中考数学全等三角形
- 格式:ppt
- 大小:535.50 KB
- 文档页数:10
2022年中考数学专题复习第4.3讲全等三角形★★★知识梳理★★★知识点一、全等三角形的概念和性质1.两个三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应边、对应角,全等三角形的对应线段(角平分线、中线、高线)、周长、面积分别对应.知识点二、全等三角形的判定1.全等三角形的判定方法:(1)基本事实:对应相等的两个三角形全等,简记为“边边边”或“SSS”;(2)基本事实:对应相等的两个三角形全等,简记为“边角边”或“SAS”;(3)基本事实:对应相等的两个三角形全等,简记为“角边角”或“ASA”;(4)对应相等的两个三角形全等,简记为“角角边”或“AAS”;(5)对应相等的两个直角三角形全等,简记为“斜边、直角边”或“HL”;2.证明三角形全等的一般思路如下:(1)若已知两边对应相等,则找第三条边(SSS)或它们的夹角(SAS)或找直角(HL)(2)若已知两角对应相等,则找它们的夹边(ASA)或其中一角的对边(AAS);(3)若已知一边和邻角对应相等,则找这边的另一邻角(ASA)或找这边的对角(AAS)或找这个角的另一边(SAS);(4)若已知一边和它的对角对应相等,则找一角(AAS)或已知角为直角的情况下,找一边(HL).★★★中考典例剖析★★★考点一:平移类型例1 (2021·大连)如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.【跟踪训练】1.(2021·衡阳)如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.考点二:轴对称类型例2 (2021·杭州)在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,并完成问题的解答.问题:如图,在△ABC中,∠ABC=∠ACB(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连接BE,BE与CD相交于点F.若,求证:BE=CD.(注:如果选择多个条件分别作答,按第一个解答计分)【跟踪训练】2.(2021·吉林)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.3.(2021云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.考点三:一线三等角类型例3 (2021·南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE ⊥AD于点E,CF⊥AD于点F.求证:AF=BE.【跟踪训练】4.(2020·宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长考点四:旋转型例4 (2021·黄石)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.【跟踪训练】5.(2021·重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD例5 (2021·徐州)如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F.(1)求证:AE=BD;(2)求∠AFD的度数.【跟踪训练】6.(2021·威海)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是()A.∠ADC=∠AEB B.CD∥AB C.DE=GE D.BF2=CF·AC★★★真题达标演练★★★1.(2021·兰州)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC =DF.2.(2021·新疆)如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:(1)△ABE≌△DCF;(2)四边形AEFD是平行四边形.3.(2021·盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS4.(2021·济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.5.(2021·台州)如图,在四边形ABCD 中,AB =AD =20,BC =DC =.(1)求证:△ABC ≌△ADC ;(2)当∠BCA =45°时,求∠BAD 的度数.6.(2021·重庆)如图,在△ABC 和△DCB 中,∠ACB =∠DBC ,添加一个条件,不能证明△ABC 和△DCB 全等的是( )A .∠ABC =∠DCB B .AB =DC C .AC =DBD .∠A =∠D7.(2021·无锡)已知:如图,AC ,DB 相交于点O ,AB =DC ,∠ABO =∠DCO . 求证:(1)△ABO ≌△DCO ;(2)∠OBC =∠OCB .2108.(2021·南京)如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF∥CD,交BD的延长线于点F.(1)求证:△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.9.(2021·福建)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.10.(2021·成都)如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD11.(2021·菏泽)如图,在菱形ABCD中,点M、N分别在AB、CB上,且∠ADM=∠CDN,求证:BM=BN.12.(2021·铜仁)如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为,结论为;(2)证明你的结论.13.