数学人教版七年级上册二元一次方程组
- 格式:doc
- 大小:59.50 KB
- 文档页数:1
人教版七年级数学上第三章二元一次方程
知识点总结
本文档总结了人教版七年级数学上第三章二元一次方程的知识点,如下:
一、什么是二元一次方程?
二元一次方程是指包含两个未知数且次数最高为1的方程。
一般形式为:ax + by = c,其中a、b、c是已知的实数。
二、解二元一次方程的方法
解二元一次方程可以使用以下两种方法:
1. 消元法:通过消去其中一个未知数,将方程转化为只含一个未知数的一次方程,然后求解。
2. 代入法:将一个未知数的表达式代入到另一个未知数的方程中,再求解。
三、图解二元一次方程
可以使用图解法解二元一次方程。
将方程转化为直线方程,然
后通过绘制直线图像,确定方程的解。
四、二元一次方程的应用
二元一次方程在现实生活中有广泛的应用。
例如:
1. 两个物体同时从不同位置出发,以不同的速度运动,求它们
相遇的时间和位置。
2. 工程问题中,求解多个变量之间的关系。
3. 经济问题中,求解成本、收入、利润等关系。
以上是人教版七年级数学上第三章二元一次方程的知识点总结。
参考资料:
- 人教版数学七年级上册。
2022二元一次方程组人教版数学七年级上册教案二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。
两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。
每个方程可化简为ax+by=c的形式。
以下是小编整理的二元一次方程组人教版数学七年级上册教案,欢迎大家借鉴与参考!二元一次方程组教案【学习目标】1. 认识并会判断二元一次方程和二元一次方程组2. 了解二元一次方程和二元一次方程组的解并会检验一对数值是不是二元一次方程(组)的解.【重点难点】重点:二元一次方程(组)的含义及检验一对数是否是某个二元一次方程(组)的解.难点:求二元一次方程的正整数解.【学前准备】1.知识回顾:(1)方程的概念;(2)一元一次方程的概念;(3)什么是方程的解?(4)一元一次方程的解如何表示?2. 合作学习:①小红到邮局寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票? 这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?二元一次方程练习1、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。
安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%。
安全检查规定,在紧急情况下全大楼的学生应在5分钟通过这4道门安全撤离。
假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由。
二元一次方程组一、填空题1、把方程2x -y -5=0化成含y 的代数式表示x 的形式:x =.2、在方程3x -ay =8中,如果⎩⎨⎧==13y x 是它的一个解,那么a 的值为.3、已知二元一次方程2x -y =1,若x =2,则y =,若y =0,则x =.4、方程x +y =2的正整数解是__________.5、某人买了60分的邮票和80分的邮票共20X ,用去了13元2角,则60分的邮票买了枚,80分的邮票买了枚。
6、若3xmy2-m 和-2x4yn 是同类项,则m=_______,n=________.7、若∣x -2y +1∣+∣x +y -5∣=0,则x =,y =.8、大数和小数的差为12,这两个数的和为60,则大数是,小数是. 9、某种植大户计划安排10个劳动力来耕作 30亩土地,这些土地可以种蔬菜也可以种水稻,种这些作物所需劳动力及预计产值如下表:为了使所有土地种上作物,全部劳动力都有工作,应安排种蔬菜的劳动力为 _________人,这时预计产值为 _________元。
10、二元一次方程52=+x y 在正整数X 围内的解是。
11、5+=x y 中,若3-=x 则=y _______。
12、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。
13、如果方程组⎩⎨⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==11y x ,则=a,=b 。
14、15、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X 米,每分钟Y 米,则可列方程组{___________________. 16、已知:10=+b a ,20=-b a ,则2b a -的值是。
二、选择题:1、下列方程组中,属于二元一次方程组的是[ ]A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x yxD 、⎩⎨⎧=+=-12382y x y x 2、若3243y x b a +与b a yx -634是同类项,则=+b a 1[ ]A 、-3B 、0C 、3D 、6每亩所需劳动力(个) 每亩预计产值(元)蔬 菜213000 水 稻 417003.A 、 是这方程的唯一解B 、不是这方程的一个解C 、是这方程的一个解D 、以上结论都不对 4、在方程4x-3y=12中,若x=0,那么对应的y值应为: [ ] A 、4 B 、-4 C 、3 D 、-35.、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组正确的个数为:( )A.1个 C.3个 D.4个6、下列说法正确的 [ ] A.