(完整word版)初中数学观察量表
- 格式:doc
- 大小:30.01 KB
- 文档页数:2
课堂观察量表——教师教学的维度时间讲课人观察人课题平行线的性质与判定复习视角观察点结果统计评价反思①本节课由哪些环节构成?交代学习目标,然后围绕目标进教师在教学中灵活运用三维目行教学设计,以一根直尺与一个标,体现课堂民主化,开发了学是否围绕教学目标展开?三角板为载体,贯穿整个课堂生思维能力。
②这些环节是否面向全体是面向全体学生,并且注重了学生环节学生 ? 的差异。
教师课前导入不到 4 分钟;然后课时分配合理充分发挥了以学③不同环节 /行为 / 内容的是边学边练,让学生由易到难地生为主体以教师为主导的教学时间是怎么分配的 ? 掌握本节课的内容,学生兴趣十理念。
足。
教师以设疑、解疑;从现实到模教师抓住了学生的求知欲望,从①怎样讲解 ? 讲解是否有型,从一种方法到一题多解的思生活出发,体现出了建模的数学路,逐步引导学生掌握本节课内思想,激发了学生的学习兴趣,效( 清晰 /结构 /契合主题 / 简容,节奏合理,语言简洁,符合语言较为简练,实用,有利于学洁/语速 / 音量 /节奏 ) ?本节课的内容,有利于学生认真生接受。
听讲。
抓住了本节课的重点,重在题目板书的重点应该是数学思想与②板书怎样呈现的 ? 是否的一题多解,在板书时把重要的方法或重要的知识点,学生的板为学生学习提供了帮助? 知识点和辅助线板书在黑板上,演可以放在靠边的位置上。
呈示加深了学生的记忆。
主要是使用几何画板展示图示,几何画板的使用熟练,实用性③媒体怎样呈现的 ? 是否然后抽象出几何图形,让学生进强,合理有效,值得学习。
一步体会到了数学来源于生活、适当 ? 是否有效 ?应用于生活,并进一步锻炼了学生解决实际问题的能力。
④教师在课堂中的行为和课堂上教师实时指导,鼓励性语教师融入到学生中间,体现以学动作(如走动、指导等)是言多,肢体语言丰富,有利于教生为主体以教师为主导的教学怎样呈现的 ? 是否规范 ? 是学。
理念利于教学。
否有利教学 ?①提问的学生分布、次数、教师提问分布广根据学生自身提问面广、难易适中。
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+n2-1=n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3,4,5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×15^2-3^2=8×27^2-5^2=8×3……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
初中数学新课程标准(2011版)目录第一部分前言 (2)一、课程性质 (2)二、课程基本理念 (2)三、课程设计思路 (4)第二部分课程目标 (7)一、总目标 (7)二、学段目标 (8)第三部分内容标准 (10)第三学段(7--9年级) (10)一、数与代数 (10)二、图形与几何 (14)三、统计与概率 (21)四、综合与实践 (21)第四部分实施建议 (22)一、教学建议 (22)二、评价建议 (30)三、教材编写建议 (37)四、课程资源开发与利用建议 (43)附录 (47)附录1有关行为动词的分类 (47)附录2内容标准及实施建议中的实例 (48)第一部分前言数学是研究数量关系和空间形式的科学。
数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。
特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。
一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。
数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展.义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。
二、课程基本理念1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展.2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律.它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。
初中数学课本目录七年级(上)第一章有理数1.1 正数和负数阅读与思考用正负数表示加工允许误差1.2 有理数1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与思考翻牌游戏中的数学道理1.5 有理数的乘方数学活动第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用电子表格与数据计算数学活动第三章一元一次方程3.1 从算式到方程阅读与思考“方程”史话3.2 解一元一次方程(一)-—合并同类项与移项实验与探究无限循环小数化分数3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程数学活动第四章图形认识初步4.1 多姿多彩的图形阅读与思考几何学的起源4.2 直线、射线、线段阅读与思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒数学活动七年级(下)第五章相交线与平行线5.1 相交线5.1。