(2021·柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?14.(2021·广州)如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF.证明:AE=DF.15.(2021·怀化)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.16.(2021·哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°17.(2021·齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)18.(2021·湘西州)如图,在△ABC中,点D在AB边上,CB=CD,将边CA绕点C 旋转到CE的位置,使得∠ECA=∠DCB,连接DE与AC交于点F,且∠B=70°,∠A =10°.(1)求证:AB=ED;(2)求∠AFE的度数.19.(2020·黔东南)如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.20.(2021·深圳)如图,已知反比例函数过A,B两点,A点坐标(2,3),直线AB经过原点,将线段AB绕点B顺时针旋转90°得到线段BC,则C点坐标为.21.(2021·福建)如图,在Rt△ABC中,∠ACB=90°.线段EF是由线段AB平移得到的,点F在边BC上,△EFD是以EF为斜边的等腰直角三角形,且点D恰好在AC的延长线上.(1)求证:∠ADE=∠DFC;(2)求证:CD=BF.22.(2021·西藏)如图,AB∥DE,B,C,D三点在同一条直线上,∠A=90°,EC⊥BD,且AB=CD.求证:AC=CE.23.(2021·陕西)如图,BD∥AC,BD=BC,且BE=AC.求证:∠D=∠ABC.2022年中考数学专题复习第4.3讲全等三角形★★★知识梳理★★★知识点一、全等三角形的概念和性质1.能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应边相等、对应角相等,全等三角形的对应线段(角平分线、中线、高线)、周长、面积分别对应相等.知识点二、全等三角形的判定1.全等三角形的判定方法:(1)基本事实:三边对应相等的两个三角形全等,简记为“边边边”或“SSS”;(2)基本事实:两边及其夹角对应相等的两个三角形全等,简记为“边角边”或“SAS”;(3)基本事实:两角及其夹边对应相等的两个三角形全等,简记为“角边角”或“ASA”;(4)两角及其中一个角的对边对应相等的两个三角形全等,简记为“角角边”或“AAS”;(5)斜边和直角边对应相等的两个直角三角形全等,简记为“斜边、直角边”或“HL”;2.证明三角形全等的一般思路如下:(1)若已知两边对应相等,则找第三条边(SSS)或它们的夹角(SAS)或找直角(HL)(2)若已知两角对应相等,则找它们的夹边(ASA)或其中一角的对边(AAS);(3)若已知一边和邻角对应相等,则找这边的另一邻角(ASA)或找这边的对角(AAS)或找这个角的另一边(SAS);(4)若已知一边和它的对角对应相等,则找一角(AAS)或已知角为直角的情况下,找一边(HL).★★★中考典例剖析★★★考点一:平移类型例1 (2021·大连)如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.【思路分析】根据线段的和差得到AB=DE,由平行线的性质得到∠A=∠EDF,根据全等三角形的性质即可得到结论.【解析】证明:∵AD=BE∴AD+BD=BE+BD,即AB=DE∵AC∥DF∴∠A=∠EDF又∵AC=DF∴△ABC≌△DEF(SAS)∴BC=EF【点评】本题考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定是解题的关键.【跟踪训练】1.(2021·衡阳)如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.【解析】证明:∵AC∥DF∴∠CAB=∠FDE∵BC∥EF∴∠CBA =∠FED 在△ABC 和△DEF 中 ∴△ABC ≌△DEF (ASA ) 考点二:轴对称类型例2 (2021·杭州)在①AD =AE ,②∠ABE =∠ACD ,③FB =FC 这三个条件中选择其中一个,并完成问题的解答.问题:如图,在△ABC 中,∠ABC =∠ACB (不与点A ,点B 重合),点E 在AC 边上(不与点A ,点C 重合),连接BE ,BE 与CD 相交于点F .若 ,求证:BE =CD .(注:如果选择多个条件分别作答,按第一个解答计分)【思路分析】若选择条件①,利用∠ABC =∠ACB 得到AB =AC ,则可根据“SAS ”可判断△ABE ≌△ACD ,从而得到BE =CD ;选择条件②,利用∠ABC =∠ACB 得到AB =AC ,则可根据“ASA ”可判断△ABE ≌△ACD ,从而得到BE =CD ;选择条件③,利用∠ABC =∠ACB 得到AB =AC ,再证明∠ABE =∠ACD ,则可根据“ASA ”可判断△ABE ≌△ACD ,从而得到BE =CD .【解析】证明:选择条件①的证明为: ∵∠ABC =∠ACB ∴AB =AC在△ABE 和△ACD 中 ∴△ABE ≌△ACD (SAS ) ∴BE =CD选择条件②的证明为:⎪⎩⎪⎨⎧∠=∠=∠=∠FED CBA DEAB FDE CAB ⎪⎩⎪⎨⎧=∠=∠=AD AE A A AC AB∵∠ABC =∠ACB ∴AB =AC在△ABE 和△ACD 中 ∴△ABE ≌△ACD (ASA ) ∴BE =CD选择条件③的证明为: ∵FB =FC ∴∠EBC =∠DCB ∵∠ABC =∠ACB ∴∠DBC =∠ECB 在△DCB 和△EBC 中 ∴△DCB ≌△EBC (SAS ) ∴BE =CD【点评】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键. 【跟踪训练】2.