二元一次方程2x+3y=17的正整数解有2组7、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为[ ]A 、⎩⎨⎧=++=x y x y 5837B 、⎩⎨⎧=-+=x y x y 5837C 、⎩⎨⎧+=-=5837x y x yD 、⎩⎨⎧+=+=5837x y x y 8、一个二元一次方程的解集,是指这个方程的( ) A 、一个解B 、两个解C 、三个解D 、所有解组成的集合9、在方程2(x+y)-3(y -x)=3中,用含x 的一次式表示y ,则( )A 、y=5x -3B 、y=-x -3C 、 y=223-x D 、y=-5x -310、下列各方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+5723xy y xB 、⎩⎨⎧=+=+212z x y xC 、⎪⎩⎪⎨⎧=+=-243123y x y xD 、⎪⎩⎪⎨⎧=+=+322135y x y x11、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y xC 、⎩⎨⎧==21y xD 、⎩⎨⎧==12y x12、已知⎩⎨⎧=+=+25ay bx by ax 的解是⎩⎨⎧==34y x ,则( )A 、⎩⎨⎧==12b a B 、⎩⎨⎧-==12b a C 、⎩⎨⎧=-=12b a D 、⎩⎨⎧-=-=12b a13、一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排,则这间会议室共有座位排数是( )A 、14B 、13C 、12D 、155 14、用加减法解方程组⎩⎨⎧=-=+1123332y x y x 时,有下列四种变形,其中正确的是( )A 、⎩⎨⎧=-=+1169364y x y x B 、⎩⎨⎧=-=+2226936y x y x C 、⎩⎨⎧=-=+3369664y x y x D 、⎩⎨⎧=-=+1146396y x y x15、既是方程2x-y=3,又是3x+4y-10=0的解是( )A、⎩⎨⎧1=2=y x B、⎩⎨⎧5=4=y x C、⎩⎨⎧1-=1=y x D、⎩⎨⎧5-=4-=y x三、解方程组1. 2.⎩⎨⎧=-=-22534y x y x ⎩⎨⎧-=+=-632953y x y x3. 4.⎩⎨⎧=-=+113032Y X Y X ⎩⎨⎧=-=+422822y x y x5. 6.⎩⎨⎧=-=+6)3(242y x ⎩⎨⎧=+=-172305y x y x7、 8、⎩⎨⎧=+=-1732623y x y x ⎪⎩⎪⎨⎧=-=+3431332n m n m四、用方程组解应用题1、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?(6分)2、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?( 5分)3、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。
二元一次方程组及其解法期末知识点巩固:人
教版初一上册数学
尽快地掌握科学知识,迅速提高学习能力,由查字典数学网为您提供的二元一次方程组及其解法期末知识点巩固:人教版初一上册数学,希望给您带来启发!①由两个一次方程组成的,并含有两个未知数的方程组叫做二元一次方程组②消元法解方程组:1、二元一次方程组的解:使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解(注意格式﹛)2、代入消元法:从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法。
3、加减消元法:把两个方程的两边分别相加或相减(左边-左边=右边-右边)消去一个未知数的方法,叫做加减消元法,简称加减法(一定要使某个未知数的系数相等或相反)以上就是查字典数学网为大家整理的二元一次方程组及其解法期末知识点巩固:人教版初一上册数学,大家还满意吗?希望对大家有所帮助!
第 1 页共 1 页。
8.1 二元一次方程组
【学习目标】
1.了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数.
2.理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解.
【自学指导】阅读教材第88至89页,回答下列问题:
知识探究
1.每个方程都含有两个未知数x和y,并且未知数的指数都是1,像这样的方程叫做_________________.
2.把具有相同末知数的两个二元一次方程合在一起,就组成了一个_________________.
3.使二元一次方程两边的值相等的两个未知数的值,叫做_________________.
4.一般地,二元一次方程组的两个方程的公共解,叫做_________________.
5.二元一次方程有___________个解;二元一次方程组_________________解.
自学反馈
1.哪些是二元一次方程?为什么?
(1)x2+y=20; (2)2x+5=10 (3)2a+3b=1 (4)x2+2x+1=0 (5)2x+y+z=1
【教师点拨】判定二元一次方程的标准有两点:
(1)方程含有两个未知数;(2)每个未知数的指数都是1.
2.哪些是二元一次方程组?为什么?
(1)
329
50
x y
y x
-=
+=
⎧
⎨
⎩
,
;
(2)
398
35
x y z
y z
-+=
+=
⎧
⎨
⎩
,
;
(3)
2
1
x
x y
+
⎨
=
=
⎧
⎩
,
;
(4)
5
4.
xy y
x y
+=
-=
⎧
⎨
⎩
,
【教师点拨】方程组(3)也是二元一次方程组——只要两个一次方程合起来共有两个未知数,那么他们就组成一个二元一次方程组. 【合作探究】
活动1 二元一次方程(组)
《孙子算经》“鸡兔同笼”.
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
【教师点拨】(1)“一次”是指含未知数的项的次数是1,而不是未知数的次数;
(2)方程的左右两边都是整式.
活动2 二元一次方程(组)的解
我们再来看引言中的方程x+y=22,符合问题的实际意义的x、y的值有哪些?
使二元一次方程左右两边相等的一组未知数的值,叫做这个方程的一个解.
通常记作:
2,
20.
x
y
=
=
⎧
⎨
⎩
……
一般地,一个二元一次方程有无数个解. 如果对未知数的取值附加某些限制条件,则可能有有限个解.
活动3 跟踪训练
1.下列属于二元一次方程组的是( )
A.
4
35
0.
x y
x y
+=
-=
⎧
⎪
⎨
⎪⎩
,
B.
35
4
0.
x y
x y
+=
-=
⎧
⎪
⎨
⎪
⎩
,
C.
22
5
1.
x y
x y
+=
+=
⎧
⎨
⎩
,
D.
1
2
2
1.
y x
xy
⎧
=-
=
⎪
⎨
⎪⎩
,
2.方程组
325
541
x y
x y
-=
+=
⎧
⎨
⎩
,
的解是( )
A.
1
1.
x
y
=
=
⎧
⎨
⎩
,
B.
1
1.
x
y
=
=-
⎧
⎨
⎩
,
C.
2
1
.
2
x
y
⎧
⎪
=
=
⎪
⎨
⎩
,
D.
1
3
2.
x
y
=
=-
⎧
⎪
⎨
⎪⎩
,
【当堂训练】教学至此,敬请使用长江学案相应练习.。