(word完整版)2014年高考湖北文科数学试题及答案(word解析版),推荐文档
- 格式:pdf
- 大小:301.84 KB
- 文档页数:7
2014年湖北省高考数学文科试卷(含解析)绝密★启用前2014年湖北省高考数学文科试卷(含解析)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2014•湖北卷]已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=()A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}1.C解析]由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.2.2014•湖北卷]i为虚数单位,1-i1+i2=()A.1B.-1C.iD.-i2.B解析]1-i1+i2=(1-i)2(1+i)2=-2i2i=-1.故选B. 3.2014•湖北卷]命题“∀x∈R,x2≠x”的否定是()A.∀x∈/R,x2≠xB.∀x∈R,x2=xC.∃x0∈/R,x20≠x0D.∃x0∈R,x20=x03.D解析]特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x∈R,x2≠x”的否定是“∃x0∈R,x20=x0”.故选D.4.2014•湖北卷]若变量x,y满足约束条件x+y≤4,x-y≤2,x≥0,y≥0,则2x+y的最大值是()A.2B.4C.7D.84.C解析]作出约束条件x+y≤4,x-y≤2,x≥0,y≥0表示的可行域如下图阴影部分所示.设z=2x+y,平移直线2x+y=0,易知在直线x+y=4与直线x-y=2的交点A(3,1)处,z=2x+y取得最大值7.故选C.5.2014•湖北卷]随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p25.C解析]掷出两枚骰子,它们向上的点数的所有可能情况如下表:123456123456723456783456789456789105678910116789101112则p1=1036,p2=2636,p3=1836.故p16.2014•湖北卷]根据如下样本数据x345678y4.02.5-0.50.5-2.0-3.0得到的回归方程为y^=bx+a,则()A.a>0,b<0B.a>0,b>0C.a<0,b<0D.a<0,b>06.A解析]作出散点图如下:由图像不难得出,回归直线y^=bx+a的斜率b0,所以a>0,b图1-1 7.2014•湖北卷]在如图1-1所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()图1-2A.①和②B.③和①C.④和③D.④和②7.D解析]由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.8.、2014•湖北卷]设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线x2cos2θ-y2sin2θ=1的公共点的个数为()A.0B.1C.2D.38.A解析]由方程t2cosθ+tsinθ=0,解得t1=0,t2=-tanθ,不妨设点A(0,0),B(-tanθ,tan2θ),则过这两点的直线方程为y=-xtanθ,该直线恰是双曲线x2cos2θ-y2sin2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A.9.、2014•湖北卷]已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3}B.{-3,-1,1,3}C.{2-7,1,3}D.{-2-7,1,3}9.D解析]设x0,所以f(x)=-f(-x)=-(-x)2-3(-x)]=-x2-3x.求函数g(x)=f(x)-x+3的零点等价于求方程f(x)=-3+x的解.当x≥0时,x2-3x=-3+x,解得x1=3,x2=1;当x10.2014•湖北卷]《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为()A.227B.258C.15750D.35511310.B解析]设圆锥的底面圆半径为r,底面积为S,则L=2πr.由题意得136L2h≈13Sh,代入S=πr2化简得π≈3.类比推理,若V≈275L2h时,π≈258.故选B.11.2014•湖北卷]甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.11.1800解析]设乙设备生产的产品总数为n,则80-50n=804800,解得n=1800.12.、2014•湖北卷]若向量OA→=(1,-3),|OA→|=|OB→|,OA→•OB→=0,则|AB→|=________.12.25解析]由题意知,OB→=(3,1)或OB=(-3,-1),所以AB=OB-OA=(2,4)或AB=(-4,2),所以|AB|=22+42=25. 13.2014•湖北卷]在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=π6,a=1,b=3,则B=________.13.π3或2π3解析]由正弦定理得asinA=bsinB,即1sinπ6=3sinB,解得sinB=32.又因为b>a,所以B=π3或2π3.14.2014•湖北卷]阅读如图1-3所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为________.图1-314.1067解析]第一次运行时,S=0+21+1,k=1+1;第二次运行时,S=(21+1)+(22+2),k=2+1;……所以框图运算的是S=(21+1)+(22+2)+…+(29+9)=1067. 15.2014•湖北卷]如图1-4所示,函数y=f(x)的图像由两条射线和三条线段组成.若∀x∈R,f(x)>f(x-1),则正实数a的取值范围为________.图1-415.0,16解析]“∀x∈R,f(x)>f(x-1)”等价于“函数y=f(x)的图像恒在函数y=f(x-1)的图像的上方”,函数y=f(x-1)的图像是由函数y=f(x)的图像向右平移一个单位得到的,如图所示.因为a>0,由图知6a16.2014•湖北卷]某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=76000vv2+18v+20l.(1)如果不限定车型,l=6.05,则最大车流量为________辆/小时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/小时.16.(1)1900(2)100解析](1)依题意知,l>0,v>0,所以当l=6.05时,F=76000vv2+18v+121=76000v+121v+18≤760002v•121v+18=1900,当且仅当v=11时,取等号.