(2021·吉林)如图,点D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C. 求证:AD =AE .【解析】证明:在△ABE 与△ACD 中 ∴△ACD ≌△ABE (ASA )⎪⎩⎪⎨⎧∠=∠=∠=∠A A ACAB ACD ABE ⎪⎩⎪⎨⎧∠=∠=∠=∠EBC DCB CBBC ECB DBC ⎪⎩⎪⎨⎧∠=∠=∠=∠C B AC AB A A∴AD =AE3.(2021云南)如图,在四边形ABCD 中,AD =BC ,AC =BD ,AC 与BD 相交于点E . 求证:∠DAC =∠CBD .【解析】证明:在△DCA 和△DCB 中∴△CDA ≌△DCB (SSS ) ∴∠DAC =∠CBD 考点三:一线三等角类型例3 (2021·南充)如图,∠BAC =90°,AD 是∠BAC 内部一条射线,若AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .求证:AF =BE .【思路分析】根据AAS 证明△BAE ≌△ACF ,再根据全等三角形的对应边相等即可得解. 【解析】证明:∵∠BAC =90° ∴∠BAE +∠FAC =90° ∵BE ⊥AD ,CF ⊥AD ∴∠BEA =∠AFC =90° ∴∠BAE +∠EBA =90° ∴∠EBA =∠FAC 在△ACF 和△BAE 中⎪⎩⎪⎨⎧===CD DC BD AC BC AD∴△ACF ≌△BAE(AAS) ∴AF =BE【点评】本题考查三角形全能的判定与性质,解题关键是根据已知条件证明△ACF ≌△BAE. 【跟踪训练】4.(2020·宁波)△BDE 和△FGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF 的周长,则只需知道( )A .△ABC 的周长B .△AFH 的周长C .四边形FBGH 的周长D .四边形ADEC 的周长【解析】∵△GFH 为等边三角形 ∴FH =GH ,∠FHG =60° ∴∠AHF +∠GHC =120° ∵△ABC 为等边三角形∴AB =BC =AC ,∠ACB =∠A =60° ∴∠GHC +∠HGC =120° ∴∠AHF =∠HGC ∴△AFH ≌△CHG (AAS ) ∴AF =CH∵△BDE 和△FGH 是两个全等的等边三角形 ∴BE =FH∴五边形DECHF 的周长=DE +CE +CH +FH +DF =BD +CE +AF +BE +DF =(BD +DF +AF )+(CE +BE )=AB +BC ∴只需知道△ABC 的周长即可 故选:A .⎪⎩⎪⎨⎧=∠=∠∠=∠BA AC EBA FAC BEA AFC考点四:旋转型例4 (2021·黄石)如图,D 是△ABC 的边AB 上一点,CF ∥AB ,DF 交AC 于E 点,DE =EF .(1)求证:△ADE ≌△CFE ;(2)若AB =5,CF =4,求BD 的长.【思路分析】(1)先根据CF ∥AB 可得∠ADF =∠F ,∠A =∠ECF ,再结合DE =EF 即可证明△ADE ≌△CFE (AAS );(2)由(1)得出AD =CF ,利用BD =AB ﹣AD 即可求解. 【解析】(1)证明:∵CF ∥AB ∴∠ADF =∠F ,∠A =∠ECF 在△ADE 和△CFE 中 ∴△ADE ≌△CFE (AAS ) (2)∵△ADE ≌△CFE ∴AD =CF =4∴BD =AB ﹣AD =5﹣4=1【点评】本题考查平行线的性质、全等三角形的判定与性质,解决问的关键在于熟练掌握全等三角形的判定方法. 【跟踪训练】5.(2021·重庆)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不能判断△ABC ≌△DEF 的是( )⎪⎩⎪⎨⎧=∠=∠∠=∠FE DE F ADE FCE AA.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD【解析】证明:∵BF=EC∴BF+FC=EC+FC,即BC=EF又∵∠B=∠E∴添加条件为AB=DE时,△ABC≌△DEF(SAS),故A不符合题意;添加条件为∠A=∠D时,△ABC≌△DEF(AAS),故B不符合题意;添加条件为AC=DF时,无法判断△ABC≌△DEF,故C符合题意;添加条件为AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故D不符合题意;故选:C.例5 (2021·徐州)如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F.(1)求证:AE=BD;(2)求∠AFD的度数.【思路分析】(1)先证明∠ACE=∠BCD,再证明△ACE≌△BCD(SAS)即可得到AE=BD;(2)由△ACE≌△BCD得到∠A=∠B,由对顶角得到∠ANC=∠BNF,推出∠ACN =∠BFN=90°,即可求得∠AFD的度数.【解析】(1)证明:∵AC⊥BC,DC⊥EC∴∠ACB=∠ECD=90°∴∠ACB+∠BCE=∠ECD+∠BCE,即∠ACE=∠BCD在△ACE和△BCD中∴△ACE ≌△BCD (SAS ) ∴AE =BD(2)解:如图,设AE 与BC 交于点N∵△ACE ≌△BCD ∴∠A =∠B对顶角性质可知:∠ANC =∠BNF ∵∠ACB =90° ∴∠A +∠ANC =90° ∴∠B +∠BNF =90°∴∠NFD =90°即∠AFD =90°【点评】本题考查全等三角形的判定与性质、三角形内角和与外角定理,解决问的关键在于找到全等的三角形. 【跟踪训练】6.(2021·威海)如图,在△ABC 和△ADE 中,∠CAB =∠DAE =36°,AB =AC ,AD =AE .连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分∠ABC ,则下列结论错误的是( )A .