁殖。
根据题目的要求,我们提出以下几个问题:1、为什么蜘蛛网是螺旋线状,而不是标准的同心圆;2、对数螺线型面联接理论和联接界面强度分析与计算。
三、符号说明ρ:模拟对数螺线的极径θ:模拟对数螺线的极角Φ:对数螺线型型面轴旋转角σ:面轴上接触应力pl:轴孔之间的轴向配合长度σ与极径ρ之间的夹角γ:P点接触应力pf:轴孔之间的摩擦系数T:扭矩S:面积就是最大圆的面积1L:四圈的长度为1四、模型假设:1、假设蜘蛛网是规则的对数螺线;2、不考虑蜘蛛网受到风雨等天气情况的影响;3、假设昆虫飞向蜘蛛网时,落在网内每点的概率相同;五、模型建立与求解:蜘蛛网的中心和圆周之间呈辐射状的半径线,自外向里是螺旋线,愈近中心,每圈间的距离也愈小,直到不可辨认的地步,这正符合数学上的对数螺线的情况。
因此,我们建立对数螺线的模型,近似代替蜘蛛网,研究其性质。
图1㈠ 对数螺线的定义和性质数学上对数螺线定义如下:动点的运动方向始终与极径保持定角θ的动点轨迹,称为对数螺线。
如图1所示,其极坐标方程为:m ae θρ= (1)式中:,a m 为常数(()arctan 1/m λ=));θ为极角,ρ为极径。
图2 对数螺线对数螺线在渐屈、渐伸、垂迹、回光线等各种变换下的不变性质,体现出自身的高度和谐、对称和统一性。
㈡对数螺旋线与圆形蜘蛛网的比较将四个标准圆形与对数螺旋线放入同一坐标系中,如下图3图31、 四圈圆形蜘蛛网面积就是最大圆的面积:1S =28π=64⨯3.14=201.056 四圈的长度为: 1L =()21 3.6 5.88.2+++π=111.784 2、四圈螺旋线蜘蛛网该对数螺旋线的方程为:30.02e θρ=,08θ≤≤π面积:由于对数螺旋线是一条不封闭的曲线,所以用下图中最外面的曲线和一条线段组成的封闭图形表示该螺旋线所包围的面积。
通过数该封闭图形内的方格数估计面积,不足一格按半格记。
图4共有188个正方形,45个不足一格的,所以面积为198+22.5=220.5 长度:用Mathematica 计算该曲线长,输入 Integrate[0.02e^3x,{ x,0,8Pi}] , 得出结果L= 126.871 现将计算结果做表如下:周长面积面积周长圆 116.867 201.0561.720螺旋线126.871220.51.738结论:在蜘蛛丝长度一定的情况下,螺旋线所围成蜘蛛网的面积大。
这样更利于蜘蛛捕食。
蒙特卡罗方法:用蒙特卡罗方法模拟昆虫飞向蜘蛛网上的过程:假设昆虫飞向蜘蛛网时是一个随机过程,此过程中不考虑环境因素(风向、风速等)的影响编写C 语言程序,生成二维随机数。
程序及运行结果见附录。
将这些随机数在下图5中描点,为处理简单,以第一象限为例,其他象限相同。
图5图5.1 图5.2 图5.3 图5.4 图5.5绘制表格:一 二 三 四 五 平均 螺旋线 9 8 6 5 6 6.8 圆6 6 36 7 5.6由此可见,昆虫更可能碰到对数螺线。
也就是说,对数螺线形的蜘蛛网更有利于捕食㈢、对数螺线型面联接理论和联接界面强度分析与计算 3.1对数螺线曲线以型面轴截面曲线为例, 选取三段对数螺线进行分析。
θ从0°到110°的一段曲线组成, 其中各段曲线之间用直线圆滑联接, 减弱了应力集中现象。
图6三段对数螺线型面轴截面 2.2对数螺线曲线参数的确定在图1所示对数螺线的方程m ae θρ=中, m 的大小取决于型面联接轴与孔之间受力时的压力角α, 因α在整个曲线上是常数, 当α选定时, m 为常数。
因此选择型面联接轴、孔截面形状时,可选定a 值的大小来定轴、孔的尺寸, 再定出压力角,即可确定式中m 值, 对数螺线形状也就随之确定, 同时型面轴、孔截形也就相应得到确定。
三段对数螺线组成的型面轴、孔有两个基本参数a 和α,其中m 主要影响曲线的形状,a 主要影响曲线的大小。
三段对数螺线型面联接如图7所示,这是一种有间隙的配合(图7-a),工作时通过一定量的相对旋转,间隙补偿,由于楔面的作用在接触面之间便产生正压力,并摩擦闭锁, 形成可靠的联接(见图7-b),其摩擦受力方向与运动方向所成角度a 的大小与参变量θ无关,即对数螺线的压力角a 在任何位置都是相同的。
( a ) ( b) 图7对数螺线型面联接3.2 型面轴孔接触初始位置确定设型面轴孔的截面廓形曲线方程分别为11m a e θρ=、22m a e θρ=。
假定固定轮毂,顺时针旋转型面轴Φ角后两者之间有初始接触,任取一接触点P ,则在P 点处有12ρρ=,即 ()12m m a e a e θθ+Φ=(2) 可得 211ln a m a ⎛⎫Φ= ⎪⎝⎭(3) 上式表明型面轴旋转角Φ仅与曲线的,a m 常数值有关,而与θ值无关,即与初始接触点P 的位置无关,即Φ为定值,说明轴孔工作表面之间同时发生接触,轴孔之间接触为面接触。
3.3利用ANSYS 进行接触分析由于ANSYS 对复杂曲面建模具有一定的局限性,为了分析的准确性,利用Pr /o E 强大的三维建模功能,在Pr /o E 中建成模型后,再利用Pr /o E ,ANSYS 之间的接口程序,将模型导入, ANSYS 中。
为了方便加载扭矩,在不影响分析结果性质的前提下,于轴中心建一半径为r 的圆形孔,在圆形孔边界节点处加载等效切向力F ,使得扭矩T=Fr ,如图8所示。
按照ANSYS 分析步骤设置属性、划分网格、加载、求解。
在后处理器POST1中查看有限元模型在纯扭矩T 作用下的节点应力云图,如图9所示。
图8有限元模型图9节点的应力云图图9表明在轴孔各段工作表面上除了两端(刚进入接触与刚脱离接触的很小的一个区域)应力比较大之外,其它的区域所受到的应力分布都非常均匀。
若在模型应力比较集中区域进行修磨处理,将各段曲线间联接用更圆滑的曲线过渡,可减少或消除应力集中现象。
由此,认为对数螺线型面联接接触应力均匀分布是符合实际情况的。
反复加载不同的扭矩对有限元模型进行分析求解,发现作用扭矩与接触应力之间成线性比例关系。
3.4接触应力计算假定在无间隙无过盈的理想配合状态下,轴上作用纯扭矩,如图5所示。