拉曼光纤放大器原理
- 格式:doc
- 大小:11.36 KB
- 文档页数:2
分类号:O437 U D C:D10621-408-(2015)0922-0密级:公开编号:34成都信息工程大学学位论文拉曼光纤放大器的优化设计论文作者姓名:唐洪申请学位专业:电子科学与技术申请学位类别:工学学士指导教师姓名(职称):何修军(副教授)论文提交日期:2015年05月26日拉曼光纤放大器的优化设计摘要拉曼光纤放大器(FRA)的工作原理是基于受激拉曼散射,是迄今为止唯一能在1270 nm到1670 nm的全波段上进行光放大的器件。
本文主要介绍了FRA的发展历史和现状,受激拉曼散射效应基本原理,以及拉曼光纤放大器的工作原理。
介绍了其系统构成,包括增益介质,泵浦源,无源器件,并且在其工作原理的基础上,对特性进行分析,包括增益,噪声,偏振相关性,温度等。
根据对基本理论的的理解,运用optisystem软件优化仿真,对于优化仿真,本论文中做到的是通过对拉曼光纤放大器的阵列泵浦波长,泵浦功率,光纤有效作用面积,光纤长度的优化,达到增益的最大值。
关键词:拉曼光纤放大器;受激拉曼散射效应;优化仿真;阵列泵浦Optimal Design of Raman Fiber AmplifierAbstractThe Raman fiber amplifier's working principle is based on the stimulated Raman scattering, which is the only device that can be optically amplified in the full band of 1670 nm to 1270 nm. This paper introduced the history and current situation of the FRA, the basic principle of Raman scattering, and the working principle of Raman fiber amplifier. And its system structure, including the gain medium, pump source and passive components are introduced.On the basis of the working principle, the paper analyses its characteristics, including the gain, noise, polarization dependence, temperature, etc.According to the basic theory of the understanding,it is used optisystem software to optimize simulation. For optimize simulation, the paper is done by array pump's wavelength, power, the fiber area, fiber length optimized in order to achieve maximum gain.Key words: Raman fiber amplifier; stimulated Raman scattering; optimization simulation; array pump目录论文总页数:27页1 引言错误!未定义书签。
分布式拉曼光纤放大器的应用摘要随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。
在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。
本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。
1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。
低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。
这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。