∠ADC =∠AEB B .CD ∥ABC .DE =GED .BF 2=CF ·AC【解析】①∵∠CAB =∠DAE =36°∴∠CAB ﹣∠CAE =∠DAE ﹣∠CAE ,即∠DAC =∠EAB⎪⎩⎪⎨⎧=∠=∠=DC EC BCD ACE BC AC又∵AB=AC,AD=AE∴△DAC≌△EAB(SAS)∴∠ADC=∠AEB,故A选项不符合题意;②∵∠CAB=∠DAE=36°∴∠ACB=∠ABC=(180°﹣36°)÷2=72°∵BE平分∠ABC∴∠ABE=∠CBE=36°由①可知∠DCA=∠EBA=36°,∠CAB=36°∴CD∥AB,故B选项不符合题意;③假设DE=GE,则∠DGE=∠ADE=72°,∠DEG=180°﹣2×72°=36°∴∠AEG=∠AED﹣∠DEG=72°﹣36°=36°∵∠ABE=36°,∠AEG是△ABE的一个外角∴∠AEG=∠EAB+∠ABE而事实上∠AEG≠∠EAB+∠ABE∴假设不成立,故C选项符合题意;④∵∠CAB=∠CBF=36°,∠C=∠C=72°∴△ABC∽△BCF∴BC2=CF·AC又∵BC=BF∴BF2=CF·AC,故D选项不符合题意故选:C.★★★真题达标演练★★★1.(2021·兰州)如图,点E ,C 在线段BF 上,∠A =∠D ,AB ∥DE ,BC =EF.求证:AC =DF .【解析】证明:∵AB ∥DE ∴∠B =∠DEF 在△ABC 和△DEF 中 ∴△ABC ≌△DEF (SSS ) ∴AC =DF2.(2021·新疆)如图,在矩形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且BE =CF .求证:(1)△ABE ≌△DCF ; (2)四边形AEFD 是平行四边形.【解析】证明:(1)∵四边形ABCD 是矩形∴AB =CD ,∠ABC =∠DCB =90°,AD =BC ,AD ∥BC ∴∠ABE =∠DCF =90° 在△ABE 和△DCF 中 ∴△ABE ≌△DCF (SAS ) (2)∵四边形ABCD 为矩形⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEF B D A ⎪⎩⎪⎨⎧=∠=∠=CF BE DCF ABE DC AB∴AD ∥BC ,即AD ∥EF ,AD =BC ∵BE =CF∴BE +EC =CF +EC ,即BC =EF ∴AD =EF∴四边形AEFD 是平行四边形3.(2021·盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB 的两边OA 、OB 上分别在取OC =OD ,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是∠AOB 的平分线.这里构造全等三角形的依据是( )A .SASB .ASAC .AASD .SSS【解析】证明:在△COM 和△DOM 中 ∴△COM ≌△DOM (SSS )∴∠COM =∠DOM ,即OM 是∠AOB 的平分线 故选:D .4.(2021·济宁)如图,四边形ABCD 中,∠BAC =∠DAC ,请补充一个条件 ,使△ABC ≌△ADC .【解析】当AB =AD 时,△ABC ≌△ADC (SAS ); 当∠B =∠D 时,△ABC ≌△ADC (AAS ); 当∠ACB =∠ACD 时,△ABC ≌△ADC (ASA );⎪⎩⎪⎨⎧===MD MC OM OM OD OC故答案为:AB =AD 或∠B =∠D 或∠ACB =∠ACD.5.(2021·台州)如图,在四边形ABCD 中,AB =AD =20,BC =DC =.(1)求证:△ABC ≌△ADC ;(2)当∠BCA =45°时,求∠BAD 的度数. 【解析】(1)证明:在△ABC 和△ADC 中 ∴△ABC ≌△ADC (SSS )(2)如图,过点B 作BE ⊥AC 于点E∵BE ⊥AC ,∠BCA =45° ∴△BCE 为等腰直角三角形 ∴BE =BC ·sin45°=10 在RT △ABE 中,,即∠BAE =30° ∵△ABC ≌△ADC ∴∠BAC =∠DAC∴∠BAD =2∠BAE =2×30°=60°6.(2021·重庆)如图,在△ABC 和△DCB 中,∠ACB =∠DBC ,添加一个条件,不能证明△ABC 和△DCB 全等的是( )210⎪⎩⎪⎨⎧===AC AC DC BC AD AB 212010sin ===∠AB BEBAEA .∠ABC =∠DCB B .AB =DC C .AC =DBD .∠A =∠D【解析】在△ABC 和△DCB 中,∠ACB =∠DBC ,BC =BC A :当∠ABC =∠DCB 时,△ABC ≌△DCB (ASA ),故A 能证明; B :当AB =DC 时,不能证明两三角形全等,故B 不能证明; C :当AC =DB 时,△ABC ≌△DCB (SAS ),故C 能证明; D :当∠A =∠D 时,△ABC ≌△DCB (AAS ),故D 能证明; 故选:B .7.(2021·无锡)已知:如图,AC ,DB 相交于点O ,AB =DC ,∠ABO =∠DCO . 求证:(1)△ABO ≌△DCO ;(2)∠OBC =∠OCB .【解析】证明:在△ABO 和△DCO 中 ∴△ABO ≌△DCO (AAS ) (2)由(1)知,△ABO ≌△DCO ∴OB =OC ∴∠OBC =∠OCB8.(2021·南京) 如图,AC 与BD 交于点O ,OA =OD ,∠ABO =∠DCO ,E 为BC 延长线上一点,过点E 作EF ∥CD ,交BD 的延长线于点F . (1)求证:△AOB ≌△DOC ;(2)若AB =2,BC =3,CE =1,求EF 的长.【解析】(1)证明:∵OA =OD ,∠ABO =∠DCO⎪⎩⎪⎨⎧=∠=∠∠=∠DC AB DCO ABO COD AOB又∵∠AOB =∠DOC ∴△AOB ≌△DOC (AAS )(2)∵△AOB ≌△DOC ,AB =2,BC =3,CE =1 ∴AB =DC =2,BE =BC +CE =3+1=4 ∵EF ∥CD ∴△BEF ∽△BCD ∴,即 ∴EF =9.