- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
O
x
不同的面上的应 力是不同的
n
C
A n
y
到底如何描绘一 点处的应力状态?
1.1 应力张量
C
z
一点的应力状态可由过该点的微小
正平行六面体上的应力分量来确定。
应力张量
ij yxx
xy y
xz yz
(1.1)
zx zy z zzxzy yz
y
yx xz x
yz P zy
xy x xy xz
31 32 33
代入式(1.14)后得:
3 3 2 6 8 0 ( 4)( 1)( 2) 0
解得主应力为: 1 4; 2 1; 3 2;
1.2 应力偏量张量
1).应力张量分解
物体的变形
体积改变 形状改变
球应力状态/静水压力
由各向相等的应力状态引起的
弹性性质
材料晶格间的移动引起的
代入
SSNN21
11l1 21l1
12l2 22l2
13l3 23l3
SN 3 l3
SN 3 31l1 32l2 33l3
(211l11
)l1 12l2 ( 22 )l2
13l3 23l3
0 0
(1.8)
31l1 32l2 ( 33 )l3 0
物体的速度、加速度
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
3 、张量函数的求导
aijbkl Cijkl
张量导数就是把张量的每个分量都对坐标参数求导数。
ui,i
ui xi
u1 x1
u2 x2
u3 x3
ui, jk
2ui x j xk
2ux x jxk
, 2uy x jxk
, 2uz x jxk
0.4 主要参考书目
1 、Y.C.Fung(冯元桢)
《Foundations of Solid Mechanics》 《固体力学导论》 《A first course in continuum mechanics 》《连续介质力学导论》
31 32 33
主应力大小与坐标选择无关,故 J1,J2,J3也必与坐标选择无关。
J1, J2, J3 : 应力不变量
1.1 应力张量
若坐标轴选择恰与三个主坐标重合:
J1 1 2 3 J2 (12 23 31) J3 1 23
(1.16)
主剪应力面:平分两主平面夹角的平面,数值为:
13 23 0 (1.13) 33
1.1 应力张量
联合求解 l1,l2,l3:
行列式展开后得:
(11 )( 22 )( 33 ) 12 23 31 21 32 13 13 31( 22 ) 23 32 (11 ) 12 21( 33 ) 0
简化后得
3 J1 2 J2 J3 0 (1.14)
1 0 0
张量表示:dij 0 1 0
0 0 1
0.3 几个基本概念
张量的计算:
1 、张量的加减 凡是同阶的两个或两个以上的张量可以相加 (减),并得到同阶的一个新张量,法则为:
Aijk L Bijk Cijk
2 、张量的乘法
第一个张量中的每一个分量乘以第二个张量中的每一个分量,从而得到 一个新的分量的集合—新张量,新张量的阶数等于因子张量的阶数之和。
J1 11 22 33 kk
是关于λ的三次方程,它的三个根,即为三个主 应力,其相应的三组方向余弦对应于三组主平面。
式中:
J2
11 21
12 22
22 32
23 33
33 13
31 11
1 2
(ii kk
ik ki
)
(1.15)
11 12 13 J3 21 22 23 ij
lili 1
(1.12)
联合求解 l1,l2,l3:
(11 )l1 12l2 13l3 0
21l1 31l1
( 22 )l2 23l3 32l2 (33 )l3
0 0
l12 l22 l32 1
l1,l2,l3不全等于0
11 21 31
12 22
32
j 1
S
N
2
21l1
22l2
23l3
3
2 jlj
(1.3)
j 1
3
S
N
3
31l1 32l2 33l3
3 jlj
j 1
SNi ijl j (1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:
N SN1l1 SN 2l2 SN 3l3
ai xi a1x1 a2 x2 a3x3
ii 11 22 33 (i : 哑标,i 1, 2,3) SNi ijl j i1l1 i2l2 i3l3
(i :自由下标,j :哑标,i, j 1, 2,3)
dij记号:Kroneker-delta记号
dij
1, 0,
i i
j j
1
2
3
2
,
2
3
1
2
,
3
1
2
2
(1.17)
3
3
1
1
2 1
主剪应力面(1 )
1 2
1.1 应力张量
最大最小剪应力:
取主方向为坐标轴取向,则一点处任一截面上的剪应力的计算式:
2 N
S
2 N
1
S
2 N
2
S
2 N
3
2 N
(1l1)2
( 2l2 )2
( 3l3 )2
(1l12
2l22
3l32 )2
xy=1 , yz =2, zx =1, 应力单位为MPa。试求该点的主应力值。
解: J1 11 22 33 3 0 0 3
J2
11 21
12 22
22 32
23 33
33 13
31 11
(3 0 11) (0 0 2 2) (0 3 11) 6
11 12 13 J3 21 22 23 3 0 0 1 2 11 2 11 0 1 2 2 3 11 0 8
2 、杨桂通
《弹塑性力学》
3 、徐秉业
《应用弹塑性力学》
第一章 弹塑性力学基础
1.1 应力张量 1.2 偏量应力张量 1.3 应变张量 1.4 应变速率张量 1.5 应力、应变 Lode参数
1.1 应力张量 ~力学的语言
1).一点的应力状态
n
lim
A0
pn A
正应力
n
lim
A0
ps A
剪应力
过C点可以做无 穷多个平面K
0.3 几个基本概念
下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号来表示和区
别该张量的所有分量。这种表示张量的方法,就称为下标记号法。
(x, y, z) (x1, x2, x3) xi (i 1, 2,3)
xx , xy , xz , yx , yy , yz , zx , zy , zz , ij (i, j x, y, z)
自由标号: 不重复出现的下标符号,在其变程N(关于三维空间N=3)
内分别取数1,2,3,…,N
哑标号:
重复出现的下标符号称为哑标号,取其变程N内所有分量, 然后再求和,也即先罗列所有各分量,然后再求和。
0.3 几个基本概念
求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为取其变程
N中所有的值然后求和,这就叫做求和约定。
斜截面外法线n的方向余弦:
cos(n, cos(n,
x1 x2
) )
l1 l2
令斜截面ABC 的面积为1
SOBC SOAC
1 cos(n, x1) 1 cos(n, x2 )
l1 l2
cos(n, x3) l3
SOAB 1 cos(n, x3 ) l3
3
SN1 11l1 12l2 13l3 1 jl j
2 2
13
1
3
2
l1
0
及l2
0
第二组解: l1
0
; l2
2 2
;
l3
2 2
23
2
3
2
消去l2
第三组解: l1
2 2
; l2
2 2
;
l3
0
12
1
2
2
因为:1 2 3
max 1 3
min
2
1.1 应力张量
3
八面体(每个坐标象限1个面)
4).八面体上的应力
2
• 沿主应力方向取坐标轴,与坐标轴等倾角的
3 )l22
1 2
(
2
3 )]
0
1.1 应力张量
最大最小剪应力:
l1 ( 1
3
)[(1
3
)l12
(
2
3
)l22
1 2
(1
3
)]
0
l2
(
2
3
)[(1
3
)l12
(
2
3 )l22
1 2
(
2
3
)]
0
它们分别作用在 与相应主方向成 45º的斜截面上