九年级数学一元二次方程——握手问题、传染病问题-增长率问题练习题汇总(有答案)
- 格式:pdf
- 大小:32.32 KB
- 文档页数:3
题型一:送卡片、握手、比赛问题1.毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为 。
2.国庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛, 这次有 队参加比赛.题型二:传播问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?题型三:平均增长(下降)率问题雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?题型四:利润问题1.种新商品每件进价为120元,商场在试销阶段发现,当每件商品售价为130元时,每天可销售70件。
当每件商品售价高于130元时,每涨价2元,日销售量就减少4件,据此规律,商场要想达到每日赚取1600元利润的目标,应涨价多少元?2.某商场试销一种成本为60元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数b kx y +=,且70=x 时,50=y ;80=x 时,40=y ;(1)写出销售单价x 的取值范围;(2)求出一次函数b kx y +=的解析式;(3)销售单价定为多少时,商场可获得利润500元?3.销售某种商品,根据经验,销售单价不少于30元∕件,但不超过50元∕件时,销售数量N (件)与商品单价M (元∕件)的函数关系的图象如图所示中的线段AB . (1)求y 关于x 的函数关系式; (2)若商品的成本为20元,要想获利1200元时,那么该商品的单价应该定多少元?题型五:面积问题1.为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m ,宽20m 的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)例2:如图,利用一面墙(墙EF 最长可利用25米),围成一个矩形花园ABCD ,与围墙平行的一边BC 上要预留3米宽的入口(如图中MN 所示,不用砌墙),用砌46米长的墙的材料,当矩形的长BC 为多少米时,矩形花园的面积为299平方米.例3:在一块长16m 、宽12m 的矩形荒地上,要建一个花园,并使花园所占面积为荒地面积的一半. (1)如果如图①所示设计,并使花园四周小路宽度都相等,那么小路的宽是多少? (2)如果如图①所示设计,并使小路宽度都相等,那么小路的宽是多少?题型六:根的判别式对比练习:例1:已知关于x 的一元二次方程x 2-2kx+12k 2-2=0.求证:不论k 为何值,方程总有两不相等实数根.例2:已知一元二次方程2-40x x k +=有两个不相等的实数根。
一元二次方程应用题典型题型归纳(一)传播与握手问题(病毒、细胞分裂等)1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。
5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.(三)商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。
一、传播问题:1、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,求,,每轮感染中平均一台电脑能感染几台?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?2、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?3、甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?增长率问题:平均增长(降低)率公式注意:(1)1与x 的位置不要调换(2)解这类问题列出的方程一般用直接开平方法1. 某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x ,列方程为_________________2. 某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为_____________3、雪融超市今年的营业额为280万元,计划后年的营业额为403.2万元,求平均每年增长的百分率?4、市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒121元降到每盒100元,则这种药品平均每次降价的百分率为多少?5、我国土地沙漠化日益严重,西部某市2003年有沙化土地100平方公里, 到2005年已增至144平方公里。
请问:2003至2005年沙化土地的平均增长率为多少?2(1)a x b±=三、面积问题:如图,在宽20m,长30m的矩形地面上建筑两条同样长和同样宽且互相垂直的道路,余下部分作为耕地,耕地面积为551m²,则道路的宽应为多少?4、要在长32m,宽20m的长方形绿地上修建宽度相同的道路,六块绿地面积共570m2,问道路宽应为多宽?如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃。