2 垂线5.1。
3 同位角、内错角、同旁内角观察与猜想看图时的错觉5.2 平行线及其判定5.2。
1 平行线5.3 平行线的性质5。
3。
1 平行线的性质5.3。
2 命题、定理5.4 平移数学活动第六章平面直角坐标系6。
1 平面直角坐标系6.2 坐标方法的简单应用阅读与思考用经纬度表示地理位置6。
2 坐标方法的简单应用数学活动第七章三角形7。
1 与三角形有关的线段7。
1。
2 三角形的高、中线与角平分线7.1.3 三角形的稳定性信息技术应用画图找规律7.2 与三角形有关的角7.2。
2 三角形的外角阅读与思考为什么要证明7.3 多变形及其内角和阅读与思考多边形的三角剖分7。
4 课题学习镶嵌数学活动第八章二元一次方程组8.1 二元一次方程组8.2 消元-—二元一次方程组的解法8.3 实际问题与二元一次方程组阅读与思考一次方程组的古今表示及解法*8。
4 三元一次方程组解法举例数学活动第九章不等式与不等式组9。
1 不等式阅读与思考用求差法比较大小9.2 实际问题与一元一次不等式实验与探究水位升高还是降低9.3 一元一次不等式组阅读与思考利用不等关系分析比赛数学活动第十章数据的收集、整理与描述10.1 统计调查实验与探究瓶子中有多少粒豆子10。
教案观察表初中教案观察表是教师在教学过程中用于指导学生学习的一种教学工具。
它可以帮助教师更好地了解学生的学习情况,提高教学效果。
本文将结合初中阶段的教学实际,探讨教案观察表的设计与应用。
一、教案观察表的设计1. 教学目标:明确本节课的教学目标,包括知识与技能、过程与方法、情感态度与价值观等方面的要求。
2. 教学内容:梳理本节课的主要知识点,将其按照逻辑顺序进行排列。
3. 学生情况:分析学生的年龄特点、认知水平、学习兴趣等因素,以便制定适合学生的教学策略。
4. 教学方法:根据教学内容和学生情况,选择适当的教学方法,如讲授法、讨论法、探究法等。
5. 教学过程:将教学过程分为几个环节,如导入、新课、练习、小结等,并明确每个环节的主要任务。
6. 教学评价:设计合理的评价方法,对学生的学习过程和结果进行评价。
二、教案观察表的应用1. 课前准备:教师根据教案观察表的内容,准备好教学所需的教材、课件、教具等。
2. 导入环节:通过生动有趣的方式,激发学生的学习兴趣,引导学生进入学习状态。
3. 新课环节:按照教案观察表的安排,逐个讲解知识点,注意引导学生主动参与、积极思考。
4. 练习环节:设计具有针对性的练习题,巩固所学知识,提高学生的实际应用能力。
5. 小结环节:总结本节课的主要内容,强调重点、难点,为课后复习奠定基础。
6. 课后反思:教师根据教案观察表,对学生课堂表现、教学效果进行总结与反思,不断调整教学策略,以提高教学质量。
三、教案观察表的优点1. 明确教学目标:教案观察表可以帮助教师明确教学目标,确保教学内容的完整性。
2. 有序开展教学:教案观察表可以使教学过程更加有序,提高教学效率。
3. 关注学生需求:教案观察表有助于教师了解学生情况,制定适合学生的教学方法。
4. 便于教学评价:教案观察表为教学评价提供了依据,有助于教师了解学生的学习成果。
总之,教案观察表是初中教学过程中不可或缺的重要工具。
教师应根据实际情况,不断调整和完善教案观察表,以提高教学效果,促进学生的全面发展。
《基于课程标准的精准备课的研究》的课堂观察量表
观课教师观课时间2020年6月30日精准备课点1 预设分析课堂呈现效果
复习旧知,引入新课
一元一次方程及方程的解的概念;整式的概念拾旧引新,数学知识都是相关联的。
通过复习学过的内容,利用知识的迁移,类比学习引出新课,突出知识间的联系。
精准备课点2(多媒体辅助教学)预设分析课堂呈现效果
开放练习,放手探究
问题1:有一块长100cm,宽50cm的铁皮,在它的四周各减去一个同样大的正方形,然后制作成一个无盖的面积为3600cm2的盒子,切去的正方形的边长应为多少?
问题2:学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.1.由于班级学生的分析问题、理解问题的能力急需加强,因此平时注重课堂上的培养。
2.一元二次方程是初中数学中最重要的数学模型之一,它有丰富的实际背景。
通过实际问题的引入使学生更深入的体会数学与现实世界的联系,发展学生的应用意识,同时通过具体问题的引导,逐步培养学生的分析问题的能力。
3.探索2个实际问题,得到两个一元二次方程。
精准备课点3(多媒体辅助教学)预设分析课堂呈现效果
观察总结,得出结论引导学生观察总结得出一元二
次方程的相关概念,并会判断;
掌握一元二次方程的一般形式。
.
