量子力学第八章
- 格式:ppt
- 大小:2.61 MB
- 文档页数:23
第八章:自旋[1]在x σˆ表象中,求x σˆ的本征态(解) 设泡利算符2σ,x σ,的共同本征函数组是: ()z s x 21 和()z s x21- (1)或者简单地记作α和β,因为这两个波函数并不是x σˆ的本征函数,但它们构成一个完整系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),x σˆ的本征函数可表示:βαχ21c c += (2)21,c c 待定常数,又设x σˆ的本征值λ,则x σˆ的本征方程式是:λχχσ=x ˆ (3) 将(2)代入(3):()()βαλβασ2121ˆc c c c x +=+ (4) 根据本章问题6(P .264),x σˆ对z σˆ表象基矢的运算法则是:βασ=x ˆ αβσ=x ˆ 此外又假设x σˆ的本征矢(2)是归一花的,将(5)代入(4): βλαλαβ2111c c c c +=+比较βα,的系数(这二者线性不相关),再加的归一化条件,有:)6()6()6(122211221c b a c c c c c c ------------------------------------⎪⎩⎪⎨⎧=+==λλ前二式得12=λ,即1=λ,或1-=λ当时1=λ,代入(6a )得21c c =,再代入(6c),得: δi e c 211=δi ec 212=δ 是任意的相位因子。
当时1-=λ,代入(6a )得21c c -=代入(6c),得:δi e c 211=δi ec 212-=最后得x σˆ的本征函数:)(21βαδ+=i ex 对应本征值1)(22βαδ-=i ex 对应本征值-1以上是利用寻常的波函数表示法,但在2ˆˆσσx 共同表象中,采用z s 作自变量时,既是坐标表象,同时又是角动量表象。
可用矩阵表示算符和本征矢。
⎥⎦⎤⎢⎣⎡=01α ⎥⎦⎤⎢⎣⎡=10β ⎥⎦⎤⎢⎣⎡=21c c χ (7)x σˆ的矩阵已证明是⎥⎦⎤⎢⎣⎡=0110ˆx σ 因此x σˆ的矩阵式本征方程式是: ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡21211010c c c c λ (8) 其余步骤与坐标表象的方法相同,x σˆ本征矢的矩阵形式是: ⎥⎦⎤⎢⎣⎡=1121δi ex ⎥⎦⎤⎢⎣⎡-=1122δi e x[2]在z σ表象中,求n⋅σ的本征态,)cos ,sin sin ,cos (sin θϕθϕθn是),(ϕθ方向的单位矢。
第八章 WKB 近似WKB (Wenzel ,Kramers, Brillouin )1方法是得到一维定态Schrödinger 方程的近似解的一种技术(它的基本思想同样可应用于许多其他形式的微分方程和三维Schrödinger 方程的径向部分)。
此法对计算束缚态能量和势垒穿透率都是非常有用的。
它的基本思想如下:假设能量为E 的粒子穿过势能V(x)的区域,其中V(x)为常量。
当E>V 时,则波函数的形式为()ikxx Ae ψ±=,其中k ≡正号表示粒子向右运动,而负号表示它向左运动(当然,通解是两项的线性组合)。
波函数为振荡函数,具有固定的波长(λ=2π/k )和不变的振幅(A )。
现在设想V(x)不是一个常量,但是变化相比λ非常缓慢,因此包含许多全波长的区域中的势能可以认为基本上是不变的。
这样,除了波长和振幅随x 缓慢的变化外,可以合理地认为ψ实际上仍然保持正弦形式。
这就是隐藏在WKB 近似后面的核心思想。
它将依赖x 的问题有效地分为两种不同层次:快速振荡和由振幅和波长逐渐变化的调制。
同理,当E<V (其中V 为常量)时,ψ的指数形式为:()xx Ae κψ=其中κ≡如果V(x)不是常量,但是相比1/κ变化很缓慢,除了A 和κ随x 缓慢的变化外,则解可以认为基本上仍然保持指数形式。
现在仍然有一处整个方法不适用的地方,这就是经典转折点的邻域,此处E ≈V 。
因为此处的λ(或者1/κ)趋于无穷大,从而,相比之下V(x)就很难说是“缓慢的”变化了。
我1在荷兰此为KWB ,在法国此为BWK ,在英国此为JWKB (J 为Jeffreys )们将会看到,对于转折点的恰当地处理将是WKB 近似最难的一个部分,尽管最终的结果形式简洁并易于应用。
8.1经典区域定态Schrödinger 方程()2222d V x E m dx ψψψ-+=可以改写为下列形式:2222d p dx ψψ=- [8.1]其中()p x ≡ [8.2]这是具有总能量E 和势能V(x)的粒子的动量的经典表示式。
第八章 自旋8.1) 在z σ表象中,求x σ的本征态。
解:在z σ表象中,x σ的矩阵表示为:xσ⎪⎪⎭⎫ ⎝⎛=0110 设x σ的本征矢(在z σ表象中)为⎪⎪⎭⎫⎝⎛b a ,则有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛b a b a λ0110可得a b λ=及b a λ= 1,12±==∴λλ 。
