机械设计强度理论
- 格式:ppt
- 大小:963.00 KB
- 文档页数:6
1、最大拉应力理论:这一理论又称为第一强度理论。
这一理论认为破坏主因是最大拉应力。
不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。
破坏形式:断裂。
破坏条件:σ1 =σb强度条件:σ1≤[σ]实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。
缺点:未考虑其他两主应力。
使用范围:适用脆性材料受拉。
如铸铁拉伸,扭转。
2、最大伸长线应变理论这一理论又称为第二强度理论。
这一理论认为破坏主因是最大伸长线应变。
不论复杂、简单的应力状态,只要第一主应变达到单向拉伸时的极限值,即断裂。
破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。
破坏形式:断裂。
脆断破坏条件:ε1= εu=σb/Eε1=1/E[σ1−μ (σ2+σ3)]破坏条件:σ1−μ(σ2+σ3) = σb强度条件:σ1−μ(σ2+σ3)≤[σ]实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。
但是,其实验结果只与很少的材料吻合,因此已经很少使用。
缺点:不能广泛解释脆断破坏一般规律。
使用范围:适于石料、混凝土轴向受压的情况。
3、最大切应力理论:这一理论又称为第三强度理论。
这一理论认为破坏主因是最大切应力maxτ。
不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。
破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。
破坏形式:屈服。
破坏因素:最大切应力。
τmax=τu=σs/2屈服破坏条件:τmax=1/2(σ1−σ3 )破坏条件:σ1−σ3= σs强度条件:σ1−σ3≤[σ]实验证明,这一理论可以较好地解释塑性材料出现塑性变形的现象。
但是,由于没有考虑2σ的影响,故按这一理论设计的构件偏于安全。
缺点:无2σ影响。
使用范围:适于塑性材料的一般情况。
第三章 机械零件的强度计算第0节 强度计算中的基本定义 一. 载荷1. 按载荷性质分类:1) 静载荷:大小方向不随时间变化或变化缓慢的载荷。
2) 变载荷:大小和(或)方向随时间变化的载荷。
2. 按使用情况分:1)公称载荷(名义载荷): 按原动机或工作机的额定功率计算出的载荷。
2) 计算载荷:设计零件时所用到的载荷。
计算载荷与公称载荷的关系:F ca =kF n M ca =kM n T ca =kT n3) 载荷系数:设计计算时,将额定载荷放大的系数。
由原动机、工作机等条件确定。
二. 应力2.按强度计算使用分1) 工作应力:由计算载荷按力学公式求得的应力。
2) 计算应力:由强度理论求得的应力。
3) 极限应力:根据强度准则、材料性质和应力种类所选择的机械性能极限值σlim 。
4) 许用应力:等效应力允许达到的最大值。
[σ]=σlim /[s σ]稳定变应力 非稳定变应力对称循环变应力脉动应力 规律性非稳定变应力随机性非稳定变应力 静应力 对称循环变应力 脉动应力σ周期变应力第1节 材料的疲劳特性一. 疲劳曲线 1. 疲劳曲线给定循环特征γ=σlim /σmax ,表示应力循 环次数N 与疲劳极限σγ的关系曲线称为疲 劳曲线(或σ-N )。
2. 疲劳曲线方程1) 方程中参数说明a) 低硬度≤350HB ,N 0=107 高硬度>350HB ,N 0=25×107b) 指数m :c) 不同γ,σ-N 不同;γ越大,σ也越大。