光纤拉曼放大器是SRS的一个重要应用。
由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。
如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。
图1 光纤中的受激拉曼增益谱1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。
主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。
图2 分布式/集总式光放大器的比较(2)分步式拉曼放大器。
拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。
采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。
这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。
1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。
这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。
拉曼光纤放⼤器⼀拉曼光纤放⼤器1.拉曼光纤放⼤器出现的背景随着光纤通信技术的进⼀步发展,通信波段由C带(1528-1562nm)向L带(1570-1610nm)和S带(1485-1520nm)扩展。
由于光纤制造技术的发展,可消除在1.37µm附近的损耗⾼峰,因此通信波段有望扩展到从1.2µm-1.7µm的宽⼴范围内。
掺铒光纤放⼤器(EDFA)⽆法满⾜这样的波长范围,⽽拉曼光纤放⼤器却正好可以在此处发挥巨⼤作⽤。
另外拉曼放⼤器因其分布式放⼤特点,不仅能够减弱光纤⾮线性的影响,还能够抑制信噪⽐的劣化,具有更⼤的增益带宽、灵活的增益谱区、温度稳定性好以及放⼤器⾃发辐射噪声低等优点。
随着⾼功率⼆极管泵浦激光器和光纤光栅技术的发展,泵浦源问题也得到了较好的解决。
拉曼光纤放⼤器逐渐引起了⼈们的重视,并逐渐在光放⼤器领域占据重要地位,成为光通信领域中的新热点。
2.拉曼光纤放⼤器的⼯作原理受激拉曼散射(SRS)是电磁场与介质相互作⽤的结果。
才能过经典⼒学⾓度解释拉曼散射为:介质分⼦或原⼦在电磁场的策动下做受迫共振,由于介质分⼦具有固有的振荡频率,所以在受迫共振下界将出现频率为策动频率与固有频率的和频和差频振荡,分别对应着反斯v是电磁场的振荡频率,v 是介质分⼦固托克斯分量和斯托克斯分量,如图1所⽰,其中有的振荡频率。
图1 经典拉曼振动谱经典理论⽆法解释反斯托克斯线⽐斯托克斯线的强度弱⼏个数量级且总是先于反斯托克斯线出现的实验结果。
从量⼦⼒学的⾓度能够解释受激拉曼散射。
介质中的分⼦和原⼦在其平衡位置附近振动,将量⼦化的分⼦振动称为声⼦。
⾃发拉曼散射是⼊射光⼦与热声⼦相碰撞的结果。
受激声⼦是在⾃发拉曼散射过程中产⽣的,当⼊射光⼦与这个新添的受激声⼦再次发⽣碰撞时,则再产⽣⼀个斯托克斯光⼦的同时⼜增添⼀个受激声⼦,如此继续下去,便形成⼀个产⽣受激声⼦的雪崩过程。
产⽣受激声⼦过程的关键在于要有⾜够多的⼊射光⼦。
掺铒光纤放大器和拉曼光纤放大器分析和比较摘要:光放大器技术是新一代光纤通信系统中一项必不可少的关键技术,目前几种主要的光放大器技术在工程应用中各有所长。
此文介绍了光放大器技术的基本原理,并对现有主要几种光放大器技术在性能、应用和发展方向上进行了比较。
关键词:掺铒光纤放大器;光纤拉曼放大器0、综述20世纪90年代以来,Internet的普及发展和各种信息(如语音、图像、数据等)业务的快速增长,人们对现代通信系统提出了更高的要求。
在市场需求的大力推动下,通信技术取得了长足的进步,其中光纤通信技术脱颖而出,以其高速优质的特点,一跃成为当今长距离、大容量传输干线的主流技术。
但由于光纤损耗和非线性的影响,无中继传输距离成为制约系统容量和速率的瓶颈,而中继放大技术成了光通信领域的关键技术之一。
传输系统中的光纤损耗使信号随传输距离呈指数衰减,极大地限制了通信传输跨距和网络的可扩展性,因此必须在通信线路上设置中继器对信号进行再生放大。
