机械波及波的形式波长波线及波面波速
- 格式:pptx
- 大小:2.51 MB
- 文档页数:3
⾼中物理知识点总结:波的性质与波的图像、波的现象与声波⼀. 教学内容:1. 波的性质与波的图像2. 波的现象与声波【要点扫描】波的性质与波的图像(⼀)机械波1、定义:机械振动在介质中传播就形成机械波.2、产⽣条件:(1)有做机械振动的物体作为波源.(2)有能传播机械振动的介质.3、分类:①横波:质点的振动⽅向与波的传播⽅向垂直.凸起部分叫波峰,凹下部分叫波⾕②纵波:质点的振动⽅向与波的传播⽅向在⼀直线上.质点分布密的叫密部,疏的部分叫疏部,液体和⽓体不能传播横波。
4. 机械波的传播过程(1)机械波传播的是振动形式和能量.质点只在各⾃的平衡位置附近做振动,并不随波迁移.后⼀质点的振动总是落后于带动它的前⼀质点的振动。
(2)介质中各质点的振动周期和频率都与波源的振动周期和频率相同.(3)由波源向远处的各质点都依次重复波源的振动.(⼆)描述机械波的物理量1. 波长λ:两个相邻的,在振动过程中相对平衡位置的位移总是相等的质点间的距离叫波长.在横波中,两个相邻的波峰或相邻的波⾕之间的距离.在纵波中两相邻的密部(或疏部)中央间的距离,振动在⼀个周期内在介质中传播的距离等于波长2. 周期与频率.波的频率由振源决定,在任何介质中传播波的频率不变。
波从⼀种介质进⼊另⼀种介质时,唯⼀不变的是频率(或周期),波速与波长都发⽣变化.3. 波速:单位时间内波向外传播的距离。
v=s/t=λ/T=λf,波速的⼤⼩由介质决定。
(三)说明:①波的频率是介质中各质点的振动频率,质点的振动是⼀种受迫振动,驱动⼒来源于波源,所以波的频率由波源决定,是波源的频率.波速是介质对波的传播速度.介质能传播波是因为介质中各质点间有弹⼒的作⽤,弹⼒越⼤,相互对运动的反应越灵敏,则对波的传播速度越⼤.通常情况下,固体对机械波的传播速度较⼤,⽓体对机械波的传播速度较⼩.对纵波和横波,质点间的相互作⽤的性质有区别,那么同⼀物质对纵波和对横波的传播速度不相同.所以,介质对波的传播速度由介质决定,与振动频率⽆关.波长是质点完成⼀次全振动所传播的距离,所以波长的长度与波速v和周期T有关.即波长由波源和介质共同决定.由以上分析知,波从⼀种介质进⼊另⼀种介质,频率不会发⽣变化,速度和波长将发⽣改变.②振源的振动在介质中由近及远传播,离振源较远些的质点的振动要滞后⼀些,这样各质点的振动虽然频率相同,但步调不⼀致,离振源越远越滞后.沿波的传播⽅向上,离波源⼀个波长的质点的振动要滞后⼀个周期,相距⼀个波长的两质点振动步调是⼀致的.反之,相距1/2个波长的两质点的振动步调是相反的.所以与波源相距波长的整数倍的质点与波源的振动同步(同相振动);与波源相距为1/2波长的奇数倍的质点与波源的振动步调相反(反相振动.)(四)波的图象(1)波的图象①坐标轴:取质点平衡位置的连线作为x轴,表⽰质点分布的顺序;取过波源质点的振动⽅向作为y轴表⽰质点位移.②意义:在波的传播⽅向上,介质中质点在某⼀时刻相对各⾃平衡位置的位移.③形状:正弦(或余弦).要画出波的图象通常需要知道波长λ、振幅A、波的传播⽅向(或波源的⽅位)、横轴上某质点在该时刻的振动状态(包括位移和振动⽅向)这四个要素.(2)简谐波图象的应⽤①从图象上直接读出波长和振幅.②可确定任⼀质点在该时刻的位移.