机械设计轴Ⅱ强度计算
- 格式:doc
- 大小:91.97 KB
- 文档页数:2
1.2 轴类零件的分类根据承受载荷的不同分为:1)转轴:定义:既能承受弯矩又承受扭矩的轴2)心轴:定义:只承受弯矩而不承受扭矩的轴3)传送轴:定义:只承受扭矩而不承受弯矩的轴4)根据轴的外形,可以将直轴分为光轴和阶梯轴;5)根据轴内部状况,又可以将直轴分为实心轴和空。
1.3轴类零件的设计要求⑴轴的工作能力设计。
主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。
⑵轴的结构设计。
根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。
一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。
轴是主要的支承件,常采用机械性能较好的材料。
常用材料包括:碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。
常用牌号有:30、35、40、45、50。
采用优质碳素钢时应进行热处理以改善其性能。
受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。
45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。
合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。
设计中尤其要注意从结构上减小应力集中,并提高其表面质量。
40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。
轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。
精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。
这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。
中国石油大学(北京)现代远程教育毕业设计(论文)轴的强度校核方法姓名:学号:性别:专业:批次:电子邮箱:联系方式:学习中心:指导教师:2XXX年X月X日中国石油大学(北京)现代远程教育毕业设计(论文)轴的强度校核方法摘要轴是用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递的重要的零件。
为实现机械产品的完整和可靠设计,轴的设计应考虑选材、结构、强度和刚度等要求。
并应对轴的材料或设备的力学性能进行检测并调节,轴的强度校核应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
最后确定轴的设计能否达到使用要求,对轴的设计十分重要。
本文根据轴的受载及应力情况,介绍了几种典型的常用的对轴的强度校核计算的方法,并对如何精确计算轴的安全系数做了具体的介绍。
当校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。
最后,本文对提高轴的疲劳强度和刚度提出相应改进方法,并对新材料,新技术的应用进行了展望。
关键词:轴;强度;弯矩;扭矩;目录第一章引言 (5)1.1轴类零件的特点 (5)1.2轴类零件的分类 (6)1.3轴类零件的设计要求 (6)1.3.1、轴的设计概要 (6)1.3.2、轴的材料 (6)1.3.3、轴的结构设计 (7)1.4课题研究意义 (9)第二章轴的强度校核方法 (11)2.1强度校核的定义 (11)2.2常用的轴的强度校核计算方法 (11)2.2.1按扭转强度条件计算: (11)2.2.2按弯曲强度条件计算: (13)2.2.3按弯扭合成强度条件计算 (13)2.2.4精确计算(安全系数校核计算) (20)第三章提高轴的疲劳强度和刚度的措施 (25)3.1合理的选择轴的材料 (25)3.2合理安排轴的结构和工艺 (25)3.3国内外同行业新材料、新技术的应用现状 (26)总结 (31)参考文献 (32)第一章引言1.1轴类零件的特点轴是组成各类机械的主要和典型的零件之一,主要起支承传动零部件,传递扭矩和承受载荷的作用。
已知:作用在轴上的转矩T 适用: 1. 传动轴的设计; 2. 弯矩较小的转轴;3. 粗(初)估轴的直8-4 轴的强度计算一、按扭转强度条件轴的强度计算通常是在初步完成轴的结构设计后进行校核计算。