(2021·福建)如图,在△ABC 中,D 是边BC 上的点,DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,且DE =DF ,CE =BF .求证:∠B =∠C .【解析】证明:∵DE ⊥AC ,DF ⊥AB ∴∠DEC =∠DFB =90° 在△DEC 和△DFB 中 ∴△DEC ≌△DFB (SAS ) ∴∠B =∠C10.(2021·成都)如图,四边形ABCD 是菱形,点E ,F 分别在BC ,DC 边上,添加以下条件不能判定△ABE ≌△ADF 的是( )BC BE CD EF =342=EF 38⎪⎩⎪⎨⎧=∠=∠=BF CE DFB DEC DFDEA .BE =DFB .∠BAE =∠DAFC .AE =AD D .∠AEB =∠AFD【解析】由四边形ABCD 是菱形可得:AB =AD ,∠B =∠D A :添加BE =DF ,可用SAS 证明△ABE ≌△ADF ,故不符合题意; B :添加∠BAE =∠DAF ,可用ASA 证明△ABE ≌△ADF ,故不符合题意; C :添加AE =AD ,不能证明△ABE ≌△ADF ,故符合题意;D :添加∠AEB =∠AFD ,可用AAS 证明△ABE ≌△ADF ,故不符合题意; 故选:C .11.(2021·菏泽)如图,在菱形ABCD 中,点M 、N 分别在AB 、CB 上,且∠ADM = ∠CDN ,求证:BM =BN .【解析】证明:∵四边形ABCD 为菱形 ∴AD =CD =AB =BC ,∠A =∠C 在△AMD 和△CND 中 ∴△AMD ≌△CND (ASA ) ∴AM =CN∴AB ﹣AM =BC ﹣CN ,即BM =CN12.(2021·铜仁)如图,AB 交CD 于点O ,在△AOC 与△BOD 中,有下列三个条件:①OC =OD ,②AC =BD ,③∠A =∠B .请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法). (1)你选的条件为 ,结论为 ; (2)证明你的结论.【解析】(1)由AAS ,选的条件是:①,③,结论是:②;⎪⎩⎪⎨⎧∠=∠=∠=∠CDN ADM CDAD C A(2)证明:在△AOC 和△BOD 中 ∴△AOC ≌△BOD (AAS ) ∴AC =BD13.(2021·柳州)如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B ,连接AC 并延长到点D ,使CD =CA ,连接BC 并延长到点E ,使CE =CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【解析】证明:在△DEC 和△ABC 中 ∴△DEC ≌△ABC (SAS ) ∴DE =AB14.(2021·广州)如图,点E 、F 在线段BC 上,AB ∥CD ,∠A =∠D ,BE =CF. 证明:AE =DF .【解析】证明:∵AB ∥CD ∴∠B =∠C 在△ABE 和△DCF 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠OD OC BOD AOC B A ⎪⎩⎪⎨⎧=∠=∠=CB CE ACB DCE CA CD ⎪⎩⎪⎨⎧=∠=∠∠=∠CF BE C B D A∴△ABE ≌DCF (AAS ) ∴AE =DF15.(2021·怀化)已知:如图,四边形ABCD 为平行四边形,点E 、A 、C 、F 在同一直线上,AE =CF .求证:(1)△ADE ≌△CBF ;(2)ED ∥BF .【解析】证明:(1)∵四边形ABCD 为平行四边形 ∴DA =BC ,DA ∥BC ∴∠DAC =∠BCA∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180° ∴∠EAD =∠FCB 在△ADE 和△CBF 中 ∴△ADE ≌△CBF (SAS ) (2)由(1)知,△ADE ≌△CBF ∴∠E =∠F ∴ED ∥BF16.(2021·哈尔滨)如图,△ABC ≌△DEC ,点A 和点D 是对应顶点,点B 和点E 是对应顶点,过点A 作AF ⊥CD ,垂足为点F ,若∠BCE =65°,则∠CAF 的度数为( )A .30°B .25°C .35°D .65°【解析】解:∵△ABC ≌△DEC ∴∠ACB =∠DCE ∵∠BCE =65°∴∠ACD =∠BCE =65°⎪⎩⎪⎨⎧=∠=∠=CB AD FCB EAD CF AE∴∠AFC=90°∴∠CAF+∠ACD=90°∴∠CAF=90°﹣65°=25°故选:B.17.(2021·齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)【解析】证明:∵∠1=∠2∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD∵AC=AD∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为:∠B=∠E或∠C=∠或AB=AE.18.(2021·湘西州)如图,在△ABC中,点D在AB边上,CB=CD,将边CA绕点C 旋转到CE的位置,使得∠ECA=∠DCB,连接DE与AC交于点F,且∠B=70°,∠A =10°.(1)求证:AB=ED;(2)求∠AFE的度数.【解析】(1)证明:∵∠ECA=∠DCB∴∠ECA+∠ACD=∠DCB+∠ACD,即∠ECD=∠ACB∵AC=EC,CB=CD∴△ACB≌△ECD(SAS)(2)解:∵CB =CD ,∠B =70° ∴∠DCB =180°-2×70°=40° ∴∠ECA =∠DCB =40° ∵△ACB ≌△ECD ,∠A =10° ∴∠E =∠A =10°∴∠AFE =∠E +∠ECA =50°19.(2020·黔东南)如图1,△ABC 和△DCE 都是等边三角形. 