…二、 限应力线图1) 定义:同一材料,对于不同的循环特征进行试验,求得疲劳极限,并将其绘在σm -σa坐标系上,所得的曲线称为极限应力线图。
CN N m m N ==0γγσσr N N k mNN σσσγγ==0mNN k N 0=整理:即:其中:N 0--循环基数σγ--N 0时的疲劳极限k N --寿命系数用线性坐标表示的疲劳曲线ND2)简化曲线3)σ-N与σm-σa关系a) σ-N曲线:同一循环特征下、不同循环次数。
第三章机械零件的强度课堂类别:理论教学目标:掌握常用的强度理论,并能正确运用;正确选用强度计算中的极限应力;熟练掌握极限应力线图的绘制与分析;熟练掌握稳定变应力时的疲劳强度计算及等效转化概念;了解单向不稳定变应力的疲劳强度计算。
教学重难点:重点:常用强度理论的正确运用及强度计算中极限应力的正确选定;极限应力线图的意义、绘制;稳定变应力时的疲劳强度计算。
难点:无。
教学方法与手段:1.教学方法:教师讲授、案例分析、集体讨论、个别回答、师生互动启发2.教学手段:课件演示、视频课件主要教学内容及过程第三章机械零件的强度1.强度问题:静应力强度:通常认为在机械零件整个工作寿命期间应力变化次数小于103的通用零件,均按静应力强度进行设计。
(材料力学范畴)变应力强度:在变应力作用下,零件产生疲劳破坏。
2.疲劳破坏定义:金属材料试件在交变应力作用下,经过长时间的试验而发生的破坏。
3.疲劳破坏的原因:材料内部的缺陷、加工过程中的刀痕或零件局部的应力集中等导致产生了微观裂纹,称为裂纹源,在交变应力作用下,随着循环次数的增加,裂纹不断扩展,直至零件发生突然断裂。
4.疲劳破坏的特征:1)零件的最大应力在远小于静应力的强度极限时,就可能发生破坏;2)即使是塑性材料,在没有明显的塑性变形下就可能发生突然的脆性断裂。
3) 疲劳破坏是一个损伤累积的过程,有发展的过程,需要时间。
4) 疲劳断口分为两个区:疲劳区和脆性断裂区。
§3-1 材料的疲劳特性一、应力的分类1、静应力:大小和方向均不随时间改变,或者变化缓慢。
2、变应力:大小或方向随时间而变化。
1)稳定循环变应力: 以下各参数不随时间变化的变应力。
m ─平均应力;a ─应力幅值 max ─最大应力; min ─最小应力r ─应力比(循环特性)描述规律性的交变应力可有5个参数,但其中只有两个参数是独立的。
2)非稳定循环变应力: 参数随时间变化的变应力。
(1)规律性非稳定变应力:参数按一定规律周期性变化的称为。
第五节 强度理论一、强度理论概述各种材料因强度不足而引起的失效现象是不同的。
根据第五章的讨论,我们知道象普通碳钢这样的塑性材料,是以发生屈服现象、出现塑性变形为失效的标志;而象铸铁这样的脆性材料,失效现象是突然断裂。
第五~八章的强度条件可以概括为最大工作应力不超过许用应力,即[]σ≤σmax 或[]τ≤τmax 。
这里的许用应力是从试验测得的极限应力除以安全系数得到的,这种直接根据试验结果来建立强度条件的方法,对于危险点处于复杂应力状态的情况不再适用。
这是因为复杂应力状态下三个主应力的组合是各种各样的,1σ、2σ和3σ之间的比值有无限多种情形,不可能对所以的组合都一一试验确定其相应的极限应力。
事实上,尽管失效现象比较复杂,但可以归纳为如下二点:1.材料在外力作用下的破坏形式不外乎有几种类型;2.同一类型材料的破坏是由某一个共同因素引起的。
人们在长期的实践中,综合多种材料的失效现象和资料,对强度失效提出各种假说。
这些假说认为,材料按断裂或屈服失效,是应力、应变或变形能等其中某一因素引起的。
按照这些假说,无论是简单还是复杂应力状态,引起失效的因素是相同的,造成失效的原因与应力状态无关。
这些假说称为强度理论。