人教版九年级上册数学21.3 实际问题与一元二次方程--增长率问题专题练习一、单选题1.2021年9月份,全国新冠疫苗当月接种量约为1.4亿剂次,11月份新冠疫苗当月接种量达到2.3亿剂次,若设平均每月的增长率为x ,则下列方程中符合题意的是( )A .1.4x 2 =2.3B .1.4(1+x 2)=2.3C .1.4(1+x )2 =2.3D .1.4(1+2x )=2.3 2.某中学连续三年开展植树活动.已知2020年植树500棵,2022年植树720棵,假设该校这两年植树棵树的年平均增长率为x ,根据题意可以列方程为( ) A .()25001720x +=B .()25001%720x +=C .()50012720x +=D .()()250050015001720x x ++++= 3.某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是x ,则可以列方程 ( )A .500(12)720x +=B .2500(1)720x +=C .2720(1)500x +=D .2500(1)720x +=4.新冠疫情给各地经济带来很大影响. 为了尽快恢复经济,某企业加大生产力度,四月份生产零件50万个,第二季度共生产零件182万个. 若该企业五、六月份平均每月的增长率为x ,则下列方程中正确的是( )A .()2501182x +=B .()()505015012182x x ++++=C .()25012182x +=D . ()()250501501182x x ++++= 5.2022年受国际原油大涨影响,国内95#汽油从一月份7.85元/升上涨到三月份9元/升,如果平均每月汽油的增长率相同,设这个增长率为x ,则可列方程得( ). A .7.85(12)9x ⨯+= B .27.85(1)9x ⨯+=C .()27.8519x ⨯+=D .7.85(1)9x ⨯+=6.疫情期间,某快递公司推出无接触配送服务,4月份第1周接到1.5万件订单,前3周共接到4.8万件订单,设第1周到第3周订单的周平均增长率为x ,则可列方程为( )A .1.5(12) 4.8x +=B .1.52(1) 4.8x ⨯+=C .21.5(1) 4.8x +=D .21.5 1.5(1) 1.5(1) 4.8x x ++++= 7.科学研究表明,接种新冠疫苗是阻断新冠病毒传播的最有效途径.2021年我国居民接种疫苗迎来高峰期,据统计2021年4月份全国新冠疫苗当月接种量约为1.4亿剂次,6月份新冠疫苗当月接种量达到5.6亿剂次,若设平均每月的增长率为x ,则下列方程正确的是( )A .21.4 5.6x =B .()21.41 5.6x +=C .()21.41 5.6x +=D .()1.412 5.6x += 8.疫情形势下,我国坚持“动态清零”的防控措施,使很多地区疫情蔓延形势得以有效控制,并逐步恢复生产.某商店今年1月份的销售额仅2万元,3月份的销售额已达到4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .50%B .62.5%C .20%D .25% 二、填空题9.某海洋养殖场每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖场第一年的可变成本为2.6万元,第三年的养殖成本为7.146万元,设可变成本平均每年增长的百分率为x ,则可列方程为_____. 10.某商场销售额4月份为25万元,6月份为36万元,该商场5、6两个月销售额的平均增长率是 _____%.11.新能源汽车节能、环保,越来越受消费者喜爱.2020年某款新能源汽车销售量为15万辆,销售量逐年增加,2022年预估当年销售量为21.6万辆,求这款新能源汽车的年平均增长率是多少?可设年平均增长率为x ,根据题意可列方程_______. 12.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”.2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x ,则所列方程为_________.13.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由225元降至144元,则平均每次降价的百分率为______________.14.某学区房房价连续两次上涨,由原来的每平方米10000元涨至每平方米12100元,设每次涨价的百分率相同,则涨价的百分率为______.15.某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为________.16.汽车产业的发展有效促进我国现代化建设,某汽车销售公司2009年盈利1500万元,到2011年盈利2160万元,且从2009年到2011年,每年盈利的年增产率相同.若该公司的盈利年增产率继续保持不变,预计2012年盈利________万元?三、解答题17.某学校去年年底的绿化面积为2500平方米,预计到明年年底增加到3600平方米,若这两年的平均增长率相同,求这两年的平均增长率.18.疫情期间居民为了减少外出,更愿意选择线上购物,某购物平台今年二月份注册用户50万人,四月份达到了72万人,假设二月份至四月份的月平均增长率为x.(1)求x的值.(2)若保持这个增长率不变,五月份注册用户能否达到85万人?为什么?19.某口罩生产厂生产的口罩7月份平均日产量为30000个,7月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从8月份起扩大产量,9月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计10月份平均日产量为多少?20.为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.参考答案:1.C2.A3.D4.D5.B6.D7.B8.A9.2+=-2.6(1)7.1464x10.2011.15(1+x)2=21.6或15(x+1)2=21.612.2x+=500(1)74013.20%14.10%15.20%16.259217.20%18.(1)20%(2)五月份注册用户能达到85万人19.(1)口罩日产量的月平均增长率为10%(2)39930个20.(1)20%(2)学校的目标不能实现。