精准备课点4(多媒体辅助教学)预设分析课堂呈现效果
讲练结合,善于归纳出示课件,题签练习为了让学生灵活掌握一元二次方程相关概念、一般形式
1.选择讲练结合的方法解决问题跟进训练。
2.对所学知识及时进行巩固评价,帮助学生深入理解所学内容并培养其会用所学知识解决问题的能力。
精准备课点5 预设分析课堂呈现效果。
初中数学教材目录(鲁教版五四制)六年级上册数学教材复习题综合与实践探寻神奇的幻方总复习题六年级下册数学教材第五章基本平面图形1 线段、射线、直线2 比较线段的长短3 角4 角的比较5 多边形和圆的认识回顾与思考复习题第六章整式的乘除1 同底数幂的乘法2 幂的乘方与积的乘方3 同底数幂的除法4 零指数幂与负整数指数幂5 整式的乘除6 平方差公式7 完全平方差公式8 整式的乘除回顾与思考复习题综合与实践设计自己的运算程序第七章相交线与平行线1 两条直线的位置关系2 探究直线平行的条件3 平行线的性质4 用尺规作图回顾与思考复习题第八章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择回顾与思考复习题第九章变量之间的关系1 用表格表示变量之间的关系2 用表达式表示变量之间的关系3 用图像表示变量之间的关系回顾与思考复习题总复习题七年级上册数学教材第一章三角形1 认识三角形2 图形的全等3 探究三角形全等的条件4 三角形的尺规作图5 利用三角形全等测距离回顾与思考复习题第二章轴对称1 轴对称现象2 探究轴对称的性质3 简单的轴对称图形4 利用轴对称进行设计回顾与思考复习题综合与实践七巧板第三章勾股定理1 探究勾股定理2 一定是直角三角形吗3 勾股定理的应用举例回顾与思考复习题第四章实数1 无理数2 平方根3 立方根4 估算5 用计算器开方6 实数回顾与思考复习题综合与实践计算器运用与功能探索第五章位置与坐标1 确定位置2 平面直角坐标系3 轴对称与坐标变化回顾与思考复习题第六章一次函数1 函数2 一次函数3 一次函数的图像4 确定一次函数的图像5 一次函数的应用回顾与思考复习题总复习题七年级下册数学教材第七章基本平面图形1 二元一次方程组2 解二元一次方程组3 二元一次方程组的应用4 二元一次方程与一次函数*5 三元一次方程组回顾与思考复习题综合与实践哪一款套餐更合适第八章平行线的有关证明1 定义与命题2 证明的必要性3 基本事实与定理4 平行线的判定定理5 平行线的性质定理6 三角形内角和定理回顾与思考复习题第九章概率初步1 感受可能性2 频率的稳定性3 等可能事件的概率回顾与思考复习题第十章三角形的有关证明1 全等三角形2 等腰三角形3 直角三角形4 线段的垂直平分线5 角平分线回顾与思考复习题第十一章一元一次不等式与一元一次不等式组1 不等关系2 不等式的基本性质3 不等式的解集4 一元一次不等式5 一元一次不等式与一次函数6 一元一次不等式组回顾与思考复习题综合与实践生活中的一次模型总复习题八年级上册数学教材第一章因式分解1 1因式分解2 题公因式法3 公式法回顾与思考复习题第二章分式与分式方程1 认识分式2 分式的乘除法3 分式的加减法4 分式方程回顾与思考复习题第三章数据的分析1 平均数2 中位数与众数3 从统计图分析数据的集中趋势4 数据的离散程度回顾与思考复习题综合与实践哪个城市夏天更热第四章图形的平移与旋转1 图形的平移2 图形的旋转3 中心对称4 图形变化的简单应用回顾与思考复习题第五章平行四边形1 平行四边形的性质2 平行四边形的判定3 三角形的中位数4 多边形的内角和与外角和回顾与思考复习题综合与实践平面图形的镶嵌总复习题八年级下册数学教材第六章特殊平行四边形1 菱形的性质与判定2 矩形的性质与判定3 正方形的性质与判定回顾与思考复习题第七章二次根式1 二次根式2 二次根式的性质3 二次根式的加减4 二次根式的乘除回顾与思考复习题第八章一元二次方程1 一元二次方程2 用配方法解一元二次方程3 用公式法解一元二次方程4 用因式分解法解一元二次方程*5 一元二次方程的根与系数的关系6 一元二次方程的应用回顾与思考复习题第九章图形的相似1 成比例线段2 平行线分线段成比例3 相似多边形4 探究三角形相似的条件5 相似三角形判定定理的证明6 黄金分割7 利用相似三角形测高8 相似三角形的那个纸9 利用位移放缩图形回顾与思考复习题综合与实践制作视力表综合与实践直觉的误导总复习题附:标准对数视力表中的“E"形图九年级上册数学教材第一章反比例函数1 反比例函数2 反比例函数的图像与性质3 反比例函数的应用回顾与思考复习题综合与实践能将矩形的周长和面积同时加倍吗第二章直角三角形的边角关系1 锐角三角形2 30。
(完整word版)初中生课程表模板(可编辑)初中生课程表模板
介绍
该初中生课程表模板旨在帮助学生规划他们的日常课程安排。
这个模板是可编辑的,可以根据每个学生的具体需求进行定制。
使用说明
2. 在每个表格中填写您的每一门课程的相关信息,包括课程名称、上课时间、上课地点等。
3. 可根据需要添加或删除表格,以适应您的课程安排。
4. 根据每周变动的情况,可以随时调整课程表中的信息。
5. 根据个人的研究惯和兴趣,您可以将每个课程的重要性进行标记。
