第四章 材料的性能
- 格式:ppt
- 大小:10.42 MB
- 文档页数:13
第4章 材料的结构与磁学性能4.1 固体物质的磁性来源4.2 固体物质的磁性分类4.3磁畴与磁化曲线4.4 铁氧体的结构与性能4.5磁性材料的结构与性能4.6 磁性材料的物理效应第4章 材料的结构与磁学性能进入21世纪以来,新材料的重要性逐步被人们认知,磁性材料的理论、生产及其应用也得到了快速发展,已经成为信息、航空航天、通信、人体健康等领域的重要材料基础。
本章主要介绍固体物质磁性的基本知识,包括磁性来源、磁性分类、磁畴与磁化曲线、铁氧体的结构与性能、磁性材料的物理效应及磁性材料的主要应用等,重点阐述铁氧体磁性材料的结构与性能。
4.1 固体物质的磁性来源物质在不均匀磁场中受到磁力作用的性质,称为磁性,是物质的基本物理属性。
最直观的表现是两个磁体之间的吸引力和排斥力。
物质的磁性来源于原子,原子的磁性来源于核外电子和原子核。
原子结合起来产生宏观物质的磁性,因此任何物质均具有磁性,磁性强的一般称为磁性材料,习惯上的非磁性或者无磁性只是弱磁性不易被人们觉察而已。
具有广泛应用的磁性材料的性能则受到晶体结构和显微结构的显著影响,是理论研究和生产控制的重要内容。
4.1.1磁矩(magnetic moment )磁体上磁性最强的部分称为磁极,磁极有N 、S 极,以正负对的形式存在,磁极的周围存在磁场。
磁极上带有的磁量叫磁荷或磁极强度,两个磁荷(磁极强度)q 1、q 2之间的相互作用力F 的大小为:221r q q k F = 4.1 式中r 为磁极间距,k 为常数。
紧密结合在一起的正负磁极称为元磁偶极子,尚没有观察到磁单极子的存在。
定义偶极子的磁偶极矩p:qr p = 4.2又称为磁偶极子的力矩,方向由S 极指向N 极。
任何一个封闭的电流都具有磁矩,其方向与环形电流法线的方向一致,其大小为电流与封闭环形的面积的乘积:S I m ∆= 4.3磁矩m 的单位为安培平方米A ·m 2,磁矩是表示磁体本质的一个物理量,与磁偶极矩的关系为:m p 0μ= 4.4μ0是真空的磁导率,μ0=4π×10-7(H/m )。
第四章材料的光学性能_材料物理第四章主要介绍材料的光学性能,包括传统光学性能和现代光学性能。
在本章中,我们将探讨材料的折射率、透过率、吸收率、反射率、透射率和散射率等光学性能,并深入了解这些性能对材料的应用和性能起到的影响。
首先,折射率是一个物质对光的折射能力的度量。
它表示光在通过一种介质时,光线的传播速度相对于真空中的传播速度的比值。
折射率越大,光线在介质中的传播速度越慢,同时也会使光线的传播方向发生变化。
折射率在光学器件的设计和制造中起着至关重要的作用,例如在光纤通信和光学透镜等领域。
透过率是指光线从一个介质传播到另一个介质时的透明程度。
透过率越高,介质光学效果越好。
材料的透过率取决于折射率和吸收率等因素。
在光学器件中,透过率是一个重要的性能指标,它决定了器件的光学传输效率和亮度。
吸收率是材料吸收光的能力。
当光线穿过材料时,一部分能量被材料所吸收,而另一部分则被材料所反射或透射。
吸收率对于材料的应用非常重要,特别是在光电子器件和光热器件中。
高吸收率的材料可以有效地将光能转化为电能或热能,以实现各种功能。
反射率是指光线从介质中的表面反射回来的能力。
反射率取决于入射角度和材料的折射率。
反射率高的材料适用于光学镜面和反射镜等应用,可以将光线有效地反射出去,而不是被吸收或透射。
透射率是指光线通过材料时传输的能力。
透射率在光学器件和材料中起着重要作用,尤其是在光纤传输和光学滤波器等应用中。
高透射率的材料可以有效地传输光线,减少能量损失。
散射率是指光线在碰撞或与材料表面相互作用时发生方向改变的能力。
散射率对于材料的外观和质量也有很大影响,尤其是在透明材料和杂质掺杂材料中。
控制散射率可以改善材料的光学性能,使其更适用于各种应用。
总之,材料的光学性能对于很多应用至关重要。
通过理解和控制材料的折射率、透过率、吸收率、反射率、透射率和散射率等光学性能,我们可以设计和制造出更好的光学器件和材料,满足不同领域的需求。
第四章 材料的导电性能材料的导电性能是材料物理性能的重要组成部分,导体材料在电子及电力工业中得到广泛的应用,同时,表征材料导电性的电阻率是一种对组织结构敏感的参量,所以,可通过电阻分析来研究材料的相变。
本章主要讨论材料的导电机理,影响材料导电因素以及导电性能参数的测量和应用。
还对材料的超导电性能、热电性能以及半导体性能等作简要介绍。
第一节 材料的导电性一、 电阻与导电的基本概念当在材料的两端施加电压V 时,材料中有电流I 流过,这种现象称为导电,电流I 值可用欧姆定律表示,即I = RV (4-1) 式中:R 为材料电阻,其值不仅与材料的性质有关,而且还与其长度L 及截面积S 有关,因此R = ρSL (4-2) 式中:ρ称为电阻率,它在数值上等于单位长度和单位面积上导电体的电阻值,可写为 ρ = R L S(4-3)由于电阻率只与材料本性有关,而与导体的几何尺寸无关,因此评定材料导电性的基本参数是ρ而不是R 。
电阻率的单位为Ω· m (欧·米)。
在研究材料的导电性能时,还常用电导率σ,电导率σ为电阻率的倒数,即σ =1 (4-4) 电导率的单位为Ω-1· m -1。
式(4-3)和式(4-4)表明,ρ 愈小,σ 愈大,材料导电性能就越好。
根据导电性能的好坏,常把材料分为导体、半导体和绝缘体。
导体的ρ 值小于10-2 Ω· m ;绝缘体的ρ值大于1010Ω· m ;半导体的ρ值介于10-2 ~ 1010Ω· m 之间。
虽然物质都是由原子所构成的,但其导电能力相差很大,这种现象与是物质的结构与导电本质有关。
二、导电的物理特性1、载流子电流是电荷在空间的定向运动。
任何一种物质,只要有电流就意味着有带电粒子的定向运动,这些带电粒子称为载流子。
金属导体中的载流子是自由电子,无机材料中的载流子可以是电子(负电子、空穴)、离子(正、负离子,空位)。
载流子为离子或离子空穴的电导称为离子式电导,载流子为电子或电子空穴的电导称为电子式电导。