(2)当l=5时,F=76000vv2+18v+100=76000v+100v+18≤2000,当且仅当v=10时,取等号,此时比(1)中的最大车流量增加100辆/小时.17.2014•湖北卷]已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则(1)b=________;(2)λ=________.17.(1)-12(2)12解析]设点M(cosθ,sinθ),则由|MB|=λ|MA|得(cosθ-b)2+sin2θ=λ2(cosθ+2)2+sin2θ,即-2bcosθ+b2+1=4λ2cosθ+5λ2对任意的θ都成立,所以-2b=4λ2,b2+1=5λ2.又由|MB|=λ|MA|,得λ>0,且b≠-2,解得b=-12,λ=12.18.、、、2014•湖北卷]某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-3cosπ12t-sinπ12t,t∈0,24).(1)求实验室这一天上午8时的温度;(2)求实验室这一天的最大温差.18.解:(1)f(8)=10-3cosπ12×8-sinπ12×8=10-3cos2π3-sin2π3=10-3×-12-32=10.故实验室上午8时的温度为10℃.(2)因为f(t)=10-232cosπ12t+12sinπ12t=10-2sinπ12t+π3,又0≤t所以π3≤π12t+π3当t=2时,sinπ12t+π3=1;当t=14时,sinπ12t+π3=-1.于是f(t)在0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃. 19.、、2014•湖北卷]已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式.(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.19.解:(1)设数列{an}的公差为d,依题意知,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4,当d=0时,an=2;当d=4时,an=2+(n-1)•4=4n-2,从而得数列{an}的通项公式为an=2或an=4n-2.(2)当an=2时,Sn=2n,显然2n此时不存在正整数n,使得Sn>60n +800成立.当an=4n-2时,Sn=n2+(4n-2)]2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.综上,当an=2时,不存在满足题意的正整数n;当an=4n-2时,存在满足题意的正整数n,其最小值为41.20.、2014•湖北卷]如图1-5,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.图1-520.证明:(1)连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,A1C1,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1A1.而AC1⊂平面ACC1A1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1. 同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.21.2014•湖北卷]π为圆周率,e=2.71828…为自然对数的底数.(1)求函数f(x)=lnxx的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.21.解:(1)函数f(x)的定义域为(0,+∞).因为f(x)=lnxx,所以f′(x)=1-lnxx2.当f′(x)>0,即0当f′(x)e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e即ln3e于是根据函数y=lnx,y=ex,y=πx在定义域上单调递增可得,3e故这6个数中的最大数在π3与3π之中,最小数在3e与e3之中.由e即lnππ由lnπππ3.由ln33综上,6个数中的最大数是3π,最小数是3e.22.2014•湖北卷]在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.22.解:(1)设点M(x,y),依题意得|MF|=|x|+1,即(x-1)2+y2=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=4x,x≥0,0,x(2)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x依题意,可设直线l的方程为y-1=k(x+2).由方程组y-1=k(x+2),y2=4x,可得ky2-4y+4(2k+1)=0.①当k=0时,y=1.把y=1代入轨迹C的方程,得x=14.故此时直线l:y=1与轨迹C恰好有一个公共点14,1.当k≠0时,方程①的判别式Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-2k+1k.③(i)若Δ12.即当k∈(-∞,-1)∪12,+∞时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.(ii)若Δ=0,x00,x0≥0,由②③解得k∈-112或-12≤k即当k∈-1,12时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈-12,0时,直线l与C1有两个公共点,与C2没有公共点.故当k∈-12,0∪-1,12时,直线l与轨迹C恰好有两个公共点.(iii)若Δ>0,x0即当k∈-1,-12∪0,12时,直线l与C1有一个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综上所述,当k∈(-∞,-1)∪12,+∞∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈-12,0∪-1,12时,直线l与轨迹C恰好有两个公共点;当k∈-1,-12∪0,12时,直线l与轨迹C恰好有三个公共点.。
2014湖北高考数学试题2014湖北高考数学试题分为选择题和解答题两部分。
选择题共计80分,解答题共计70分,全卷共计150分。
以下是该试卷的具体内容:选择题(共10小题,每小题5分,共计50分)1. 已知一边长为a的正方形面积是a²平方米,那么该正方形的对角线长是多少?A. aB. a√2C. a/2D. a√32. 已知函数f(x)=x²-3x+2,求f(2)的值。
A. 2B. 0C. -2D. 43. 设集合A={1, 2, 3},集合B={2, 3, 4},则A∪B的元素个数是多少?A. 3B. 4C. 5D. 64. 若a:b=5:3,b:c=4:7,求a:b:c的比值。
