评价含油性的交会图
- 格式:ppt
- 大小:2.38 MB
- 文档页数:2
含油级别的划分及各类岩性的描述方法1 含油级别的划分2 岩性描述1 含油级别的划分1.1 岩心含油级别划分1.1.1 孔隙性(碎屑岩)含油岩心含油级别划分划分依据及描述见表1。
1.1.2 缝洞性(非碎屑岩)含油岩心含油级别划分划分依据见表2。
1.2 岩屑含油级别划分1.2.1 孔隙性(碎屑岩)含油岩屑含油级别划分划分依据见表3。
表1 孔隙性含油岩心含油级别划分表2 缝洞性含油岩心含油级别划分1.2.2 缝洞性(非碎屑岩)含油岩屑含油级别划分划分依据见表4。
表3 孔隙性含油岩屑含油级别划分表4 缝洞性含油岩屑含油级别划分注:含油岩屑指表(断)面肉眼可见原油斑点的岩屑。
2 岩性描述2.1 碎屑岩的描述2.1.1 分类(粒度分类法见表5)表5 碎屑岩类分类标准2.1.2 定名采用“颜色+含油级别+岩性”进行综合定名。
岩性定名原则:以含量>50%的粒级作为岩石的基本名称。
以含量在10—50%间的次要粒级,作为附加名词加在岩石基本名称之前当次要粒级含量为25—50%时,用“XX质”表示;若含量占25—50%的为“砾级”,则改“质”为“状”;当次要粒级含量为10—25%时,用“含XX”作为附加名词加在基本名称之前。
含量<10%的粒级不参加定名,只作描述。
对泥质、灰质、白云质、硅质、铁质、石膏质等胶结物,其含量为10—50%时,按附加名词的原则参加定名。
含量10%以下的不参加定名,只作描述;若含量超过50%,则作为基本名定名。
对于砾岩,只要砾石级含量超过50%,次要粒级可不参加定名,只作描述。
当充填物主要为泥质,含量达25-50%,应定名为泥质砾岩;另外还可根据砾石的磨圆度进一步命名,砾石圆状-半圆状占50%以上的为砾岩;砾石半棱角状—棱角状占50%以上的则称为角砾岩。
2.1.3 颜色在自然光下观察描述干燥新鲜面的颜色,并注意局部颜色的变化。
2.1.4 成分碎屑岩的成分由碎屑成分和胶结物组成。
碎屑成分主要有石英、长石(正长石、斜长石)、岩屑、变质岩块、火成岩块、暗色矿物及云母等组成。
用测井曲线判断划分油、气、水层测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。
1、油、气、水层在测井曲线上显示不同的特征:如下图所示(1)、油层:微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
声波时差值中等,曲线平缓呈平台状。
井径常小于钻头直径。
(2)、气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。
(3)、油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)、水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较(对比)的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
储层“四性关系与电测油层的解释(一)、储层的“四性”关系储层的“四性”关系是指储层的岩性、物性、含油性与电性之间的关系。
沉积相是控制岩性、物性和含油性的主要因素,电性是对其三者的综合反映,不同的沉积相带,决定了不同岩性、物性和含油性,并决定了不同的电性特征。
只有正确地认识岩性,准确地掌握沉积环境、沉积规律和所处的沉积相带,认清各种岩性在电测曲线上的反应,才能正确地认识它的物性和含油性,才能与电性特征进行有机的结合,正确地进行油水层判断,提高解释符合率和钻井成功率。
测井曲线能反映不同的岩性,尤其对储集层及其围岩有较强的识别能力。
南泥湾油田松700井区长4+5、长6储集层测井显示:自然电位曲线为负异常,自然伽玛低值,微电极两条曲线分开,声波时差曲线相对较低,而且比较稳定,电阻率曲线随含油性不同而变化。
泥岩表现为:自然电位为基线,自然伽玛高值,微电极两条曲线重合,声波时差曲线相对较高,且有波动,电阻率曲线表现为中-高阻。
过渡岩性的特征界于纯砂岩与泥岩之间。
储层的钙质夹层显示为,声波时差低值,自然伽玛低值,电阻率高值;而泥质、粉砂质夹层显示为,自然伽玛增高,电阻率增大。
普通视电阻率曲线的极大值对应高阻层底界面。
感应曲线及八侧向曲线在储集层由于侵入而分开,而在泥岩及致密层3条曲线较接近。
但是,由于该区大部分井采用清水泥浆,所以,井径曲线在渗透层曲线特征不明显,微电极曲线在渗透层特征不明显。
长4+5储层岩性致密,渗透率值比较集中,在渗透性较好的储层段,一般含油性较好。
长4+5油层组含油层的曲线特征比较明显,油、水层的特征总体上便于识别。
电阻率曲线是识别油水层最重要的曲线。
理论上来说,感应曲线因其在地层中的电流线是环状的,那么,地层的等效电阻是并联的,它比普通视电阻率曲线及侧向测井更能识别相对低阻的地层。
所以,一般最好用感应测井曲线识别油水层。
油层电阻率幅度大,含油段的储层电阻率是水层电阻率的1.5—4倍,深、浅探测幅度差小,含油层的深感应电阻率大致为50—150Ωm。
测井解释原理一:储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。
必须具备两个条件:(1)孔隙性(孔隙、洞穴、裂缝)具有储存油气的孔隙、孔洞和裂缝等空间场所。
(2)渗透性(孔隙连通成渗滤通道)孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。
储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。
储集层的分类•按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。
•按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。