8-4轴的强度计算 一、按扭转强度条件[]23N/mm 2.01095503T T T dn PW T ττ≤⨯==τT ——轴的扭转应力,N/mm ,T ——轴传递的扭矩,N.mmW T ——轴的抗扭截面模量,mm 3;P ——轴传递的功率,kW ;n ——轴的转速,r/min ;[τT ]——许用扭转应力,N/mm ;8-4 轴的强度计算一、按扭转强度条件[]mm2.0109550 3.03.3nP A n P d T =⨯≥τ轴的最小直径设计公式:A 0——由轴材料及承载情况确定的系数,A 0=110~160, 材质好、弯矩较小、无冲击和过载时取小值;反之取大值。
β——空心轴内外径的比值,常取0.5~0.6。
当轴上有键槽时,应适当增大轴径:单键增大3%-5%8-4 轴的强度计算 一、按扭转强度条件实心圆轴[]mm )1( )1(2.0109550 3.403.43nPA n P d T βτβ-=-⨯≥空心圆轴已知:各段轴径,轴所受各力、轴承跨距计算:轴的强度步骤:可先画出轴的弯矩扭矩合成图,然后计算危险截面的最大弯曲应力。
二、按弯扭合成强度计算主要用于计算一般重要,受弯扭复合的轴。
计算精度中等。
[]222N/mm 4b T b ca στσσ≤+=第三强度理论[]b T caT T b WT M W T W M WT d T W T dM W M σστσ≤+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==≈=≈=222332422.01.0122][)(-≤+==b caca WT M W M σασ弯曲应力 对称循环弯曲应力与扭转切应力的循环特征不同所以引入的应力校正系数α扭转应力不变化的转矩脉动变化的转矩频繁正反变化的转矩[][],3.011≈=+-b b σσα[][],6.001≈=-b b σσα[][],111≈=--b b σσα[σ]-1对称循环应力下轴的许用应力[σ]0脉动循环应力下轴的许用应力[σ]+1静应力下轴的许用应力轴的许用弯曲应力,表8-3[]311.0-≥b caM d σ122][)(-≤+==b cacaWT M W M σασ计算弯矩或校核轴径已知:轴的结构和尺寸、轴所受各力、轴承跨距、过渡圆角、表面粗糙度、轴毂配合计算:轴的强度用于重要的轴,计算精度高且复杂三、按疲劳强度计算安全系数8-4 轴的强度计算三、按疲劳强度计算安全系数轴的疲劳强度许用安全系数[S]=1.3-1.5,用于材料均匀;[S]=1.5-1.8,用于材料不够均匀;[S]=1.8-2.5,用于材料均匀性及计算精确度很低,或轴径 d>200mm 。
中国石油大学(北京)现代远程教育毕业设计(论文)轴的强度校核方法姓名:学号:性别:专业:批次:电子邮箱:联系方式:学习中心:指导教师:2XXX年X月X日中国石油大学(北京)现代远程教育毕业设计(论文)轴的强度校核方法摘要轴是用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递的重要的零件。
为实现机械产品的完整和可靠设计,轴的设计应考虑选材、结构、强度和刚度等要求。
并应对轴的材料或设备的力学性能进行检测并调节,轴的强度校核应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
最后确定轴的设计能否达到使用要求,对轴的设计十分重要。
本文根据轴的受载及应力情况,介绍了几种典型的常用的对轴的强度校核计算的方法,并对如何精确计算轴的安全系数做了具体的介绍。
当校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。
最后,本文对提高轴的疲劳强度和刚度提出相应改进方法,并对新材料,新技术的应用进行了展望。
关键词:轴;强度;弯矩;扭矩;目录第一章引言 (5)1.1轴类零件的特点 (5)1.2轴类零件的分类 (6)1.3轴类零件的设计要求 (6)1.3.1、轴的设计概要 (6)1.3.2、轴的材料 (6)1.3.3、轴的结构设计 (7)1.4课题研究意义 (9)第二章轴的强度校核方法 (11)2.1强度校核的定义 (11)2.2常用的轴的强度校核计算方法 (11)2.2.1按扭转强度条件计算: (11)2.2.2按弯曲强度条件计算: (13)2.2.3按弯扭合成强度条件计算 (13)2.2.4精确计算(安全系数校核计算) (20)第三章提高轴的疲劳强度和刚度的措施 (25)3.1合理的选择轴的材料 (25)3.2合理安排轴的结构和工艺 (25)3.3国内外同行业新材料、新技术的应用现状 (26)总结 (31)参考文献 (32)第一章引言1.1轴类零件的特点轴是组成各类机械的主要和典型的零件之一,主要起支承传动零部件,传递扭矩和承受载荷的作用。
五 轴的设计计算一、高速轴的设计1、求作用在齿轮上的力高速级齿轮的分度圆直径为d 151.761d mm =112287542339851.761te T F N d ⨯=== tan tan 2033981275cos cos1421'41"n re te F F N αβ=⋅=⨯=tan 3398tan13.7846ae te F F N β==⨯=。