A. 20:12:21B. 5:9:12C. 10:15:28D. 25:15:215. 已知集合A={x | x² < 7},集合B={y | y > 2},则集合A∩B的元素个数是多少?A. 0B. 1C. ∞D. 无法确定6. 在xy坐标系中,直线y=2x-1与y轴交于点A,请问点A的纵坐标是多少?A. -2B. -1C. 0D. 17. 若3x²-10=2y,求y关于x的函数表达式。
A. y=3x²-10B. y=6x²-20C. y=-3x²+10D. y=-6x²+208. 若a是一个正数,且a的平方根等于2a的平方根减去1,求a的值。
A. 0.5B. 1C. 2D. 49. 若x=3/5,求x²的值。
A. 1/25B. 9/25C. 6/5D. 25/910. 已知等差数列的通项公式为an=5n-2,求该等差数列的首项。
A. -1B. 2C. 3D. 5解答题(共5小题,每小题14分,共计70分)一、解方程1. 求方程x²-5x=6的解。
2. 求方程2^x+3x=10的解。
二、函数与图像给出函数f(x)=x³-3x²+2的图像,请回答以下问题:1. 函数f(x)的单调区间是什么?2. 函数f(x)的零点有哪些?三、概率有10个黑球和10个白球放在一个袋子里,从袋中随机取出一个球,若取出黑球,则不放回,再从剩下的球中随机取出一个;若取出白球,则放回,再从所有球中取出一个。
2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
湖北省教育考试院 保留版权 数学(文史类) 第1页(共5页)绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð A .{1,3,5,6} B .{2,3,7}C .{2,4,7}D . {2,5,7}2.i 为虚数单位,21i ()1i -=+A .1B .1-C .iD . i -3.命题“x ∀∈R ,2x x ≠”的否定是 A .x ∀∉R ,2x x ≠ B .x ∀∈R ,2x x = C .x ∃∉R ,2x x ≠D .x ∃∈R ,2x x =4.若变量x ,y 满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩则2x y +的最大值是A .2B .4C .7D .8数学(文史类) 第2页(共5页)5.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则 A .123p p p << B .213p p p << C .132p p p << D .312p p p <<6.根据如下样本数据得到的回归方程为ˆybx a =+,则 A .0a >,0b < B.0a >,0b > C .0a <,0b <D .0a <,0b >7.在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2), (2,2,0),(1,2,1),(2,2,2). 给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A .①和②B .③和①C .④和③D .④和②8.设,a b 是关于t 的方程2cos sin 0t tθθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为A .0B .1C .2D .3图③ 图①图④图② 第7题图数学(文史类) 第3页(共5页)9.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -. 则函数()()+3g x f x x =- 的零点的集合为A. {1,3}B. {3,1,1,3}--C. {23}D. {21,3}-10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为 A .227B .258C .15750D .355113二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件.12.若向量(1,3)OA =-,||||OA OB =,0OA OB ⋅=, 则||AB = .13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知π6A =,a =1,b B = . 14.阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S 的值为 .第14题图数学(文史类) 第4页(共5页)15.如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为 .16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的 车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、 平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++. (Ⅰ)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(Ⅱ)如果限定车型,5l =, 则最大车流量比(Ⅰ)中的最大车流量增加 辆/小时. 17.已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则 (Ⅰ)b = ; (Ⅱ)λ=.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.第15题图数学(文史类) 第5页(共5页)19.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.20.(本小题满分13分)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN .21.(本小题满分14分)π为圆周率,e 2.71828=为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.22.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的 轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.第20题图。