在光放大器没有出现之前,光纤传输系统普遍采用光-电-光(OEO)的混合中继器,但这种中继方式存在“电子瓶颈”现象,在很大程度上限制了传输速率的提高,而且价格昂贵、结构复杂。
20世纪80年代出现的光放大器技术具有对光信号进行实时、在线、宽带、高增益、低噪声、低功耗以及波长、速率和调制方式透明的直接放大功能,是新一代光纤通信系统中不可缺少的关键技术。
此技术既解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑(1)。
又由于此技术与调制形式和比特率无关,因而在光纤通信系统中得到了广泛应用。
1、光放大器分类及原理光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成,其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。
光纤拉曼放大器的发展在许多非线性光学介质中,高能量(波长较短)的泵浦光散射,将一小部分入射功率转移到另一频率下移的光束,频率下移量由介质的振动模式决定,此过程称为拉曼效应。
量子力学描述为入射光波的一个光子被一个分子散射成为另一个低频光子,同时分子完成振动态之间的跃迁,入射光作为泵浦光产生称为斯托克斯波的频移光。
研究发现,石英光纤具备很宽的受激拉曼散射(SRS)增益谱,并在13THz附近有一较宽的主峰。
假如一个弱信号和一强泵浦光波同时在光纤中传输,并使弱信号波长置于泵浦光的拉曼增益带宽内,弱信号光即可得到放大,这种基于受激拉曼散射机制的光放大器即称为拉曼光纤放大器。
随着通信业务需求的飞速增长,对光纤传输系统的容量和无中继传输距离的要求越来越高。
密集波分复用(DWDM)通信系统的速率和带宽不断提升,以10Gbit/s甚至更高速率为基础的密集波分复用系统必然成为主流的光传输系统。
掺铒光纤放大器(EDFA)由于其增益平坦及噪声等局限性,已经不能完全满足光通信系统发展的要求。
而相对于掺铒光纤放大器,光纤拉曼放大器具有更大的增益带宽、灵活的增益谱区、温度稳定性好以及放大器自发辐射噪声低等优点,光纤拉曼放大器是唯一能在1292~1660nm的光谱上进行放大的器件。
并且,拉曼散射效应在所有类型的光纤上都存在,与各类光纤系统具有良好的兼容性,包括已铺设和新建的各种光纤链路。
光纤拉曼放大器与新型大有效面积传输光纤、高光谱效率调制码型和向前纠错技术被称为现代大容量、长距离光纤传输的四大关键技术。
拉曼光纤放大器的基本原理、特点和类型在许多非线性光学介质中,高能量(波长较短)的泵浦光散射,将一小部分入射功率转移到另一频率下移的光束,频率下移量由介质的振动模式决定,此过程称为拉曼效应。
量子力学描述为入射光波的一个光子被一个分子散射成为另一个低频光子,同时分子完成振动态之间的跃迁,入射光作为泵浦光产生称为斯托克斯波的频移光。
拉曼光纤激光放大器简介一、引言光纤激光放大器根据增益介质的不同可分为两类:一类采用活性介质,如半导体材料和掺稀土元素(Nd,Sm,Ho,Er,Pr,Tm和Yb等)的光纤,利用受激辐射机制实现光的直接放大,如半导体激光放大器(SOA)和掺杂光纤放大器;另一类基于光纤的非线性效应实现光的放大,典型的为拉曼光纤激光放大器和布里渊光纤激光放大器。
目前技术上较为成熟的掺铒光纤放大器(EDFA)取代传统的光-电-光中继方式,实现了一根光纤中多路光信号的同时放大,大大降低了光中继的成本;同时可与传输光纤实现良好的耦合,具有高增益低噪声等优点。
因此成功地应用于波分复用(WDM)光通信系统,极大地增加了光纤中可传输的信息的容量和传输距离。
然而,EDFA尚存在诸多不足制处:首先是对于有效利用单模光纤低损耗区的巨大带宽资源而言,明显存在着工作波段和带宽的局限性。
其次是自发辐射噪声的影响,尤其是当系统级联时,自发辐射噪声的影响会大大降低系统接收机端的信噪比。
另外是EDFA的带宽总是有限的,全波段的EDFA带宽最多也就在80~100nm。
并且EDFA作为一种有源器件对于光网络和系统的建设和维护来说其费用都会非常高。
随着计算机网络及其它新的数据传输业务的迅猛发展,长距离光纤传输系统对通信容量和系统扩展的需求日益膨胀。
如何提高光纤传输系统容量、增加无电再生中继的传输距离,已经成为光纤通信领域研究的热点。
因此,拉曼光纤放大器逐渐引起人们的重视,在2001年的OFC上不乏有关拉曼光纤放大器的报导。
展会上推出关于拉曼光纤放大器的厂商也逐渐多了起来,拉曼光纤激光器也逐渐成为光通信领域中的新的热点。