利用强度理论,就可以利用简单应力状态下的试验(例如拉伸试验)结果,来推断材料在复杂应力状态下的强度,建立复杂应力状态的强度条件。
强度理论是推测材料强度失效原因的一些假说,它的正确与否以及适用范围,必须在工程实践中加以检验。
经常是适用于某类材料的强度理论,并不适用于另一类材料。
下面介绍的四种强度理论,都是在常温静载荷下,适用于均匀、连续、各向同性材料的强度理论。
二、四种强度理论1) 最大拉应力理论(第一强度理论)这一理论认为引起材料脆性断裂破坏的因素是最大拉压力,它是人们根据早期使用的脆性材料(象天然石、砖和铸铁等)易于拉断而提出的。
该理论认为无论什么应力状态下,只要构件内一点处的最大拉压力1σ达到单向应力状态下的极限应力b σ,材料就要发生脆性断裂。
力学分析中的强度和刚度详细解释
很多人对力学中强度和刚度的概念总是混淆,今天就来谈一下自己的理解。
书中说为了保证机械系统或者整个结构的正常工作,其中每个零部件或者构件都必须能够正常的工作。
工程构件安全设计的任务就是保证构件具有足够的强度、刚度及稳定性。
稳定性很好理解,受力作用下保持或者恢复原来平衡形式的能力。
例如承压的细杆突然弯曲,薄壁构件承重发生褶皱或者建筑物的立柱失稳导致坍塌,很好理解。
今天主要来讲一下对于刚度和强度的理解。
一、强度
定义:构件或者零部件在外力作用下,抵御破坏(断裂)或者显著变形的能力。
比如说张三把ipad当成了体重秤,站上去,ipad屏幕裂了,这就是强度不够。
比如武汉每年的夏天看海时许多大树枝被风吹断,这也是强度不够。
第1页共6页。
机械设计中的强度计算方法在机械设计中,强度计算是一个极其重要的环节。
无论是机械产品的设计还是机械结构的分析,都需要对其强度进行计算和验证。
因此,强度计算方法的正确性和准确性在机械工程中具有决定性的作用。
1. 强度计算的基本原理强度计算是机械设计的重要组成部分,目的是为了评估机械部件在使用过程中是否能够承受所受到的所有荷载,并且不会发生破坏。
其基本原理是根据机械零件的几何形状、材料性质、荷载特性以及破坏的准则来进行计算。
在强度计算中,最常用的计算方法是破坏理论和损伤理论。
破坏理论是指在机械零件在受到一定荷载作用后,破坏所能承受的最大值,其包括极限强度和疲劳极限强度两种计算方法。
而损伤理论则是在机械零件在受到很小荷载作用后,随着荷载的不断增大,机械零件逐渐损伤,最终发生破坏。
2. 强度计算的常用方法从强度计算的物理实质来看,其方法多种多样,常用的方法有破坏理论、有限元法和弹性力学法等。
破坏理论破坏理论是强度计算中最常用的方法之一,其基本假设是材料具有弹塑性的本质。
常用的破坏理论有极限强度理论、最大剪应力理论、最大正应力理论等。
其中,极限强度理论认为,材料在某一特定条件下能够承受的最大荷载与其材料的极限强度有关。
而其他破坏理论则更注重不同的应力状态下材料之间的差异,例如最大正应力理论认为,材料受力时发生破坏的条件是正应力达到其正应力极限时。
有限元法有限元法是综合应用物理力学、数学和计算机科学等学科的一种现代计算方法。
在机械工程领域中,有限元法主要用于机械零件的强度计算和疲劳寿命评估。
其步骤包括建立有限元模型、计算应力和应变、确定材料参数和荷载情况,最终得到机械部件的强度计算结果。
弹性力学法弹性力学法是对材料弹性和刚性的研究方法。
在机械工程中,其常用于解决静力学问题,如机械部件受荷时的应变和应力分布。
在弹性力学法中,常用的方法有弯曲理论、材料力学、接触力学和薄板理论等。
3. 常见的强度计算实例强度计算方法的应用范围非常广泛,涉及到各种类型的机械零件和结构。
材料力学在工程设计中常用的强度理论有四种材料力学在工程设计中常用的强度理论有四种,分别是:最大拉应力理论、最大伸长线应变理论、最大切应力理论和形状改变比能理论。