探究发现(1)△BCD 与△ACE 是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用(2)若B 、C 、E 三点不在一条直线上,∠ADC =30°,AD =3,CD =2,求BD 的长. (3)若B 、C 、E 三点在一条直线上(如图2),且△ABC 和△DCE 的边长分别为1和2,求△ACD 的面积及AD 的长.【解析】(1)△BCD 与△ACE 全等 证明:∵△ABC 和△DCE 都是等边三角形 ∴AC =BC ,DC =EC ,∠ACB =∠DCE =60°∴∠ACB+∠ACD =∠DCE+∠ACD ,即∠BCD =∠ACE 在△ACE 和△BCD 中∴△ACE ≌△BCD ( SAS ) (2)由(1)得:△BCD ≌△ACE ∴BD =AE∵△DCE 是等边三角形⎪⎩⎪⎨⎧=∠=∠=CD CE BCD ACE BC AC∴∠CDE =60°,CD =DE =2 ∵∠ADC =30°∴∠ADE =∠ADC+∠CDE =30°+60°=90° 在Rt △ADE 中, ∴BD =(3)如图,过A 作AF ⊥CD 于点F∵△ABC 和△DCE 都是等边三角形 ∴∠BCA =∠DCE =60° ∵B 、C 、E 三点在一条直线上∴∠BCA+∠ACD+∠DCE =180°,即∠ACD =60° 在Rt △ACF 中,AF =AC ·sin ∠ACF =1×=,CF =AC ·cos ∠ACF =1×=∴S △ACD =CD ·AF =×2×FD =CD ﹣CF =2-=在Rt △AFD 中,AD 2=AF 2+FD 2=,即AD = 20.(2021·深圳)如图,已知反比例函数过A ,B 两点,A 点坐标(2,3),直线AB 经过原点,将线段AB 绕点B 顺时针旋转90°得到线段BC ,则C 点坐标为 .13232222=+=+=DE AD AE 132323212121212321233)23()23(22=+3【解析】如图,过点B 作y 轴的平行线l ,过点A 、C 作l 的垂线,分别交于D ,E 两点由题意及作图可知:B (﹣2,﹣3),D (2,﹣3) ∵∠ABD +∠CBE =90°,∠ABD +∠BAD =90° ∴∠CBE =∠BAD 在△ABD 与△BEC 中 ∴△ABD ≌△BEC (AAS ) ∴BE =AD =6,CE =BD =4 ∴C (4,﹣7) 故答案为:(4,﹣7).21.(2021·福建)如图,在Rt △ABC 中,∠ACB =90°.线段EF 是由线段AB 平移得到的,点F 在边BC 上,△EFD 是以EF 为斜边的等腰直角三角形,且点D 恰好在AC 的延长线上.(1)求证:∠ADE =∠DFC ;(2)求证:CD =BF .⎪⎩⎪⎨⎧=∠=∠∠=∠AB BC BAD CBE ADB BEC【解析】(1)证明:∵△EFD 是以EF 为斜边的等腰直角三角形 ∴∠ADE +∠ADF =90° ∵∠ACB =90° ∴∠ADF +∠DFC =90° ∴∠ADE =∠DFC(2)证明:如图,连接AE平移性质可知:AE ∥BF ,AE =BF ∴∠EAD =∠ACB =90° ∴∠EAD =∠DCF ∵△EFD 是等腰直角三角形 ∴DE =FD由(1)可知:∠ADE =∠DFC 在△AED 和△CDF 中 ∴△AED ≌△CDF (AAS ) ∴AE =CD ∴CD =BF22.(2021·西藏)如图,AB ∥DE ,B ,C ,D 三点在同一条直线上,∠A =90°,EC ⊥BD ,且AB =CD .求证:AC =CE .⎪⎩⎪⎨⎧=∠=∠∠=∠FD DE CFD ADE DCF EAD【解析】证明:∵AB ∥DE∴∠B =∠D∵EC ⊥BD ,∠A =90°∴∠DCE =90°=∠A在△ABC 和△CDE 中∴△ABC ≌△CDE (ASA )∴AC =CE23.(2021·陕西)如图,BD ∥AC ,BD =BC ,且BE =AC .求证:∠D =∠ABC .【解析】证明:∵BD ∥AC∴∠ACB =∠EBD在△ABC 和△EDB 中∴△ABC ≌△EDB (SAS )∴∠ABC =∠D ⎪⎩⎪⎨⎧∠=∠=∠=∠ECD A CDAB D B ⎪⎩⎪⎨⎧=∠=∠=EB AC EBD C BD CB。
1. 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2. 全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等。
3. 全等三角形的判定(1)三边对应相等的两个三角形全等(简记为:“边边边”或“SSS”);(2)两边和它们的夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”);(3)两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”);(4)两个角和其中一个角的对边对应相等的两个三角形全等(简记为:“角角边”或“AAS”);(5)斜边和一条直角边对应相等的两个直角三角形全等(简记为:“斜边、直角边”或“HL”)。
4. 常见的一个三角形经过变换得到另一个全等三角形。
(1)平移(2)翻折(3)旋转5. 判定两个三角形全等所需条件:(1)需要三个条件;(2)至少有一个条件为边。
注意:“边边角”不一定成立。
反例:如图,△ABC与△ABC'中,AB=AB,AC=AC',∠ABC=∠ABC',但△ABC与△ABC'不全等。
【解题方法指导】例1. (2005年安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明。
分析:由AB∥DE,可以得到∠A=∠D;由AF=DC,可以得到AC=DF;由AB=DE,由“SAS”可以得到△BAF≌△EDC,及△BAC≌△EDF由此又可以得到BF=EC,BC=EF,FC又是公共边,可证△BFC≌△EFC证明:在△BAF与△EDC中,∵AB∥DE∴∠A=∠D又AB=DE,AF=DC∴△BAF≌△EDC(SAS)评析:判断两个三角形全等,设法找齐三个条件,至少有一个条件是边,因此先找出给出的条件(如AB=DE,AF=DC);然后发展条件,继续得到有关信息(如由AB∥DE⇒∠A=∠D;由AF=DC⇒AC=DF)例2. 如图,B是AC上一点,DA⊥AC,EC⊥AC,DB=BE。