2014年普通高等学校招生全国统一考试(湖北卷)文科数学试题答案与解析1. 解析 {}{}2,4,7U A x x U x A =∈∉=且ð,故选C.2. 解析 ()()()21i 1i 2i i 1i 1i 1i 2---===-++-,所以()221i i 11i -⎛⎫=-=- ⎪+⎝⎭,故选B. 3. 解析 原命题的否定为1x ∃∈R ,2x x =.故选D. 4. 解析 画出可行域如图(阴影部分)设目标函数为2z x y =+,由42x y x y +=⎧⎨-=⎩解得()3,1A ,当目标函数过()3,1A 时取得最大值,所以max 2317z =⨯+=,故选C.5. 解析 随机抛掷两枚骰子,它们向上的点数之和的结果如图,则11036p =,22636p =,31836p =,所以132p p p <<,故选C. 6 7 8 9 10 11 12 5 6 7 8 9 10 11 4 5 6 7 8 9 10 3 4 5 6 7 8 9 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 66. 解析 由题中数据值,随x 增大y 减小,所以0b <,因为3456781162x +++++==,4.0 2.50.50.5 2.0 3.0164y +-+--==,所以11142b a =+,所以11142a b =-.又因为0b <,所以0a >,故选A.47. 解析 在空间直角坐标系中构建棱长为2的正方体,设()0,0,2A ,()2,2,0B ,()1,2,1C ,()2,2,2D ,则ABCD 即为满足条件的四面体,得出正视图和俯视图分别为④和②,故选D.评注 解决本题时在正方体中找到原四面体是关键.8. 解析 因为a b ≠,所以直线()222:b a AB y a x a b a--=--,即()y b a x ab =+-.又因为a ,b 是方程2cos sin 0t t θθ+=的两个不等实根,所以sin cos a b θθ-+=,0ab =,所以sin cos y x θθ=-,又sin cos y x θθ=-是双曲线22221cos sin x y θθ-=的一条渐进线,所以公共点的个数为0,故选A.评注 本题考查一元二次方程的根、直线与双曲线的位置关系,得出直线使双曲线的一条渐进线是解决本题的关键.9. 解析 当0x …时,()33f x x x =-,令()2330g x x x x =--+=,得13x =,21x =.当0x <时,0x ->,所以()()()23f x x x -=---,所以()23f x x x -=+,所以()23f x x x =--.令()2330g x x x x =---+=,得32x =-,420x =->(舍),所以函数()()3g x f x x =-+的零点的集合是{}2-,故选D.评注 本题考查奇函数的性质、一元二次方程的根等知识,忽略x 的范围会导致出错.10. 解析 设圆锥底面半径为r ,则2πr L =,2πLr =.圆锥的体积2221ππ332π12πL L hV r h h ⎛⎫===⎪⎝⎭,所以7512π2≈,故选B. 11. 解析 设乙设备生产的产品总数为x 件,则4800508050x x-=-,5030480030x x =⨯-,80304800x =⨯,1800x =,故乙设备生产的产品总数为1800件.12. 解析 222AB OB OA OA OB OB OA =-=+-⋅, 因为21OA OB ===0OA OB ⋅=,所以20AB ==,故答案为13. 解析由sin sin a b A B =得1πsin sin 6B =,所以sin 2B =.又因为b a >,所以π3B =或2π3. 14. 解析 由程序框图可知1238902122232829S =+++++++++++,所以()()91292129191292224510221067212S -+=+++++++=+=+=-. 15. 解析 x ∀∈R ,()()>1f x f x -.由题图易知0a >,且61a <,所以106a <<. 16. 解析 (1)当 6.05l =时,2760001820 6.05vF v v =++⨯,所以2760007600019001211812118v F v v v v ===++++…,当且仅当121v v=,即11v =时取“=”.所以最大车流量F 为1900辆/小时. (2)当5l =时,276000760001001820518v F v v v v ==++⨯++,所以2000F =…,当且仅当100v v=,即10v =时取“=”.所以最大车流量比(1)中的最大车流量增加20001900100-=辆/小时.评注 本题考查了函数最值的求法及均值不等式的应用.17. 解析 解法一: 当M 为()1,0-时,1MA =,1MB b =+, 所以1b λ+=. ①当M 为()1,0时,3MA =,1MB b =-,所以13b λ-=. ② 由①②消去λ得311b b +=-,所以12b =-(2b =-舍去).将12b =-代入①得12λ=. 解法二:设(),M x y ,则满足221x y +=.因为MB MA λ==()()222222x b y x y λ⎡⎤-+=++⎣⎦,即2221x bx b -++()2222441x x x x λ-=+++-,2222145bx b x λλ-++=+.故有22224,15,0,b b λλλ⎧-=⎪+=⎨⎪>⎩所以1λ=或12λ=.当1λ=时,2b =-(舍去);当12λ=时,12b =-,所以12b =-,12λ=.18. 解析 (1)()ππ8108sin 81212f ⎛⎫⎛⎫=⨯-⨯⎪ ⎪⎝⎭⎝⎭ 2π2π10sin 33=-1101022⎛⎫=--= ⎪⎝⎭.故实验室上午8时的温度为10C .(2)因为()π1πππ102sin 102sin 12212123f t t t t ⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎝⎭. 又024t <…,所以πππ7π31233t +<…,ππ1sin 1123t ⎛⎫-+ ⎪⎝⎭剟.当2t =时,ππsin 1123t ⎛⎫+=⎪⎝⎭;当14t =时,ππsin 1123t ⎛⎫+=- ⎪⎝⎭. 于是,()f t 在[)0,24上取得最大值12,取得最小值8.故实验室这一天最高温度为12C ,最低温度为8C ,最大温差为4C .评注 本题考查三角函数的图像和最值,注意的取值范围.考查了学生的计算求解能力.19. 解析 (1)设数列{}n a 的公差为d ,依题意2,2d +,24d +成等比数列,故有()()22224d d +=+,化简得240d d -=,解得0d =或4d =.当0d =时,2n a =;当4d =时,()21442n a n n =+-⋅=-,从而得到数列{}n a 的通项公式为2n a =或42n a n =-.(2)当2n a =时,2n S n =.显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立.当42n a n =-时,()224222n n n S n +-⎡⎤⎣⎦==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),此时存在正整数n ,使得成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.评注 本题考查等差、等比数列的通项公式及性质,数列的求和及数列的最值问题.20. 解析 (1)连接1AD ,由1111ABCD ABC D -是正方体,知11//AD BC ,因为F ,P 分别是AD ,1DD 的中点,所以1//FP AD .