2、选取材料可选轴的材料为45钢,调质处理。
3、计算轴的最小直径,查表可取0112A =331min 015.2811223.44576P d A mm n ==⨯=应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使与带轮d Ⅰ-Ⅱ 相配合,且对于直径100d mm ≤的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。
故取25d mm =Ⅰ-Ⅱ 。
4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)根据前面设计知大带轮的毂长为93mm,故取90L mm I-II =,为满足大带轮的定位要求,则其右侧有一轴肩,故取32d mm II-III =,根据装配关系,定35L mm II-III =(2)初选流动轴承7307A C ,则其尺寸为358021d D B mm mm mm ⨯⨯=⨯⨯,故35d mm d III-∨I ∨III-IX ==,III -I∨段挡油环取其长为19.5mm,则40.5L mm III-I∨=。
(3)III -I∨段右边有一定位轴肩,故取42d mm III-II =,根据装配关系可定100L mmIII-II =,为了使齿轮轴上的齿面便于加工,取5,44L L mm d mm II-∨I ∨II-∨III II-∨III ===。
(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s =8mm,故右侧挡油环的长度为19mm,则42L mm ∨III-IX =(5)计算可得123104.5,151,50.5L mm L mm L mm ===、(6)大带轮与轴的周向定位采用普通平键C 型连接,其尺寸为10880b h L mm mm mm ⨯⨯=⨯⨯,大带轮与轴的配合为76H r ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6. 求两轴承所受的径向载荷1r F 和2r F带传动有压轴力P F (过轴线,水平方向),1614P F N =。
轴结构设计及强度计算§11—1 概述一、轴的用途与分类1、功用:1)支承回转零件;2)传递运动和动力2、分类按承基情况分转轴——T和M的轴——齿轮轴心轴——而不受扭矩:转动心轴(图11-2a);固定心轴(图11-2b)传动轴——主要受扭矩而不受弯矩或弯矩很小的轴按轴线形状分直轴——光轴(图11-5a)——作传动轴(应力集中小)阶梯轴(图11-5b):优点:1)便于轴上零件定位;2)便于实现等强度曲轴——另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置(图11-8),如牙铝的传动轴。
二、轴的材料及其选择碳素钢——价廉时应力集中不敏感——常用45#,可通过热处理改善机械性能,一般为正火调质和合金钢——机械性能(热处理性)更好,适合于大功率,结构要求紧凑的传动中,或有耐磨、高温(低温)等特殊工作条件,但合金钢对应力集中较敏感。
注意:①由于碳素钢与合金钢的弹性模量基本相同,所以采用合金钢并不能提高轴的刚度。
②轴的各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(喷丸、滚压)对提高轴的疲劳强度有显著效果。
表11-1,轴的常用材料及其主要机械性能表三,轴设计的主要内容:结构设计——按轴上零件安装定位要求定轴的形状和尺寸交替进行工作能力计算——强度、刚度、振动稳定性计算§11—2 轴的结构设计轴的结构外形主要取决于轴在箱体上的安装位置及形式,轴上零件的布置和固定方式,受力情况和加工工艺等。
轴的结构设计要求:①轴和轴上零件要有准确、牢固的工作位置;②轴上零件装拆、调整方便;③轴应具有良好的制造工艺性等。
④尽量避免应力集中(书上无)一、拟定轴上零件的装配方案根据轴上零件的结构特点,首先要预定出主要零件的装配方向、顺序和相互关系,它是轴进行结构设计的基础,拟定装配方案,应先考虑几个方案,进行分析比较后再选优。
原则:1)轴的结构越简单越合理;2)装配越简单、方便越合理。
轴的设计计算轴的设计计算轴的计算通常都是在初步完成结构设计后进⾏校核计算,计算准则是满⾜轴的强度和刚度要求。
⼀、轴的强度计算进⾏轴的强度校核计算时,应根据轴的具体受载及应⼒情况,采取相应的计算⽅法,并恰当地选取其许⽤应⼒。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(⼼轴),应按弯曲强度条件计算;对于既承受弯矩⼜承受扭矩的轴(转轴),应按弯扭合成强度条件进⾏计算,需要时还应按疲劳强度条件进⾏精确校核。