一元二次方程的应用一、知识点1、握手问题;2、感冒问题;3、增长率问题二、知识学习1、回顾知识:(1)一元二次方程解法;(2)根的判别式;(3)根与系数的关系。
2、握手问题例1、参加聚会的每两个人都握了一次手,所有人共握手10次,有多少人参加聚会?例2、一个凸多边形共有20条对角线,它是几边形?是否存在有18条对角线的多边形?如果存在,它是几边形?如果不存在,请说明理由。
3、感冒问题例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?:如果按照这样的传染速度,三轮后有多少人患流感?4、增长率问题(1)平均增长率问题例4、某新华书店计划第一季度共发行图书122万册,其中一月份发行图书32万册,二、三月份平均每月增长率相同,求二、三月份各应发行图书多少万册?例5 某商厦二月份的销售额为100万元,三月份销售额下降了20%。
商厦从四月份起改进经营措施,销售额稳步上升,五月份销售额达到135.2万元,试求四、五两个月的平均增长率.(2)非平均增长率问题例6、已知某商店3月份的利润为10万元,5月份的利润为12.32万元,5月份月增长率比4月份增加了2个百分点.求4月份的月增长率.三、检测练习1、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共 ( ).A .12人B .18人C .9人D .10人2、.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x ,列方程( )A.500(12)x +=720 B. 2500(1)720x += C. 2500(1)720x += D. 2720(1)500x -=3、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?4、某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?5、参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签了45份合同,共有多少家公司参加商品交易会?6、参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场,共有多少队参加比赛?7、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?8、某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,求两次降价的百分率.9、某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份营业额达到633.6万元,求3月份到5月份营业额的平均月增长率。
九年级一元二次方程的应用(2)1.要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请支球队参加比赛.2.一次会议上,每两个参加会议的人都互相握手一次,有人统计一共是握了66次手,则这次会议到会人数是人.3.学校要组织一场篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,应邀请个球队参加比赛.4.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有名.5.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请队参赛.6.一个凸多边形共有35条对角线,它是边形.7.学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了21场比赛,那么有个球队参加了这次比赛.8.一个小组有若干人,新年互送贺年卡,已知全组共送72张贺卡,则这个小组有人.9.在某次聚会上,每两人都握了一次手,所有人共握手36次,参加这次聚会的有人.10.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过人.11.毕业之际,某校九年级数学性趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为人.12.乒乓球锦标赛上,男子单打实行单循环比赛(即每两个运动员都相互交手一次),共进行66场比赛,则参加比赛的运动员共人.13.2013年中国足球超联赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场,已知全年共举行比赛210场,则参加比赛的队伍共有支.14.某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共110件,则全组有名学生.15.三(六)班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了3540张,则三(六)班的人数是.16.如图,是一个简单的数值运算程序.则输入x的值为.17.如图是一张月历表,在此月历表上可以用一个矩形任意圈出2×2个位置上相邻的数(如2,3,9,10).如果圈出的4个数中最大数与最小数的积为128,则这4个数中最小的数是.18.若两数和为﹣7,积为12,则这两个数是和.19.若两个负数的差为4,且它们的积为45,则这两个数中较小的数是.20.已知一个直角三角形的三边是三个连续的偶数,则它的三边为.21.已知两个连续奇数的积是15,则这两个数是.22.