从而1//BC FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ .(2)如图,连接AC ,BD ,则AC BD ⊥.由1CC ⊥平面ABCD ,BD ⊂平面ABCD ,可得1CC BD ⊥.又1ACCC C =,所以BD ⊥平面1ACC .而1AC ⊂平面1ACC ,所以1BD AC ⊥.因为M ,N 分别是11A B ,11A D 的中点,所以//MN BD ,从而1MN AC ⊥.同理可证1PN AC ⊥.又PNMN N =,所以直线1AC ⊥平面PQMN .评注 本题考查线面平行、线面垂直的判定与性质,考查学生的空间想象能力. 21. 解析 (1)函数()f x 的定义域为()0,+∞.因为()ln x f x x =,所以()21ln xf x x -'=. 当()0f x '>,即0e x <<时,函数()f x 单调递增; 当()0f x '<,即e x >时,函数()f x 单调递减.故函数()f x 的单调递增区间为()0,e ,单调递减区间为()e,+∞.(2)因为e 3π<<,所以e ln 3e ln π<,πln e πln 3<,即eeln3ln π<,ππln e ln3<. 于是根据函数ln y x =,e xy =,πxy =在定义域上单调递增,可得ee33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e3与3e 之中. 由e 3π<<及(1)的结论,得()()()π3ef f f <<,即ln πln 3ln e π3e<<. 由ln πln 3π3<,得3πl n πl n3<,所以π33>π;由l n3l ne 3e<,得e 3ln3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e3.22. 解析 (I )设点(),Mx y ,依题意得1MFx =+1x =+,化简整理得()221y x =+.故点M 的轨迹C 的方程为24, 0,0, 0.x x y x ⎧=⎨<⎩…ABCD A 1B 1C 1D 1N QPM FE(II )在点M 的轨迹C 中,记1C :24yx =,2C :()00y x =<,依题意,可设直线l 的方程为()12y k x -=+.由方程组()2124y k x y x-=+⎧⎪⎨=⎪⎩可得()244210ky y k -++=.①(1)当0k =时,此时1y =.把1y =代入轨迹C 的方程,得14x =. 故此时直线l :1y =与轨迹C 恰好有一个公共点1,14⎛⎫⎪⎝⎭.(2)当0k ≠时,方程①的判别式为()21621k k ∆=-+-.② 设直线l 与x 轴的交点为()0,0x ,则由()12y k x -=+,令0y =,得021k xk+=-.③ (i )若000x ∆<⎧⎨<⎩由②③解得1k <-或12k >.即当()1,1,2k ⎛⎫∈-∞-+∞ ⎪⎝⎭时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.(ii)若000x ∆=⎧⎨<⎩或000x ∆>⎧⎨⎩…则由②③解得11,2k ⎧⎫∈-⎨⎬⎩⎭或102k -<….即当11,2k ⎧⎫∈-⎨⎬⎩⎭时,直线l 与1C 只有一个公共点,与2C 有一个公共点.当1,02k ⎡⎫∈-⎪⎢⎣⎭时,直线l 与1C 有两个公共点,与2C 没有公共点. 故当11,01,22k ⎡⎫⎧⎫∈--⎨⎬⎪⎢⎣⎭⎩⎭时,直线l 与轨迹C 恰好有两个公共点.(iii )若000x ∆>⎧⎨<⎩<则由②③解得112k -<<-或102k <<. 即当111,0,22k ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,直线l 与1C 有两个公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点.综合(1)(2)可知,当(){}1,1,02k ⎛⎫∈-∞-+∞ ⎪⎝⎭时,直线l 与轨迹C 恰好有一个公共点;当11,01,22k ⎡⎫⎧⎫∈--⎨⎬⎪⎢⎣⎭⎩⎭时,直线l 与轨迹C 恰好有两个公共点; 当111,0,22k ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,直线l 与轨迹C 恰好有三个公共点. 评注 本题考查了直线和抛物线的位置关系,考查了分类讨论思想.。
2014·湖北卷(文科数学)1.[2014·湖北卷] 已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7}1.C [解析] 由A ={1,3,5,6},U ={1,2,3,4,5,6,7},得∁U A ={2,4,7}.故选C.2.[2014·湖北卷] i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( ) A .1 B .-1 C .i D .-i2.B [解析] ⎝ ⎛⎭⎪⎫1-i 1+i 2=(1-i )2(1+i )2=-2i 2i=-1.故选B. 3.[2014·湖北卷] 命题“∀x ∈R ,x 2≠x ”的否定是( ) A .∀x ∈/R ,x 2≠x B .∀x ∈R ,x 2=xC .∃x 0∈/R ,x 20≠x 0D .∃x 0∈R ,x 20=x 03.D [解析] 特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x ∈R ,x 2≠x ”的否定是“∃x 0∈R ,x 20=x 0”. 故选D.4.[2014·湖北卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,x ≥0,y ≥0,则2x +y 的最大值是( )A .2B .4C .7D .84.C [解析] 作出约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,x ≥0,y ≥0表示的可行域如下图阴影部分所示.设z =2x +y ,平移直线2x +y =0,易知在直线x +y =4与直线x -y =2的交点A (3,1)处,z =2x +y 取得最大值7. 故选C.5.[2014·湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p 1,点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则( )A .p 1<p 2<p 3B .p 2<p 1<p 3C .p 1<p 3<p 2D .p 3<p 1<p 25.C [解析] 掷出两枚骰子,它们向上的点数的所有可能情况如下表:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12则p 1=1036,p 2=2636,p 3=1836.故p 1<p 3<p 2.故选C.6.