6. 使用不同的颜色来表示不同类型的课程,以便更好地区分它们。
模板示例
下面是一个初中生课程表模板的示例:
注意事项
1. 请按照规定的时间填写每门课程的上课时间,确保不会有冲突。
2. 如果有课程被取消或新增,及时修改课程表,以保持准确性。
3. 灵活调整课程表,确保适应自己的研究和活动安排的需要。
4. 使用不同的颜色和标记方式来帮助您更好地理解和辨识每门课程的重要性和类型。
希望这个初中生课程表模板能够帮助您规划好您的学习生活!。
一、数字找规律 1.观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .2.观察下面一列数,探求其规律: .,61,51,41,31,21,1(1)写出这列数的第九个数;(2)第2008个数是什么数?如果这一列数无限排列下去,与哪个数越来越近?3.下列是有规律排列的一列数:325314385,,,,……其中从左至右第100个数是__________.4、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .5. 已知221 ,422 ,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .6、已知21873,7293,2433,813,273,93,337654321 …推测到203的个位数字是 ;7、观察下列等式: 第一行 3=4-1 第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 … …按照上述规律,第n 行的等式为____ ________ 8.已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102; …… ……由此规律知,第⑤个等式是 .9.观察下列各式:1×3=12+2×1,2×4=22+2×2, 3×5=32+2×3,… …请你将猜想到的规律用自然数n (n ≥1)表示出来: .10.观察下列顺序排列的等式:猜想:第n 个等式(n 为正整数)应为__ _________________。
11、从2开始,连续偶数相加,它们的和的情况如下表:加数的个数(n )和s 1 212 2 32642 3 4312642 4 54208642 5 6530108642 ......................................................当n 个连续偶数相加时,它们的和s 与n 之间有什么样的关系?请用公式表示出来,并由此计算2+4+6+...+202的值。
第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:- 3, ,0.231,0.737373…, , 等;无限不环循小数叫做无理数. 如:π, ,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。
实数和数轴上的点一一对应。
3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
如:丨- _丨= ;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。
a的相反数是-a,0的相反数是0。
5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。
8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。
9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。
一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)的平方根是士,误认为平方根为士 2,应知道=2.15.二次根式:(1)定义:___________________________________________________叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.26.有理数的运算律:加法交换律:为任意有理数)加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。