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出.23.小明向一些好友发送了一条新年问候的短信,获得信息的人也按小明发送的人数再加1人向外转发,经过两轮短信的发送,共有35人次手机上收到该短信,则小明发送短信给了个好友.24.若两数和为7,积为12,则这两个数是.25.已知两个连续奇数的积是15,则这两个数的和是.26.心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需分钟.27.某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为.28.小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数a2+2b﹣3.例如把(2,﹣5)放入其中,就会得到22+2×(﹣5)﹣3=﹣9,现将实数(m,﹣3m)放入其中,得到实数4,则m=.29.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为.30.已知两个数的差等于2,积等于15,则这两个数中较大的是.2017年08月31日y1的初中数学组卷参考答案与试题解析一.填空题(共30小题)1.要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请6支球队参加比赛.【解答】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x﹣1=15,即=15,∴x2﹣x﹣30=0,∴x=6或x=﹣5(不合题意,舍去).即应邀请6个球队参加比赛.故答案为:6.2.一次会议上,每两个参加会议的人都互相握手一次,有人统计一共是握了66次手,则这次会议到会人数是12人.【解答】解:设参加会议有x人,依题意得:x(x﹣1)=66,整理得:x2﹣x﹣132=0解得x1=12,x2=﹣11,(舍去).答:参加这次会议的有12人.3.学校要组织一场篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,应邀请5个球队参加比赛.【解答】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x﹣1=10,则=10,∴x2﹣x﹣20=0,∴解得:x1=5,x2=﹣4(不合题意,舍去).故答案为:5.4.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有10名.【解答】解:设这次参加聚会的同学有x人,则每人应握(x﹣1)次手,由题意得:x(x﹣1)=45,即:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不符合题意舍去)故参加这次聚会的同学共有10人.故答案是:10.5.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请8队参赛.【解答】解:∵赛程计划安排7天,每天安排4场比赛,∴共7×4=28场比赛.设比赛组织者应邀请x队参赛,则由题意可列方程为:=28.解得:x1=8,x2=﹣7(舍去),所以比赛组织者应邀请8队参赛.故答案为:8.6.一个凸多边形共有35条对角线,它是十边形.【解答】解:设它是n边形,根据题意得:=35,解得n1=10,n2=﹣7(不符题意,舍去),故它是十边形,故答案为:十.7.学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了21场比赛,那么有7个球队参加了这次比赛.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,x(x﹣1)÷2=21,解得x=7或﹣6(舍去).故应邀请7个球队参加比赛.故答案为:7.8.一个小组有若干人,新年互送贺年卡,已知全组共送72张贺卡,则这个小组有9人.【解答】解:设这小组有x人.由题意得:x(x﹣1)=72,解得x1=9,x2=﹣8(不合题意,舍去).即这个小组有9人.故答案为:9.9.在某次聚会上,每两人都握了一次手,所有人共握手36次,参加这次聚会的有9人.【解答】解:设参加这次聚会的有x人,根据题意列方程得,x(x﹣1)=36,解得x1=9,x2=﹣8(不合题意,舍去);答:参加这次聚会的有9人.故答案为9.10.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过11人.【解答】解:设每轮传染中平均一个人传染x人,由题意得,2+2x+(2+2x)x=288,解得:x1=11,x2=﹣13,答:每轮传染中平均一个人传染了11个人.故答案为:11.11.毕业之际,某校九年级数学性趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为6人.【解答】解:设该兴趣小组的人数为x人.x(x﹣1)=30,解得x1=6,x2=﹣5(不合题意,舍去),故答案是:6.12.乒乓球锦标赛上,男子单打实行单循环比赛(即每两个运动员都相互交手一次),共进行66场比赛,则参加比赛的运动员共12人.【解答】解:设有运动员x人,根据题意得:x(x﹣1)=66,解得:x=12或x=﹣11(舍去)故答案为:12.13.2013年中国足球超联赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场,已知全年共举行比赛210场,则参加比赛的队伍共有15支.【解答】解:设参加比赛的球队共有x支,每一个球队都与剩余的x﹣1队打球,即共打x(x﹣1)场∵每两支球队都要在自己的主场和客场踢一场,即每两支球队相互之间都要比赛两场,∴每两支球队相互之间都要比赛两场,即x(x﹣1)=210,解得:x2﹣x﹣210=0,(x﹣15)(x+14)=0,x1=15.x2=﹣14(负值舍去)故参加比赛的球队共有15支,故答案为:15.14.