考点14 三角形及其全等一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形1.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;学科-网(3)全等三角形对应的中线、高线、角平分线、中位线都相等.考向一三角形的三边关系在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.典例1 小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为__________的木条.A.2cm B.3cmC.12cm D.15cm【答案】C【解析】设木条的长度为x cm,则9–6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选C.1.以下列各组线段为边,能组成三角形的是A.2cm,5cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.1cm,2cm,3cm考向二三角形的内角和外角在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.典例2 如图,下列有四个说法,正确的个数是①∠B >∠ACD ;②∠B +∠ACB =180°–∠A ;③∠A +∠B =∠ACD ;④∠HEC >∠ B .A .1个B .2个C .3个D .4个【解答】解:①∠B <∠ACD ,故①错误; ②∠B +∠ACB =180°–∠A ,故②正确; ③∠A +∠B =∠ACD ,故③正确;④∠HEC =∠AED >∠ACD >∠B ,则∠HEC >∠B ,故④正确. 故选C .2.如图,CE 是△ABC 的外角ACD ∠的平分线,若3560,B ACE ∠=︒∠=︒,则A ∠=__________.3.如图,在△ABC 中,∠ACB =68°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC =__________.考向三 三角形中的重要线段三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角,由三角形的中线可得线段之间的关系,由三角形的角平分线可得角之间的关系.另外,要注意区分三角形的中线和中位线.中线:连接三角形一个顶点和它对边中点的线段;中位线:连接三角形两条边中点的线段.典例3 在△ABC 中,AB =3,BC =4,AC =2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是A .5B .7C .9D .11【答案】B典例4 如图,点G 为△ABC 的重心,则S △ABG ∶S △ACG ∶S △BCG 的值是A .1∶2∶3B .2∶1∶2C .1∶1∶1D .无法确定【答案】C【解析】如图,分别延长AG 、CG 、BG ,交BC 、AB 、AC 于点D 、F 、E ,根据三角形重心的定理得到AD 、BE 、CF 是△ABC 的中线,根据三角形的中线把三角形分为面积相等的两个三角形可得,ABD ACD BDG CDG S S S S ∆∆∆==,即可得ABG ACG S S ∆∆=,同理可得ABG BCG S S ∆∆=,所以=ABG BCG ACG S S S ∆∆∆=,即S △ABG ∶S △ACG ∶S △BCG =1∶1∶1,故选C .4.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考向四 全等三角形1.从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路:(1)已知两边SAS HLSSS ⎧⎪⎨⎪⎩找夹角→找直角→找第三边→ (2)已知一边、一角AAS SAS ASA AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩一边为角的对边→找另一角→找夹角的另一边→一边为角的邻边找夹角的另一角→找边的对角→ (3)已知两角ASAAAS ⎧⎨⎩找夹边→找其中一角的对边→ 2.若题中没有全等的三角形,则可根据题中条件合理地添加辅助线,如运用作高法、倍长中线法、截长补短法、分解图形法等来解决运动、拼接、旋转等探究性题目.典例5 如图,已知∠ADB =∠CBD ,下列所给条件不能证明△ABD ≌△CDB 的是A .∠A =∠CB .AD =BC C .∠ABD =∠CDB D .AB =CD【答案】D【解析】A .∵∠A =∠C ,∠ADB =∠CBD ,BD =BD ,∴△ABD ≌△CDB (AAS ),故正确;B .∵AD =BC ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (SAS ),故正确;C .∵∠ABD =∠CDB ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (ASA ),故正确;D .∵AB =CD ,BD =DB ,∠ADB =∠CBD,不符合全等三角形的判定方法,故不正确,故选D.【名师点睛】本题考查了全等三角形的判定方法,①三边对应相等的两个三角形全等,简记为“SSS”;②两边及其夹角对应相等的两个三角形全等,简记为“SAS”;③两角及其夹边对应相等的两个三角形全等,简记为“ASA”;④两角及其中一角的对边对应相等的两个三角形全等,简记为“AAS”;⑤斜边及一直角边对应相等的两个三角形全等,根据这几种判定方法解答即可.5.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在∠O的平分线上,其中正确的结论个数是A.0 B.1C.2 D.36.如图,在△BCE中,AC⊥BE,AB=AC,点A、点F分别在BE、CE上,BF、AC相交于点D,BD=CE.求证:AD=AE.1.