虽然拉曼光纤激光器距离真正商用化还有一段距离,尤其是在国内,但适时推出拉曼光纤放大器不乏成为公司技术实力的一个象征。
二、发展历史拉曼光纤放大器的原理是基于光纤中的非线性效应:受激拉曼散射(SRS)。
拉曼现象早在1928年就被Chandrasekhara Raman爵士所发现。
第一部分:光纤通信的历史光通信的历史可以追溯到我国3000 多年前的烽火台,但是它并不是真正意义上的光通信。
应用同轴电缆和微波的电通信系统在20 世纪70 年代前得到了较大的发展,然而电通信系统有着容量上限的缺点,到1970 年之后容量基本就没有了提升。
在1966 年,“光通信之父”K. C. Kao 提出了光纤通信这一概念。
之后,1976年美国亚特兰大成功地进行的44.736Mb/s 传输10km 的光纤通信系统现场试验,为光纤通信的实用化奠定了基础。
随后石英制光纤材料被研制出了。
到了1980年,多模光纤开始投入商用,单模光纤通信也开始进入现场试验。
1991 年,第一个DWDM 系统诞生,此后波分复用器、光放大器和光纤激光器等技术都日趋成熟。
到目前为止,已经有五代光通信系统相继投入使用。
随着光纤材料从多模发展到单模,光纤损耗的进一步降低,传输速率的增加,传输容量的加大,中继距离的增长,光纤通信系统发展到了从1996 年至今的第五代。
其主要特征是光纤激光器和光纤放大器的大量使用,以及DWDM 系统的迅速发展。
光纤通信的优势目前广泛使用的光通信方式是利用光导纤维传输光波信号的通信方式。
这种通信方式称为光纤通信。
光纤通信工作在近红外区,其波长是0.8~1.8μm,对应的频率为167~375THz。
光纤通信技术的发展十分迅速,已经起到了举足轻重的地位,发展前景十分广阔。
光纤通信的载波是光信号,其传输介质为光纤,这是与其他通信方式最大的不同。
其优点如下:(1)容量大用于通信的光信号的频率非常高,而带宽正是由光信号的频率所决定的。
因此光纤可以提供比任何已有的传输介质都宽的传输带宽。
而且由于其横截面积窄,因此信息密度非常高。
(2)损耗低用于光纤通信的石英单模光纤在1360nm 处的损耗仅0.35dB/km,1550nm 处的损耗仅0.2dB/km。
低的损耗可以减少中继,提升信噪比,对于简化系统、降低成本和提升性能有着重要的意义。
拉曼光纤放大器学号:11007990831 姓名:杨帆摘要:拉曼光纤放大器因其特有的在线、宽带、低噪声等特点而越来越被人们关注,是一种非常适合下一代超大容量、超长距离密集波分复用系统(DWDM)的光纤放大器。
介绍拉曼光纤放大器的原理,分析拉曼光纤放大器应用和最新进展,并探讨拉曼光纤放大器研究两个方面。
关键词:光纤放大器;受激拉曼散射;研究进展引言随着通信业务需求的飞速增长,对光纤传输系统的容量和无中继传输距离的要求越来越高。
密集波分复用(DWDM)通信系统的速率和带宽不断提升,以10Gbit/s甚至更高速率为基础的密集波分复用系统必然成为主流的光传输系统。
掺铒光纤放大器(EDFA)由于其增益平坦性等局限性,已经不能完全满足光通信系统发展的要求。
而相对于掺铒光纤放大器,光纤拉曼放大器具有更大的增益带宽、灵活的增益谱区、温度稳定性好以及放大器自发辐射噪声低等优点,光纤拉曼放大器是唯一能在1292~1660nm的光谱上进行放大的器件。
并且,拉曼散射效应在所有类型的光纤上都存在,与各类光纤系统具有良好的兼容性,包括已铺设和新建的各种光纤链路。
拉曼现象早在1928年就被Chandrasekhara Raman所发现,在此之后就有人提出了利用这种效应来实现光的放大。
但在很长时间内拉曼光纤放大器未能获得广泛应用,甚至在EDFA出现后一度销声匿迹,关键原因在于缺乏合适的大功率泵浦激光器。
由于EDFA的广泛应用,它所用的1480nm大功率泵浦激光器得到了深入的研究和开发,这就使拉曼放大器成为可能。
拉曼光纤放大器原理拉曼光纤放大器的工作原理是基于石英光纤中的受激拉曼散射效应,在形式上表现为处于泵浦光的拉曼增益带宽内的弱信号与强泵浦光波同时在光纤中传输,从而使弱信号光即得到放大。
其工作原理示意如图1所示。
泵浦光子入射到光纤,光纤中电子受激并从基态跃迁到虚能级,然后处在虚能级的电子在信号光的感应下回到振动态高能级,同时发出一种和信号光相同频率、相同相位、相同方向的低频的斯托克斯光子,而剩余能量被介质以分子振动(光学声子)的形式吸收,完成振动态之间的跃迁。