[2014·湖北卷] 根据如下样本数据x 3 4 5 6 7 8 y 4.0 2.5 -0.5 0.5 -2.0 -3.0得到的回归方程为y ^=bx +a ,则( ) A .a >0,b <0 B .a >0,b >0 C .a <0,b <0 D .a <0,b >0 6.A [解析] 作出散点图如下:由图像不难得出,回归直线y ^=bx +a 的斜率b <0,截距a >0,所以a >0,b <0.故选A.图1-17.[2014·湖北卷] 在如图1-1所示的空间直角坐标系O -xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )图1-2A .①和②B .③和①C .④和③D .④和②7.D [解析] 由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.8.、[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( )A .0B .1C .2D .38.A [解析] 由方程t 2cos θ+t sin θ=0,解得t 1=0,t 2=-tan θ,不妨设点A (0,0),B (-tan θ,tan 2θ),则过这两点的直线方程为y =-x tan θ,该直线恰是双曲线x 2cos 2θ-y 2sin 2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A. 9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解. 当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 10.[2014·湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.35511310.B [解析] 设圆锥的底面圆半径为r ,底面积为S ,则L =2πr .由题意得136L 2h ≈13Sh ,代入S =πr 2化简得π≈3.类比推理,若V ≈275L 2h 时,π≈258.故选B.11.[2014·湖北卷] 甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.11.1800 [解析] 设乙设备生产的产品总数为n ,则80-50n =804800,解得n =1800.12.、[2014·湖北卷] 若向量OA →=(1,-3), |OA →|=|OB →|,OA →·OB →=0,则|AB →|=________.12.25 [解析] 由题意知,OB →=(3,1)或OB =(-3,-1),所以AB =OB -OA =(2,4)或AB =(-4,2),所以|AB |=22+42=2 5.13.[2014·湖北卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a=1,b =3,则B =________.13.π3或2π3 [解析] 由正弦定理得a sin A =b sin B ,即1sin π6=3sin B,解得sin B =32.又因为b >a ,所以B =π3或2π3.14.[2014·湖北卷] 阅读如图1-3所示的程序框图,运行相应的程序,若输入n 的值为 9,则输出S 的值为________.图1-3 14.1067 [解析] 第一次运行时,S =0+21+1,k =1+1; 第二次运行时,S =(21+1)+(22+2),k =2+1; ……所以框图运算的是S =(21+1)+(22+2)+…+(29+9)=1067. 15.[2014·湖北卷] 如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.图1-415.⎝⎛⎭⎫0,16 [解析] “∀x ∈R ,f (x )>f (x -1)”等价于“函数y =f (x )的图像恒在函数y =f (x -1)的图像的上方”,函数y =f (x -1)的图像是由函数y =f (x )的图像向右平移一个单位得到的,如图所示.因为a >0,由图知6a <1,所以a 的取值范围为⎝⎛⎭⎫0,16.16.[2014·湖北卷] 某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时. 16.(1)1900 (2)100 [解析] (1)依题意知,l >0,v >0,所以当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v +18≤76 0002 v ·121v +18=1900,当且仅当v =11时,取等号.(2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v +18≤2000,当且仅当v =10时,取等号,此时比(1)中的最大车流量增加100辆/小时. 17.[2014·湖北卷] 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b ,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有|MB |=λ|MA |,则(1)b =________; (2)λ=________.17.(1)-12 (2)12[解析] 设点M (cos θ,sin θ),则由|MB |=λ|MA |得(cos θ-b )2+sin 2θ=λ2[](cos θ+2)2+sin 2θ,即-2b cos θ+b 2+1=4λ2cos θ+5λ2对任意的θ都成立,所以⎩⎪⎨⎪⎧-2b =4λ2,b 2+1=5λ2.又由|MB |=λ|MA |,得λ>0,且b ≠-2,解得⎩⎨⎧b =-12,λ=12. 18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ), 化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 20.、[2014·湖北卷] 如图1-5,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,DD 1,BB 1,A 1B 1,A 1D 1的中点.求证:(1)直线BC 1∥平面EFPQ ; (2)直线AC 1⊥平面PQMN .图1-520.证明:(1)连接AD 1,由ABCD - A 1B 1C 1D 1是正方体,知AD 1∥BC 1.因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,A 1C 1,则AC ⊥BD . 由CC 1⊥平面ABCD ,BD ⊂平面ABCD , 可得CC 1⊥BD .又AC ∩CC 1=C ,所以BD ⊥平面ACC 1A 1. 而AC 1⊂平面ACC 1A 1,所以BD ⊥AC 1.因为M ,N 分别是A 1B 1,A 1D 1的中点,所以MN ∥BD ,从而MN ⊥AC 1. 同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN . 21.