例题:(10西城二模)一组按规律排列的整数 5, 7, 11, 19,…,第6个整数为,根据上述规律,第n 个整数为 _____________ ( n 为正整数)•••第6个整数是26 3 67,第n 个整数是2n 3 (n 为正整数).练习:1 4 9 16 1' (10怀柔二莫)按一定规律排列的一列数依次为:3,产,亍……,按此规 律排列下去,这列数中的第5个数是 ____________ ,第n 个数是 ______________________________________2、(09东城一模)按一定规律排列的一列数依次为: -…,按此规律排列下去,这列数中的第 9个数是 35 答案:12 n1n ( 1)例题:(10通州一模)某些植物发芽有这样一种规律:当年所发新芽第二年不发 芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为 a )照这样下去,第8年老芽数与总芽数的比值为.解:第8年的老芽数是21a ,新芽数是13a ,总芽数是34a ,贝吐匕值为 •34 练习:1、( 08石景山一模)小说《达•芬奇密码》中的一个故事里出现了一串神秘排列 的数,将这串令人费解的数从小到大的顺序排列为:1,1, 2, 3, 5, 8 ,则答案: 25 n 211 , 2n 11 ] 丄 丄 丄2,3,10,15, 26这列数的第8个数是______________ .2答案:212、(09房山二模)填在下面三个田字格内的数有相同的规律,根据此规律,请填 出图4中的数字.答案:7,9,11,176((1)n 与(1)n1)例题:(09通州二模)12.观察并分析下列数据,寻找规律:0,..、36 ,3,- 2、.3,,15,— 3・.2,……那么第10个数据是 _____________ ;第n 个数据 是 ______ .•••第10个数据是3-3,第n 个数据是(1)n1.. 3n 3 . 练习:1、(10房山一模)一组按规律排列的式子: 4,%~|,■16,...(a 0),其中第a a a a 8个式子是 _____ ,第n 个式子是 ________ (n 为正整数). 答案: 64( 1)n 1 n 223 3n 1aa58112、(10门头沟二模)一组按一定规律排列的式子:一a 2,-,—-,—,…,23 4(a ^ 0),则第n 个式子是 ________ (n 为正整数)3n 1答案:(1)0-—n3、(09崇文一模)一组按规律排列的数:2, 0, 4, 0, 6, 0,…,其中第7个数 是 ________ ,第n 个数是 _________ ( n 为正整数). 答案:8,』^(n 1)57 9108例题:(08通州二模)世界上著名的莱布尼茨三角形如图所示:贝U排在第10行从左边数第3个位置上的数是_______ .•••第10行倒数第三个数是———.72 90 360练习:1、(08大兴一模)自然数按一定规律排成下表,那么第200行的第5个数是_____ .12 34 5 67 89 101113 14 1512答案:199052、如图的数字方阵中,方框所缺的数,按照适宜的规律填上(A、100B、128C、129D、130答案:C例题:(11平谷二模)如图,将连续的正整数1,2,3,4……依次标在下列三角形中,那么2011这个数在第 ____ 个三角形的 ________ 顶点处(第二空填:上,左下,右下).• 2011 这个数在第671个三角形的上顶点处.故答案为:671, 上.练习:1、(08 崇文一模)观察下列等式:31 1 2 , 32 1 8 , 33 1 26 , 34 1 80 , 35 1 242 ,…….通过观察,用你所发现的规律确 定32008 1的个位数字是 ______ . ___ 答案:32、右图为手的示意图,在各个手指间标记字母A ,B ,C, D 请你按图中箭头所指 方向(即A — B ^C T C T B ^B^d …的方式)从 A 开始 数连续的正整数1, 2, 3, 4,…,当数到12时,对应的字母是 当字母C 第201次出现时,恰好数到的数是 当字母C 第2n 1次出现时(n 为正整数),恰 好数到的数是 ____ (用含n 的代数式表示). 答案:B, 603, 6n+3例题:(09平谷一模)已知:£2£2232 34 44 4……若b x1 1 '2 2 ‘3 3'10=a +10 (a 、b 都是正整数),则a+b 的最小值是 _________ . 二a+b 的最小值是19 练习:1. ( 10密云一模)下面是按一定规律排列的一列数:第1个数: 1 1 122第2个数: 1 1 11 (1)211 1323 第3个数: 1 1 11 (1)2 1423232n 11 1L 1(“第n 个数:2n(1)3;4 ;4 5 6那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数B .第11个数 C.第12个数 D.第13个数答案:A例题1: (10昌平一模)观察下列图案:照这样它们是按照一定规律排列的,依照此规律,第5个图案中共有________ 个三角形,第n (n 1,且n为整数)个图案中三角形的个数为_________ (用含有n的式子表示).解答:解:第5个图案中,有6+4X4=22 (个)三角形;第n个图案中,有6+4(n-1 )=4n+2 (个)三角形.例题2. (10西城一模)在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD中,四个顶点坐标分别是(一8,0 ),(0,4 ),(8,0 ),(0,点正方形的个数是个;若菱形ABGD n的四个顶点坐标分别为(—2n,0 ),(0, n), (2n,0), (0,—n)(n 为正整数),则菱形ABnG D n能覆盖的单位格点正方形的个数为_______________________ (用含有n的式子表示).