浅析拉曼放大器对WDM系统性能的影响(一)摘要:介绍了目前在光通讯领域有很大发展前景的光纤拉曼放大器(RFA)的基本工作原理,以及它在WDM系统中的应用和所存在的一些问题。
关键词:光纤通信;光纤拉曼放大器;WDM1拉曼放大器工作原理及分类(1)受激拉曼散射(SRS)。
受激拉曼散射是强激光的光电场与原子中的电子激发、分子中的振动或与晶体中的晶格相耦合产生的,具有很强的受激特性,即与激光器中的受激光发射有类似特性:方向性强,散射强度高。
(2)光纤拉曼放大器工作原理。
光纤拉曼放大器的工作原理是基于石英光纤中的受激拉曼散射效应,在形式上表现为处于泵浦光的拉曼增益带宽内的弱信号与强泵浦光波同时在光纤中传输,从而使弱信号光即得到放大。
RFA中一个入射泵浦光子通过光纤非线性散射转移部分能量,产生低频斯托克斯光子,而剩余能量被介质以分子振动(光学声子)的形式吸收,完成振动态之间的跃迁。
斯托克斯频移Vr=Vp-Vs由分子振动能级决定,其值决定了SRS的频率范围,其中Vp是泵浦光的频率,Vs是信号光的频率。
对非晶态石英光纤来说,其分子振动能级融合在一起,形成了一条能带,因而可在较宽频差Vp-Vs范围(40THz)内通过SRS实现信号光的放大。
(3)拉曼放大器的分类。
光纤拉曼放大器分为两类:集中式拉曼放大器和分布式拉曼放大器。
分布式拉曼放大器可对光信号进行在线放大,实现长距离的无中继传输和远程泵浦,尤其适用于海底光缆通信等不方便设立中继器的场合。
分布拉曼放大技术自1999年成功的用于DWDM传输系统,就再次受到广泛关注,成为超长距离全光传输中的重要技术。
2拉曼放大器在WDM系统中的影响分布式拉曼放大器对超长距离全光WDM传输中通道数增加、传输速率提高以及系统性能的改善起着非常重要的作用:(1)DWDM系统中,传输容量和复用波长数目的增加,使光纤中传输的光功率越来越大,引起非线性效应也越来越强,严重的限制了传输距离。
由于分布式拉曼放大器的放大作用是沿光纤分布的,而不是集中作用的,使得光纤中各处的信号光功率都较小,可降低非线性效应特别是四波混频效应的干扰。
拉曼光纤放大器的研究进展发表时间:2019-03-05T09:35:05.590Z 来源:《信息技术时代》2018年5期作者:陈晓丹匡文剑(通讯作者)[导读] 拉曼光纤放大器是一种利用受激拉曼散射效应来实现光放大的光纤器件。
拉曼增益谱比较宽,在普通光纤上单波长可实现约40nm范围内的有效增益(南京信息工程大学物理与光电工程学院/江苏省大气海洋光电探测重点实验室,江苏南京 210044)基金项目:南京信息工程大学大学生实践创新训练计划(No. 201810300207)摘要:拉曼光纤放大器是一种利用受激拉曼散射效应来实现光放大的光纤器件。
拉曼增益谱比较宽,在普通光纤上单波长可实现约40nm范围内的有效增益,若采用多个泵浦,可以较容易实现宽带放大,并且直接可通过选择泵浦波长和强度调整其增益谱的方式。
人们关注到其增益介质、宽增益带宽(最高可达120nm)、低噪声等特点,解决了衰减对光网络传输速率与距离的限制。
本文介绍了拉曼光纤放大器的原理及特点,并根据光纤通信的现状现状和热点,分析了光纤拉曼放大器应用和最新进展,论证了光纤拉曼放大器用于现代通信的重要性。
关键词:光纤放大器;受激拉曼散射;光纤通信1、引言光纤拉曼放大器(Raman Fiber Amplifier, FRA)来源于Stolen[1]等在实验室首次观察到单模光纤中的受激拉曼散射现象,但是因为拉曼散射是一种非线性效应,一般需要大于500mW的抽运功率,而且实现拉曼放大又需要合适的汞浦波长,在当时的技术条件下,用于通信领域的泵浦光源无法得到满足,所以人们又发明了掺铒光纤放大器(Erbium Doped Fiber Amplifier, EDFA),因EDFA所需的抽运功率比较低,在1550nm传输窗口中若要获得和FRA相似的增益只需要100mW,所以EDFA很快速发展至成熟并得到了广泛应用,相反,FRA的研究逐渐淡出视线。
随着通信网络的高速发展,对传输速率和带宽的要求越来越高,现有的1530nm~1570nm可用带宽逐渐不能满足需求。
5.3 光纤拉曼放大器
1 受激拉曼散射原理
受激拉曼效应:在强光入射的作用下产生的散射,将一部分入射光能量转移到另一频率的光束,频率转移量由介质的振动模式决定。