此外,对于瞬时过载很⼤或应⼒循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产⽣过量的塑性变形。
下⾯介绍⼏种常⽤的计算⽅法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作⽤,可⽤降低许⽤应⼒的⽅法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截⾯的最⼤扭剪应⼒(MPa);为轴所传递的转矩(N.mm);为轴危险截⾯的抗扭截⾯模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许⽤扭剪应⼒(MPa);对实⼼圆轴,,以此代⼊上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很⼩时,C值取较⼩值,[]取较⼤值;反之,C取较⼤值,[]取较⼩值。
应⽤上式求出的值,⼀般作为轴受转矩作⽤段最细处的直径,⼀般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增⼤,若该轴段同⼀剖⾯上有⼀个键槽,则将d增⼤5%,若有两个键槽,则增⼤10%。
此外,也可采⽤经验公式来估算轴的直径。
如在⼀般减速器中,⾼速输⼊轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中⼼距估算,。
⼏种轴的材料的[]和C值[]2、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进⾏计算。
计算时,先根据结构设计所确定的轴的⼏何结构和轴上零件的位置,画出轴的受⼒简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建⽴轴的弯扭合成强度约束条件:考虑到弯矩所产⽣的弯曲应⼒和转矩所产⽣的扭剪应⼒的性质不同,对上式中的转矩乘以折合系数,则强度约束条件⼀般公式为:式中:称为当量弯矩;为根据转矩性质⽽定的折合系数。
轴Ⅱ强度计算
1) 由作用力与反向作用力可求得:
周向力F t2=1999.028N ;径向力F a2=727.587N ;轴向力F r2=748.192N
2) 求水平面的支座反力(图4-0-3a)
⎪⎪⎩
⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛⨯⨯+=-=-=⎪⎭⎫ ⎝⎛⨯⨯-=-=N N l d F F F N N l d F F F a r RHD a R RHC 771.10501362967.252587.7272192.74822579.3021362967.252587.7272192.74822222222 3) 求水平面弯矩M H ,作水平面弯矩M H 图(图4-0-3b)
M HQ1=F RHA ×2l 错误!未找到引用源。
=-302.579×1000
2136⨯ N ⋅m=-20.575N ⋅m M HQ2=F RHB ×2l =1050.771×1000
2136⨯错误!未找到引用源。
N ⋅m=71.452N ⋅m 4) 求垂直面支座反力(图4-0-3c),作垂直弯矩M V 图(图4-0-3d)
F RVC =F RVD =22
t F 错误!未找到引用源。
=999.514N M VQ =F RVC ×2l 错误!未找到引用源。
=999.514×13821000
⨯错误!未找到引用源。
N ·m=64.697N ⋅m
5) 作合成弯矩M 图(图4-0-3e)
m N m N M M M HQ VQ Q ⋅=⋅+=
+=013.71575.20697.64222121 m N m N M M M HQ VQ Q ⋅=⋅+=
+=615.98452.71697.64222222 6) 作转矩T 图(图4-0-3f)
T =T Ⅱ=245.306N ⋅m
7) 作当量弯矩M E 图(图4-0-3g) 因为是单向传动,可认为转矩为脉动循环变化,故校正系数][][11b b +-=σσα=0.59,则危险截面Q 处的当量弯矩
M eQ =()22T M HQ α+=()2
2306.24559.0576.98⨯+N ⋅m 错误!未找到引用源。
=186.178N ⋅m
危险截面C 、D 处当量弯矩
M eC =M eD =T α =0.59×245.306N ⋅m=144.731N ⋅m
8) 计算危险截面处的轴径
截面Q 处直径
mm mm M d b eQ
Q 696.3155
1.0175134][1.0331=⨯=⨯≥-σ
因为Q 处键槽,故将直径加大5%,即31.696mm ×105%=33.281mm 截面D 处的直径
mm mm M d b eQ
D 74.2955
1.0144731][1.0331=⨯=⨯≥-σ 同理,直径应该扩大5%,即29.74mm ×105%=31.231mm。