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln xx 的单调区间;(2)求e 3,3e,e π,πe ,3π,π3这6个数中的最大数与最小数. 21.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞). (2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π.于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增可得,3e <πe <π3,e 3<e π<3π.故这6个数中的最大数在π3与3π之中,最小数在3e 与e 3之中. 由e<3<π及(1)的结论,得f (π)<f (3)<f (e), 即ln ππ<ln 33<ln e e .由ln ππ<ln 33, 得ln π3<ln3π,所以3π>π3.由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3.综上,6个数中的最大数是3π,最小数是3e . 22.、、[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.22.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1, 即(x -1)2+y 2=|x |+1, 化简整理得y 2=2(|x |+x ).故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0),C 2:y =0(x <0).依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1. 当k ≠0时,方程①的判别式 Δ=-16(2k 2+k -1).②设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(i)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ii)若⎩⎪⎨⎪⎧Δ=0,x 0<0或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-112或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈⎣⎡⎭⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点. 故当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点. (iii)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由②③解得-1<k <-12或0<k <12.即当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与C 1有一个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综上所述,当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与轨迹C 恰好有三个公共点.。
绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð A .{1,3,5,6} B .{2,3,7}C .{2,4,7}D . {2,5,7}2.i 为虚数单位,21i ()1i -=+A .1B .1-C .iD . i -3.命题“x ∀∈R ,2x x ≠”的否定是 A .x ∀∉R ,2x x ≠ B .x ∀∈R ,2x x = C .x ∃∉R ,2x x ≠D .x ∃∈R ,2x x =4.若变量x ,y 满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩错误!未找到引用源。
则2x y +的最大值是A .2B .4C .7D .85.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则 A .123p p p << B .213p p p << C .132p p p << D .312p p p <<6.根据如下样本数据得到的回归方程为ˆybx a =+,则 A .0a >,0b < B.0a >,0b > C .0a <,0b <D .0a <,0b >7.在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2). 给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A .①和②B .③和①C .④和③D .④和②8.设,a b 是关于t 的方程2cos sin 0tt θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为A .0B .1C .2D .3图③ 图①图④图② 第7题图9.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -. 则函数()()+3g x f x x =- 的零点的集合为A. {1,3}B. {3,1,1,3}--C. {23}D. {21,3}-10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上 是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为 A .227B .258C .15750D .355113二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件. 12.若向量(1,3)OA =-,||||OA OB =,0OA OB ⋅=, 则||AB = .13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知π6A =,a =1,b = B = .14.阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S 的值为 .第14题图15.如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为 .16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的 车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、 平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++.(Ⅰ)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(Ⅱ)如果限定车型,5l =, 则最大车流量比(Ⅰ)中的最大车流量增加 辆/小时.17.