2
3
受激拉曼散射的工作原理
4
2 光纤拉曼放大器(FRA
)结构泵浦源共有三个方案:①大功率半导体激光器(LD)及其组合;②Raman光纤激光器(RFL);③半导体泵浦固体激光器(DPSSL)。
5
FRA 不同配置
FRA类型
分布式FRA:采用增益系数较高的光纤,
对对信号光进行集总放大;
分立式FRA:主要用于1.3μm和1.5μ m信号光
的传输损耗进行补偿放大。
6
3 FRA特点
带宽较宽;
可在原有光纤基础上直接扩容;
低噪声;
可以通过灵活排列泵浦光的频率来对信号进行放大。
7
4 FRA噪声特性
光纤拉曼放大器中主要有三种噪声:
①放大器自发辐射(ASE)噪声;
②串话噪声;
③瑞利散射噪声。
8
10混合EDFA/FRA 结构
信号输入信号输出
泵浦LD
WDM 传输光纤
铒掺杂光纤
光隔离器。
拉曼光纤放大器(Raman)1.拉曼光放大器的工作机理所谓拉曼光纤放大器,就是巧妙地利用拉曼散射能够向较长波长的光转移能量的特点,适当选择泵浦光的发射波长与泵浦输出功率,从而实现对光功率信号的放大。
所谓拉曼散射效应,是指当输入到光纤中的光功率达到一定数值时(如500mw 即 27dBm以上),光纤结晶晶格中的原子会受到震动而相互作用,从而产生散射现象;其结果将较短波长的光能量向较长波长的光转移。
拉曼散射作为一种非线性效应本来是对系统有害的,因为它将较短波长的光能量转移到较长波长的光上,使WDM系统的各复用通道的光信号出现不平衡;但巧妙地利用它可以使泵浦光能量向在光纤中传输的光信号转移,实现对光信号的放大。
由于拉曼光放大器被放大光的波长主要取决于泵浦光的发射波长,所以适当选择泵浦光的发射波长,就可以使其放大范围落入我们所希望的光波长区域。
如选择泵浦光的发射波长为1240nm时,可对1310nm波长的光信号进行放大;选择泵浦光的发射波长为1450nm时,可对1550nm波长C波段的光信号进行放大;选择泵浦光的发射波长为1480nm时,则可对1550nm波长L波段的光信号进行放大等。
一般原则是,[url=/]魔兽sf[/url]泵浦光的发射波长低于要放大的光波长70 ~100nm。
如图3.3.6所示。
图3.3.6:泵浦光波长与拉曼放大光波长的关系2.拉曼光纤放大器的优缺点(1).优点①.极宽的带宽拉曼光纤放大器具有极宽的增益频谱,在理论上它可以在任意波长产生增益。
当然,一者要选择适当的泵浦源;二者在如此宽的波长范围内,其增益特性可能不是非常平坦的。
实际上,我们可以使用具有不同波长的多个泵浦源,使拉曼光放大器总的平坦增益范围达到13TH z (约100nm ),从而覆盖石英光纤的1550nm 波长区的C+L 波段,如图 3.3.7所示。
这与EDFA 只能对1550nm 波长区C 波段(或L 波段)的光信号进行放大形成鲜明对比。
掺铒光纤放大器和拉曼光纤放大器分析和比较摘要:光放大器技术是新一代光纤通信系统中一项必不可少的关键技术,目前几种主要的光放大器技术在工程应用中各有所长。
此文介绍了光放大器技术的基本原理,并对现有主要几种光放大器技术在性能、应用和发展方向上进行了比较。
关键词:掺铒光纤放大器;光纤拉曼放大器0、综述20世纪90年代以来,Internet的普及发展和各种信息(如语音、图像、数据等)业务的快速增长,人们对现代通信系统提出了更高的要求。
在市场需求的大力推动下,通信技术取得了长足的进步,其中光纤通信技术脱颖而出,以其高速优质的特点,一跃成为当今长距离、大容量传输干线的主流技术。
但由于光纤损耗和非线性的影响,无中继传输距离成为制约系统容量和速率的瓶颈,而中继放大技术成了光通信领域的关键技术之一。
传输系统中的光纤损耗使信号随传输距离呈指数衰减,极大地限制了通信传输跨距和网络的可扩展性,因此必须在通信线路上设置中继器对信号进行再生放大。
在光放大器没有出现之前,光纤传输系统普遍采用光-电-光(OEO)的混合中继器,但这种中继方式存在“电子瓶颈”现象,在很大程度上限制了传输速率的提高,而且价格昂贵、结构复杂。
20世纪80年代出现的光放大器技术具有对光信号进行实时、在线、宽带、高增益、低噪声、低功耗以及波长、速率和调制方式透明的直接放大功能,是新一代光纤通信系统中不可缺少的关键技术。
此技术既解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑(1)。