,1=λ 则;b a = ,1-=λ 则b a -=利用归一化条件,可求出x σ的两个本征态为,1=λ;1121⎪⎪⎭⎫ ⎝⎛ ,1-=λ ⎪⎪⎭⎫⎝⎛-1121 。
8.2) 在z σ表象中,求n ⋅σ的本征态,()ϕϕθϕθcos ,sin sin ,cos sin n是()ϕθ,方向的单位矢.解:在z δ表象中,δ的矩阵表示为x σ⎪⎪⎭⎫⎝⎛=0110, y σ⎪⎪⎭⎫⎝⎛-=00i i , zσ⎪⎪⎭⎫⎝⎛-=1001(1) 因此, z z y y x x n n n n n σσσσσ++=⋅=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-+-=-θθθθϕϕcos sin sin cos i i z y xy x z een inn in n n (2)设n σ的本征函数表示为Φ⎪⎪⎭⎫⎝⎛=b a ,本征值为λ,则本征方程为()0=-φλσn,即 0cos sin sin cos =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----b a e ei i λθθθλθϕϕ(3) 由(3)式的系数行列式0=,可解得1±=λ。
对于1=λ,代回(3)式,可得xy x y x x i i n in n in n n e eb a--=++==-=--112sin 2cos cos 1sin ϕϕθθθθ归一化本征函数用()ϕθ,表示,通常取为()⎪⎪⎭⎫⎝⎛=ϕθθϕθφi e 2sin 2cos ,1或⎪⎪⎪⎭⎫⎝⎛-222sin 2cos ϕϕθθi i e e (4)后者形式上更加对称,它和前者相差因子2ϕi e-,并无实质差别。
第8章 自 旋 与 全 同 粒 子Stern-Gerlach 实验中得到了直接证实。
1、Stern-Gerlach (斯特恩-革拉赫)实验2、自旋的提出(1)、每个电子具有自旋角动量s(电子本身固有的,而不是自转而产生的),它在空间任何方向上的投影只能取两个数值:2z s =± ; (2)、每个电子具有自旋磁矩s μ ,它和自旋角动量s 的关系是 s e s mcμ=-,-e 是电子的电荷,m 是电子的质量 自旋磁矩s μ 在空间任意方向上的投影只能取两个数值: 2sz B e mc μμ=±=± 2B e mcμ= 为玻尔磁子 sz z e s mc μ=-,2lz z e l mc μ=- 电子 s l (1) 无经典对应量 有经典对应量(2) 2z s =± 22(1)l l l =+ ,z l m = (3) sz z e s mcμ=- 2lz z e l mc μ=- 回转磁比率 实验证明,除电子外,其他微观粒子也都具有自旋。
如原子、中子、μ介子的自旋角动量和电子一样(但自旋磁矩不同),π介子、k 介子的自旋角动量为0(但自旋磁矩不为零),以下除有特殊说明外,我们所讲的自旋都是指电子自旋。
§8.1 电子自旋态与自旋算符一、自旋算符通常的力学量都可以表示为坐标和动量的函数ˆˆˆˆ(,)FF r p = 而自旋角动量则与电子的坐标和动量无关,它是电子内部状态的表征,是描写电子状态的第四个自由度(第四个变量)。
与其他力学量一样,自旋角动量 也是用一个算符描写,记为s它是角动量,满足同样的角动量对易关系ˆˆˆs s i s ⨯=轨道角动量ˆl 自旋角动量s ˆˆˆl l i l ⨯= ˆˆˆss i s ⨯= ˆˆˆ[,]x y zl l i l = ˆˆˆ[,]x y z s s i s = ˆˆˆ[,]y z x l l i l = ˆˆˆ[,]y z xs s i s = ˆˆˆ[,]z x y l l i l = ˆˆˆ[,]z x y s s i s = 2ˆˆ[,]0i l l = 2ˆˆ[,]0i s s = 由于自旋角动量s 在空间任意方向上的投影只能取 ±ħ/2 两个值, 所以(1)ˆˆˆ,,x y z ss s 三个算符的本征值都是有两个2 ±; (2)它们的平方就都是22224x y z s s s === ; (3)2ˆs 的本征值为:222223ˆˆˆˆ4x y z s s s s =++= 依照22(1)l l l =+ , ,2,1,0=l 2223(1)4s s s =+= 21=⇒s s 称为自旋量子数,只有一个数值1/2 (为恒量),l 为角量子数,可取各种各样的值 1,2z s s m =±= z l m = , ,2,1,0±±=m 21±=⇒s m m s 自旋磁量子数±1/2 二、含自旋的状态波函数电子的含自旋的波函数需写(,)z r s ψψ=由于 s z 只取 ±ħ/2 两个值, 所以上式可写为两个分量 12()(,)2()(,)2r r r r ψψψψ⎧=⎪⎪⎨⎪=-⎪⎩ 写成列矩阵 (,)2(,)(,)2z r r s r ψψψ⎛⎫ ⎪= ⎪ ⎪- ⎪⎝⎭规定列矩阵第一行对应于s z = ħ /2, 第二行对应于s z = - ħ /2。