答案为:4n2-4n .—4),贝U菱形ABCD能覆盖的单位格练习:.1、(10大兴一模)如图4所示,把同样大小的黑色棋子摆放在正多边形的边上,按的规律摆下去,则第n个图形需要黑色棋子的个数是_______________第1个图形第2个图形第3个图形第4个图形(图4)答案:n(n 2)2、(08顺义二模)如图,图①,图②,图③,图④……是用围棋棋子摆成的一列图①图②图③图④具有一定规律的“山”字•则第n个“山”字中的棋子个数是______________答案:5n+23、(08丰台二模)用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:请问第n个图案中有白色纸片的张数为A. 4n 3B. 3n 1C. nD. 2n 2答案:B第1个第2个第3个4、(10丰台一模)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点•请你观察图中正方形ABCD, ABC2D2,AB3C3D3…每个正方形四条边上的整点答案:80个.的个数•按此规律推算出正方形Ao BwC o D。
《单项式乘以多项式》教学中师生行为有效性的观察报告随着我县数学学科三次资源的整合及本次教师研修网上开展的“基于教学重难点突破的策略”的学习展开,结合当前课改中“自主、合作学习型”的课堂教学模式的深入课堂,我校全体数学老师于1月6日在xx中学参与了本次课堂研讨学习。
虽然说放手给学生已是当前教育中一线教师的共识,但怎么放手、课堂如何把控,仍有诸多问题有待解决。
“自主、合作学习型”的课堂中热闹、激情、互动的场面比比皆是,然而其教学效果有时却不尽如人意,让人感觉华而不实。
如何充分利用课堂40分钟,通过师生交往、积极互动、共同发展,使其发挥最大效益?其中至关重要的因素“师生行为有效性”值得研究,今天我就带着这个观察点走进了吴胜勇老师的课堂,通过师生行为的类型、内容、方式以及时限等几个方面去观察学生是否愿意学、主动学以及怎么学、会不会学。
下面对本节课的观察做一个汇报:一、基本情况:吴老师这节课是在周三上午11:20开始的,授课对象是八年级学生。
我主要做的是师生行为有效性的观察,现将观察结果记录如下:xx县初中数学课堂师生行为有效性观察量表时间:11:20-12:00 地点:xx中学语音室执教者:xxx二、基本结论统计发现,教师的单向行为共计6分钟,其中有2分钟为非本质内容,学生的单向行为共计6分钟,其中有2分钟为非本质内容,双向行为有7分钟,多向行为有26分钟,都是本质内容。
根据师生行为的本质属性及行为方式的多样性可以看出吴老师这节课的行为效率是值得肯定的、是高效的,但是在整个教学过程中仍有一些细节行为处理不当,是值得商榷的。
三、存在问题及优化建议1、教师的单向行为过多,不利于课堂互动,应将上课时的个人自我介绍这种非本质内容直接去掉。
2、课堂复习及引入共花费了20分钟,造成了后面的变式练习及拓展时间不足,从而使得难点的突破稍嫌不足。
应将问题1删掉,问题3的问题简化,力争在三分钟内完成,问题4的面积问题是引入本节法则的重要内容,也是数形结合思想的体现,要让学生弄透。
初中数学课程标准(人教版)一、数与代数(一)数与式1、有理数(1)理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。
(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道a的含义(这里的a表示有理数)。
(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。
(4)理解有理数的运算律,能运用运算律简化运算。
(5)能运用有理数的运算解决简单的问题。
2、实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根。
(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数和绝对值。
(4)能用有理数估计一个无理数的大致范围。
(5)了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算。
3、代数式(1)借助现实情境了解代数式,进一步理解用字母表示数的意义。
(2)能分析具体问题中的简单数量关系,并用代数式表示。
(3)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行运算。
4、整式与分式(1)了解整数指数幂的意义和基本性质;会用科学计数法表示数。
(2)理解整式的概念,掌握合并同类型和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。
(3)能推导乘法公式:()b a + ()b a 22b a -=- ,()b a b a ab 2222+±=±,了解公式的几何背景,并能利用公式进行简单计算。
(5)了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。