某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共110件,则全组有11名学生.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=110解得:x1=﹣10(不合题意舍去),x2=11,答:全组共有11名学生.故答案为11.15.三(六)班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了3540张,则三(六)班的人数是60.【解答】解:设三(六)班共有x名学生,根据题意得:x(x﹣1)=3540,解之得x1=60,x2=﹣59(舍去)答:三(六)班共有60名学生.故答案为:60.16.如图,是一个简单的数值运算程序.则输入x的值为或.【解答】解:根据题意得:简单的数值运算程序为:(x﹣1)2×(﹣3)=﹣9,化简得:(x﹣1)2=3,∴x﹣1=±,∴x=1±.故答案为:或.17.如图是一张月历表,在此月历表上可以用一个矩形任意圈出2×2个位置上相邻的数(如2,3,9,10).如果圈出的4个数中最大数与最小数的积为128,则这4个数中最小的数是8.【解答】解:设这4个数中最小数是x,则最大数为:x+8,根据题意可得:x(x+8)=128,整理得:x2+8x﹣128=0,(x﹣8)(x+16)=0,解得:x1=8,x2=﹣16,则这4个数中最小的数是8.故答案为:8.18.若两数和为﹣7,积为12,则这两个数是﹣3和﹣4.【解答】解:设其中的一个数为x,则另一个是﹣7﹣x,根据题意得x(﹣7﹣x)=12,解得x=﹣3或x=﹣4,那么这两个数就应该是﹣3和﹣4.19.若两个负数的差为4,且它们的积为45,则这两个数中较小的数是﹣9.【解答】解:设较小的数为x,根据题意得:x(x+4)=45,解得:x=﹣9,x=5(不合题意,舍去)则这两个数中较小的数是﹣9;答案为:﹣920.已知一个直角三角形的三边是三个连续的偶数,则它的三边为6、8、10.【解答】解:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x﹣2,x+2根据勾股定理,得(x﹣2)2+x2=(x+2)2,x2﹣4x+4+x2=x2+4x+4,x2﹣8x=0,x(x﹣8)=0,解得:x1=8,x2=0(0不符合题意,应舍去),所以它的三边是6,8,10.故答案为:6、8、10.21.已知两个连续奇数的积是15,则这两个数是3和5或﹣3和﹣5.【解答】解:设其中一个奇数为x,则较大的奇数为(x+2),由题意得,x(x+2)=15,解得,x=3或x=﹣5,所以这两个数为3和5或﹣3和﹣5.22.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出3.【解答】解:设每个支干长出x个小分支,根据题意得1+x+x•x=13,整理得x2+x﹣12=0,解得x1=3,x2=﹣4(舍去).即:每个支干长出3个小分支.故答案是:3.23.小明向一些好友发送了一条新年问候的短信,获得信息的人也按小明发送的人数再加1人向外转发,经过两轮短信的发送,共有35人次手机上收到该短信,则小明发送短信给了5个好友.【解答】解:设每轮每人向x人发送短信,依题意得:x+x(x+1)=35,解得:x1=5,x2=﹣7(不合题意,舍去)故答案为:5.24.若两数和为7,积为12,则这两个数是3和4.【解答】解:设其中的一个数为x,则另一个是﹣7﹣x,根据题意得x(7﹣x)=12,解得x=3或x=4,那么这两个数就应该是3和4.故答案是:3和4.25.已知两个连续奇数的积是15,则这两个数的和是3和5或﹣3和﹣5.【解答】解:设其中一个奇数为x,则较大的奇数为(x+2),由题意得,x(x+2)=15,解得,x=3或x=﹣5,故答案是:3和5或﹣3和﹣5.26.心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需13分钟.【解答】解:把y=59.9代入y=﹣0.1x2+2.6x+43中得:x1=x2=13分钟,即学生对概念的接受能力达到59.9需要13分钟.27.某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为9.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=91,解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;故答案为:928.小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数a2+2b﹣3.例如把(2,﹣5)放入其中,就会得到22+2×(﹣5)﹣3=﹣9,现将实数(m,﹣3m)放入其中,得到实数4,则m=7或﹣1.【解答】解:根据题意得,m2+2×(﹣3m)﹣3=4,解得m1=7,m2=﹣1,故答案为:7或﹣1.29.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为6cm,8cm.【解答】解:设一直角边长为xcm,根据勾股定理得:(14﹣x)2+x2=102,解得x1=6,x2=8,故答案为:6cm,8cm.30.已知两个数的差等于2,积等于15,则这两个数中较大的是5.【解答】解:设这两个数中的大数为x,则小数为x﹣2,由题意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴这两个数中较大的数是5,故答案为:5;。