又由于此技术与调制形式和比特率无关,因而在光纤通信系统中得到了广泛应用。
1、光放大器分类及原理光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成,其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。
拉曼激光器原理
拉曼激光器是一种基于拉曼散射效应的激光器,它的工作原理是利用物质分子的振动引起光的频率变化,从而实现光的放大,产生单色激光。
拉曼散射效应是物质分子与光的相互作用过程中产生的,它是基于光与物质的相互作用而产生的光子散射现象。
当光通过物质时,部分光子会与物质分子发生相互作用,被散射出去,这个过程被称为拉曼散射。
拉曼激光器的核心部件是一个光学谐振腔,谐振腔中注入激光信号,经过多次反射和放大后,产生强烈的拉曼散射信号。
谐振腔内的光子与物质分子发生相互作用,使得光子的能量与物质分子的振动能量相互转换,使得光子的频率发生变化。
在拉曼激光器中,光经过多次反射和放大后,使得拉曼散射信号被放大,从而产生强烈的单色激光。
拉曼激光器具有许多优点,例如:单色性好,波长可调,功率稳定等。
它可以用于光通信、光谱分析、激光雷达等领域。
拉曼激光器的应用范围非常广泛,已经成为现代科技的重要组成部分。
在实际应用中,拉曼激光器还存在一些问题,例如:激光光谱存在弱信号、拉曼散射信号受到杂散光和噪声的影响等。
为了解决这些问题,科学家们提出了许多方法,例如:采用增益介质、减小噪声等方法来提高拉曼激光器的性能。
拉曼激光器是一种基于拉曼散射效应的激光器,它的工作原理是利用物质分子的振动引起光的频率变化,从而产生单色激光。
拉曼激光器具有许多优点,但在实际应用中仍存在一些问题。
随着科学技术的不断发展,相信拉曼激光器的应用将会越来越广泛。
拉曼光纤放大器原理
拉曼光纤放大器(Raman Fiber Amplifier)是一种基于拉曼散射效应的光纤放大器。
它利用拉曼散射的原理,在光纤中实现光信号的增强。
拉曼散射是一种非线性光学现象,其基本原理是光与光子之间的相互作用。
当光传播在光纤中时,光子与介质中的分子或晶格振动发生耦合,从而使光子的能量转移到介质中的振动模式上。
如果光子能量与介质振动模式的能量相匹配,就会发生拉曼散射。
拉曼散射分为受激拉曼散射(Stimulated Raman Scattering, SRS)和自发拉曼散射(Spontaneous Raman Scattering, SBS)。
受激拉曼散射是指激发光和散射光的频率差等于介质的拉曼频移,而自发拉曼散射是指光子与介质中分子或振动模式发生相互作用,从而形成散射光。
拉曼光纤放大器的工作原理是利用拉曼散射中的受激拉曼散射效应。
当信号光(输入光)和泵浦光同时注入光纤中时,泵浦光的能量被转移到信号光上,从而使信号光的功率增大。
具体而言,当泵浦光与信号光频率差等于光纤中介质的拉曼频移时,就会发生受激拉曼散射。
泵浦光的能量转移到信号光上,使其增强。
拉曼光纤放大器的放大过程可以通过几个关键参数进行描述。
首先是增益带宽,它表示在特定的频率范围内,信号光能够得到明显的增益。
增益带宽取决于光纤的材料和波长。
其次是增益平坦度,它衡量信号光在增益带宽内的增益是否均匀。
增益平坦度对于传输多个波长的光信号非常重要。
最后是增益峰值,它表示在增益带宽内,信号光获得的最大增益。
增益峰值取决于泵浦光的功率和波长。
与其他光纤放大器相比,拉曼光纤放大器具有几个优点。
首先,它可以实现宽增益带宽和高增益峰值,适用于传输多个波长的光信号。
其次,它具有很高的稳定性和可靠性。
由于拉曼增益是通过光与介质相互作用实现的,不需要激光器或半导体放大器,因此拉曼光纤放大器具有长寿命和低功率损耗。
然而,拉曼光纤放大器也存在一些限制。
由于受激拉曼散射效应的增益效率较低,需要较高的泵浦功率来实现所需增益。
此外,由于泵浦光和信号光在光纤中传播的损耗,拉曼光纤放大器的增益也受到限制。
总结起来,拉曼光纤放大器是一种利用拉曼散射原理来实现光信号增强的光纤放大器。
通过选择合适的波长和功率的泵浦光,可以在光纤中实现宽增益带宽和高增益峰值,适用于传输多个波长的光信号。
然而,泵浦功率较高和传输损耗是限制其性能的因素。
尽管如此,拉曼光纤放大器具有长寿命、低功率损耗的优点,因此在光通信系统和传感应用中得到广泛应用。