最新弹塑性力学思考与练习1
- 格式:ppt
- 大小:923.50 KB
- 文档页数:237
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy= -4 τxy = +2由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅;所以离下端为z 处的任意一点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=ooooV ;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆===oV ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
试确定外法线为n i(也即三个方向余弦都相等)的微分斜截面上的总应力n P v、正应力σn 及剪应力τn 。
弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
研究生弹塑性力学复习思考题1. 简答题:(1) 什么是主平而、主应力、应力主方向?简述求一点主应力的步骤? (2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量丿2的物理意义是什么?(5) 什么是屈服面、屈服函数? Tresca 屈服条件和Mises 屈服条件的儿何 与物理意义是什么?(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一 Illi 线假定?(9) 什么是平而应力问题?什么是平而应变问题?在弹性范用内这两类问题之间有 和联系和区别?(10) 论述薄板小挠度弯曲理论的基木假定?二、计算题1、已知P 点的应力张量为「3 1 r叭=10 21 2 0求该点的主应力、主方向及最人剪应力2、利用应变协调条件检杳其应变状态是否存在存在?° 红 i f + YP ________ OiLti -------- 二.=0dx idx j dXjdXtt, dx i dx h(1) e x =Axy 2, £y =Bx 2y, y xy =0, A^ B 为常数=k(x 2+ y 2\= ky 2,/vv = 2kxy k 为常数y xz z z2z 25x 2⑵ % = y 23、写出如下问题的边界条件(a)用直角坐标,(b)用极坐标°ly4、正方形薄板三边固定,另一边承受法向压力p = -p. sin —,如图所示,设位移函数为 b利用Ritz 法求位移近似解(泊松比v=0)o5、 悬臂梁在自 由端受亲中力P 作用,如图所示。
试用极小势能原理求最大挠度dP丿 -Z ----------------------------------------- 1z/ X< -------------------- -------------------------- >、'y第5题图提示设梁的挠1111线为2 3vv = a 2x +a 3x6、 对给定的应力函数: (1) (p } = = Cxy 3,试确定它们哪个能作为平面问题的应力函数,并分析它们能解什么问题?3F xv 3 P(2) 证明0= —[xy - ^-] + — b 可以作为应力函数,并求在区域xAO,—cYyYc 区4c " 3c~ 4c'域内的应力分量,并分析该应力函数可以解决那类平|何问题。
弹塑性理论思考题⒈ 一点的应力状态?答:通过一点P 的各个面上应力状况的集合 ⒉ 一点应变状态? 答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。
]代表一点 P 的邻域内线段与线段间夹角的改变⒊ 应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量J2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。
答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合张量之定义,因此,表示点的应力状态的9个分量构成一个二阶张量,称为应力张量。
一点的应力状态可以借用矩阵以张量σij 表示:。
其中:xz τ=zxτ,xy τ=yx τ,yz τ=zy τ。
应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即J 1,J 2,J 3是不变量,不随着坐标轴的变换而发生变化。
所以J 1,J 2,J 3分别被称为应力张量的第一、第二、第三不变量。
应力张量可分解为两个分量0-00+00m x m xy xz ij m yxy m yz m zx zy z m σσσττσστσστσττσσ⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,等式右端第一个张量称为应力球张量,第二个张量称为应力偏张量。
应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。
应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力及主轴同原σij ,二阶对称张量,同样存在三个不变量J 1' ,J 2' ,J 3' 体积应力:P46平均应力:12311()()33m x y z σσσσσσσ=++=++,m δ为不变量,与坐标无关。