碎屑岩储集层•1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。
•2、组成:–矿物碎屑(石英、长石、云母)–岩石碎屑(由母岩类型决定)–胶结物(泥质、钙质、硅质)•3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。
•4、有关的几个概念–砂岩:骨架由硅石组成的岩石都称为砂岩。
骨架成份主要为SiO 2–泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。
–砂泥岩剖面:由砂岩和泥岩构成的剖面。
碳酸盐岩储集层•1、定义:–由碳酸盐岩石构成的储集层。
•2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩•3、特点:–储集空间复杂有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等)次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)–物性变化大:横向纵向都变化大•4 、分类按孔隙结构:•孔隙型:与碎屑岩储集层类似。
•裂缝型:孔隙空间以裂缝为主。
裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。
•孔洞型:孔隙空间以溶蚀孔洞为主。
孔隙度可能较大、但渗透率很小。
•洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。
•裂缝-孔洞型:裂缝、孔洞同时存在。
碳酸盐岩储集空间的基本类型砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主;碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。
测井数据处理与综合解释1、测井解释收集的第一性资料:①钻井取芯②井壁取芯和地层测试③钻井显示④岩屑录井⑤气测录井⑥试油资料2、测井数据预处理在用测井数据计算地质参数之前,对测井数据所做的一切处理都是预处理。
主要包括:①深度对齐:使每一深度各条测井数据同一采样点的数据。
②把斜井曲线校正成直井曲线③曲线平滑处理:把非地层原因引起的小变化或不值得考虑的小变化平滑掉。
④环境校正:把仪器探测范围内影响消除掉,获得地层真实的数值。
⑤数值标准化:消除系统误差的方法。
测井资料的定性解释是确定每条曲线的幅度变化和明显的形态特征反映的地层岩性、物性和含油性,结合地区经验,对储集层做出综合性的地质解释。
三、测井综合解释由各油田测井公司的解释中心选择的处理解释程序,有比较富有经验的人员,较丰富的资料对测井数据做更完善的处理和解释,它向油田提供正式的单井处理与解释结果,综合地质研究,还可以完成地层倾角、裂缝识别、岩石机械性质解释等特殊处理。
1、地层评价方法以阿尔奇公式和威里公式为基础,发展了一套定量评价储集层的方法,包括:①建立解释模型;②用声速或任何一种孔隙度测井计算孔隙度;③用阿尔奇公式计算含水饱和度和含油气饱和度;④快速直观显示地层含油性、可动油和可动水;⑤计算绝对渗透率;⑥综合判断油气、水层。
2、评价含油性的交会图电阻率—孔隙度交会图3、确定束缚水饱和度和渗透率储集层产生流体类别和产量高低, 与地层孔隙度和含油气、束缚水饱和度、绝对渗透率和原油性质等有关。
束缚水饱和度与含水饱和度的相互关系,是决定地层是否无水产油气的主要因素,绝对渗透率是决定地层能否产出流体的主要因素,束缚水饱和度有密切关系。
没有一种测井方法可直接计算这两个参数。
确定束缚水饱和度的方法:1)将试油证实的或综合分析确有把握的产油。
油基泥浆取芯测量的含水饱和度就是束缚水饱和度。
2)深探测电阻率计算的含水饱和度作为束缚水饱和度。
3)根据试油、测井资料的统计分析,确定束缚水饱和度。
中国石油大学胜利学院课程设计(论文)题目:测井解释及评价年级专业:资源勘查工程三班学生姓名:丛玉天学号:************ 指导教师:**导师单位:中国石油大学胜利学院论文完成时间:2015 年 6 月23 日摘要通过对《测井数据处理与综合解释》基本理论与方法的学习,以地层评价为主线,系统介绍了测井数据处理与解释的基本理论和基本方法;和根据测井解释自身发展,编人了近十年来在该领域内部分重要研究成果,主要包括:最优化测井解释、水淹层评价、油藏描述、图像处理与解释、模糊数学及人工智能在测井解释中的应用等内容。
对某实际测井资料进行岩性划分与评价、储层识别、物性评价及含油气性评价。
获得常规测井资料分析的一般方法,目的是巩固课堂所学的的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究。
掌握常规测井资料分析的一般方法,目的是巩固课堂所学的的理论知识,加深对测井方法的理解,运用所学程序设计语言完成设计数据的程序编写,利用所学carbon绘图软件完成数据成图,对所得结果做分析研究。
关键词:最优化测井解释、水淹层评价、储层识别、物性、含油气性、绘图软件目录第1章设计目的和基本要求 (1)第2章课程设计的主要内容 (1)2. 1 测井曲线的数字化及CIF (1)2. 2 测井曲线的特征 (2)2. 3 划分储层界面的方法 (2)2. 4 计算储层物性参数 (2)第3章测井解释和评价: (3)3.1测井资料解释流程 (3)3.2测井资料定性解释 (3)3.3测井资料定量计算 (4)3.4定性分析及定量评价基本原理 (4)第4章处理结果及分析 (5)4.1岩性评价 (5)4.2物性评价 (5)4.3含油气性评价 (6)第5章总结 (7)参考文献 (8)致谢 (8)附录 (9)第1章设计目的和基本要求测井课程设计是学完《测井数据处理与综合解释》之后的重要实践教学环节。