③可确定任⼀质点在该时刻的加速度的⽅向.④若已知波的传播⽅向,可确定各质点在该时刻的振动⽅向.若已知某质点的振动⽅向,可确定波的传播⽅向.⑤若已知波的传播⽅向,可画出在Δt前后的波形.沿传播⽅向平移Δs=vΔt.波的现象与声波(⼀)波的现象1. 波的反射:波遇到障碍物会返回来继续传播的现象.(1)波⾯:沿波传播⽅向的波峰(或波⾕)在同⼀时刻构成的⾯.(2)波线:跟波⾯垂直的线,表⽰波的传播⽅向.(3)⼊射波与反射波的⽅向关系.①⼊射⾓:⼊射波的波线与平⾯法线的夹⾓.②反射⾓:反射波的波线与平⾯法线的夹⾓.③在波的反射中,反射⾓等于⼊射⾓;反射波的波长、频率和波速都跟⼊射波的相同.(4)特例:夏⽇轰鸣不绝的雷声;在空房⼦⾥说话会听到声⾳更响.(5)⼈⽿能区分相差0.1 s以上的两个声⾳.2. 波的折射:波从⼀种介质射⼊另⼀种介质时,传播⽅向发⽣改变的现象.(1)波的折射中,波的频率不变,波速和波长都发⽣了改变.(2)折射⾓:折射波的波线与界⾯法线的夹⾓.(3)⼊射⾓i与折射⾓r的关系v1和v2是波在介质I和介质Ⅱ中的波速.i为I介质中的⼊射⾓,r为Ⅱ介质中的折射⾓.3. 波的衍射:波可以绕过障碍物继续传播的现象.衍射是波的特性,⼀切波都能发⽣衍射.产⽣明显衍射现象的条件是:障碍物或孔的尺⼨⽐波长⼩或与波长相差不多。
机械波和波速波是物质或能量传递的一种方式,它的传播可以是机械的或非机械的。
机械波是一种需要介质传播的波,而波速是机械波在介质中传播的速度。
在物理学中,机械波是物质粒子周期性振动的传播。
这种周期性振动可以沿着一个方向传播,形成了所谓的纵波,或者沿着垂直于振动方向传播,形成了横波。
机械波传播的速度称为波速。
波速的大小取决于介质的性质。
在同一介质中,波速是恒定的。
例如,声波在空气中的传播速度约为343米/秒,而在水中约为1480米/秒。
波速与介质的密度和弹性有关。
一般来说,介质的密度越大,弹性越高,波速就越快。
这是因为在具有高密度和高弹性的介质中,粒子可以更快地响应外部扰动并传播能量。
在弦上的波传播可以作为一个例子来理解机械波和波速的概念。
当你在一个拉紧的绳子上摇动一端时,摇动的能量通过绳子向另一端传播。
在这个过程中,绳子的一个小部分开始进行周期性的上下振动,这是机械波的传播。
振动的速度就是波速。
除了绳子上的波,声波也是一种常见的机械波。
作为一种纵波,声波的传播是由分子间的振动引起的。
例如,我们说话、听音乐或雷声都是声波的表现。
声波通过空气中的分子传播,当我们发出声音时,空气中的分子开始振动并传播声波。
波速不仅仅与介质的性质有关,还与波长和频率有关。
波长是波的长度,是指一个完整波形的距离,通常用λ表示。
频率是指波每秒钟震动的次数,通常用f表示。
波速可以通过波长和频率的关系来计算,即波速=波长×频率。
机械波传播的速度还可以通过其他方法进行测量。
一种常见的方法是使用薄膜干涉仪。
薄膜干涉仪是一种利用波的干涉效应来测量波速的仪器。
它包括两个平行的透明薄膜,当入射光通过薄膜时,会发生干涉,从而生成干涉图样。
通过测量干涉图样的变化,可以确定机械波的传播速度。
机械波和波速在许多领域都有重要的应用。
在工程领域,了解波速可以帮助设计和优化声学系统、震动控制系统等。
在医学领域,了解声波在人体中的传播速度可以帮助诊断和治疗疾病。