已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则 (Ⅰ)b = ; (Ⅱ)λ=.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.第15题图19.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.20.(本小题满分13分)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN .21.(本小题满分14分)π为圆周率,e 2.71828=为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.22.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的 轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.绝密★启用前第20题图2014年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.C 2.B 3.D 4.C 5.C 6.A 7.D 8.A 9.D 10.B 二、填空题:11.1800 12. 13.π3或2π314.1067 15.1(0)6, 16.(Ⅰ)1900;(Ⅱ)100 17.(Ⅰ)12-;(Ⅱ)12三、解答题:18.(Ⅰ)ππ(8)108sin 81212f =⨯-⨯()()2π2π10sin33=-110()102=--=. 故实验室上午8时的温度为10 ℃.(Ⅱ)因为π1πππ()10sin )=102sin()12212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤.当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-. 于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.19.(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或d =4. 当0d =时,2n a =;当d =4时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(Ⅱ)当2n a =时,2n S n =. 显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立.当42n a n =-时,2[2(42)]22n n n S n +-==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.20.证明:(Ⅰ)连接AD 1,由1111ABCD A B C D -是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,1DD 的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1BC ∥平面EFPQ .(Ⅱ)如图,连接AC ,BD ,则AC BD ⊥.由1CC ⊥平面ABCD ,BD ⊂平面ABCD ,可得1CC BD ⊥. 又1ACCC C =,所以BD ⊥平面1ACC .而1AC ⊂平面1ACC ,所以1BD AC ⊥. 因为M ,N 分别是11A B ,11A D 的中点,所以MN ∥BD ,从而1MN AC ⊥. 同理可证1PN AC ⊥. 又PNMN N =,所以直线1AC ⊥平面PQMN .21.(Ⅰ)函数()f x 的定义域为()∞0,+.因为ln ()x f x x =,所以21ln ()x f x x -'=. 当()0f x '>,即0e x <<时,函数()f x 单调递增; 当()0f x '<,即e x >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,e),单调递减区间为(e,)+∞.第20题解答图QBEMN ACD 1C ()F 1D1A1BP(Ⅱ)因为e 3π<<,所以eln 3eln π<,πln e πln 3<,即e e ln 3ln π<,ππln e ln 3<.于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得 e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中. 由e 3π<<及(Ⅰ)的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln 3<,所以π33π>; 由ln 3ln e3e<,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.22.(Ⅰ)设点(,)M x y ,依题意得||||1MF x =+||1x +,化简整理得22(||)y x x =+.故点M 的轨迹C 的方程为24,0,0,0.x x y x ≥⎧=⎨<⎩(Ⅱ)在点M 的轨迹C 中,记1:C 24y x =,2:C 0(0)y x =<.依题意,可设直线l 的方程为1(2).y k x -=+由方程组21(2),4,y k x y x -=+⎧⎨=⎩ 可得244(21)0.ky y k -++= ①(1)当0k =时,此时 1.y = 把1y =代入轨迹C 的方程,得14x =. 故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4.(2)当0k ≠时,方程①的判别式为216(21)k k ∆=-+-. ②设直线l 与x 轴的交点为0(,0)x ,则 由1(2)y k x -=+,令0y =,得021k x k+=-. ③ (ⅰ)若00,0,x ∆<⎧⎨<⎩ 由②③解得1k <-,或12k >.即当1(,1)(,)2k ∈-∞-+∞时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若00,0,x ∆=⎧⎨<⎩ 或00,0,x ∆>⎧⎨≥⎩ 由②③解得1{1,}2k ∈-,或102k -≤<.即当1{1,}2k ∈-时,直线l 与1C 只有一个公共点,与2C 有一个公共点.当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点.故当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若00,0,x ∆>⎧⎨<⎩ 由②③解得112k -<<-,或102k <<.即当11(1,)(0,)22k ∈--时,直线l 与1C 有两个公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点. 综合(1)(2)可知,当1(,1)(,){0}2k ∈-∞-+∞时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰好有三个公共点.。