以下是对这四种强度理论的详细介绍:1.最大拉应力理论最大拉应力理论,也称为第一强度理论。
这个理论的基础是,物体内部任何一点的拉应力都不能超过该点的强度极限。
当物体受到的拉应力超过其强度极限时,物体就会在这一点上发生脆性断裂。
在工程设计中,这种理论的应用非常广泛。
例如,在桥梁设计中,我们需要保证桥梁的拉应力不超过其强度极限,以防止桥梁在载荷的作用下发生脆性断裂。
此外,在材料力学实验中,我们也会通过测量材料的最大拉应力来确定其强度极限。
2.最大伸长线应变理论最大伸长线应变理论,也称为第二强度理论。
这个理论的基础是,物体内部任何一点的伸长线应变都不能超过该点的强度极限。
当物体受到的伸长线应变超过其强度极限时,物体就会在这一点上发生塑性变形。
在工程设计中,这种理论的应用也十分广泛。
例如,在机械零件的设计中,我们需要保证零件的伸长线应变不超过其强度极限,以防止零件在使用过程中发生塑性变形。
此外,在材料力学实验中,我们也会通过测量材料的最大伸长线应变来确定其强度极限。
3.最大切应力理论最大切应力理论,也称为第三强度理论。
这个理论的基础是,物体内部任何一点的切应力都不能超过该点的强度极限。
当物体受到的切应力超过其强度极限时,物体就会在这一点上发生剪切破坏。
在工程设计中,这种理论的应用也十分重要。
例如,在齿轮的设计中,我们需要保证齿轮的切应力不超过其强度极限,以防止齿轮在使用过程中发生剪切破坏。
此外,在材料力学实验中,我们也会通过测量材料的最大切应力来确定其强度极限。
4.形状改变比能理论形状改变比能理论,也称为第四强度理论。
这个理论的基础是,物体内部任何一点的形状改变比能都不能超过该点的强度极限。
当物体受到的形状改变比能超过其强度极限时,物体就会在这一点上发生屈服。
机械设计期末公式总结一、强度学1. 极限强度公式极限强度公式是判断零件是否足够强度的重要公式之一。
常用的极限强度公式有「螺纹连接零件构件」「螺柱连接零件构件」「挤压件」「轴零件」「刚性连接构件」等。
2. 应力公式应力公式是研究零件应力分布的基本公式,包括挠度以及受力零件其余部分的应力。
应力公式一般有「平面应力裂纹和极坐标应力裂纹」等。
3. 弯曲公式弯曲公式是研究长条材料在承受弯曲作用下的变形量等的基本公式,常用的弯曲公式有「弯曲应力裂纹公式」。
二、传动学1. 动力庞加莱关系是动力分析的基本公式之一。
动力为质点在力的作用下产生运动的因素,包括「质量、速度、加速度」等。
2. 映射坡道柱塞传动机构是传动学中常用的一种机构,用于实现往复运动。
映射也是其中的一种关系,用于研究平行运动以及副曲线运动的机构。
3. 齿轮传动齿轮传动是机械传动中常用的一种方式,常见有「直齿轮传动」「斜齿轮传动」「蜗杆传动」「固定齿轮传动」等。
三、力学1. 静力静力是研究静止状态下的力学性质的学科,包括「力的平衡」等。
2. 动力动力是研究运动状态下的力学性质的学科,包括「牛顿定律」「质心运动学定理」「动量守恒定律」「僵直度」等。
四、流体力学1. 流动理论流动理论是研究流体运动规律的学科,包括「流体的动力学平衡方程」「能量方程」「动量方程」「连续方程」等。
2. 流动可视化流动可视化是通过实验手段使流动可视化,用以观察流体在各种状况下的运动情况。
常用的流动可视化方法有「理想流」「旋流」「螺旋流」「射流」等。
五、热力学1. 热力学循环热力学循环是研究热力学过程中能量转换的循环过程。
常见的热力学循环有「卡诺循环」「斯特林循环」「布雷顿循环」「朗肯循环」等。
2. 热传导热传导是研究过热物质与冷物质间的热传导现象,常见的热传导公式有「傅里叶热传导定律」「斯托克斯热传导定律」等。
六、材料学1. 线性模型线性模型是材料学中常用的模型之一,常用的线性模型有「胡克定律」「西格玛定律」等。