如图所示,其中三角形的个数是A.2个B.3个C.4个D.5个2.下列图形不具有稳定性的是A.正方形B.等腰三角形C.直角三角形D.钝角三角形3.直角三角形中两锐角之差为20°,则较大锐角为A.45° B.55°C.65° D.50°4.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC__________的交点.A.角平分线B.高线C.中线D.边的中垂线5.如图所示,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠1=∠26.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是A .∠DAE =∠CBEB .△DEA 不全等于△CEBC .CE =DED .△EAB 是等腰三角形7.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________度.8.如图所示,AB ⊥BE 于点B ,DE ⊥BE 于点E .(1)若∠A =∠D ,AB =DE ,则△ABC 与△DEF 全等的理由是__________; (2)若∠A =∠D ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (3)若AB =DE ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (4)若AB =DE ,AC =DF ,则△ABC 与△DEF 全等的理由是__________.学-科网9.如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是中线,AF ⊥BD ,F 为垂足,过点C 作AB 的平行线交AF 的延长线于点E .求证:(1)∠ABD =∠FAD ;(2)AB =2CE .10.如图,,,于D ,于E ,且.求证:.AB AC =90BAC ∠= BD AE ⊥CE AE ⊥BD CE >BD EC ED =+11.如图,操场上有两根旗杆CA与BD之间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M 点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?1.(2018•柳州)如图,图中直角三角形共有A.1个B.2个C.3个D.4个2.(2018•河北)下列图形具有稳定性的是A.B.C.D.3.(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是A.中线B.角平分线C.高D.中位线4.(2018•百色)顶角为30°的等腰三角形三条中线的交点是该三角形的A.重心B.外心C.内心D.中心5.(2018•毕节市)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是A.4 B.6C.8 D.106.(2018•贵阳市)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是A.线段DE B.线段BEC.线段EF D.线段FG7.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为A.90°B.95°C.100°D.120°8.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于A.150°B.180°C.210°D.270°9.(2018•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于A.40°B.45°C.50°D.55°10.(2018•聊城市)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°–α–β11.(2018•黔西南州市)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙B.乙和丙C.甲和丙D.只有丙12.(2018•安顺市)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACDA.∠B=∠C B.AD=AEC.BD=CE D.BE=CD13.(2018•南京市)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥A D.若CE=a,BF=b,EF=c,则AD的长为A.a+c B.b+cC.a–b+c D.a+b–c14.(2018•辽阳市)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为A.5 B.24 5C.4 D.12 515.(2018•绵阳市)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=__________.16.(2018•泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__________.17.(2018•陇南市)已知a,b,c是△ABC的三边长,a,b满足|a–7|+(b–1)2=0,c为奇数,则c=__________.18.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△ED C.19.(2018•云南)如图,已知AC平分∠BAD,AB=A D.求证:△ABC≌△ADC.4.【答案】3【解析】由勾股定理知AD3=,BD平分∠ABC交AC于D点,所以PD=AD最小,PD=3,故答案为:3.5.【答案】D【解析】∵OA=OB,∠A=∠B,∠O=∠O,∴△AOD≌△BOC(ASA),故①正确;∴OD=CO,∴BD=AC,∴△ACE≌△BDE(AAS),故②正确;∴AE=BE,连接OE,∴△AOE≌△BOE(SSS),∴∠AOE =∠BOE ,∴点E 在∠O 的平分线上,故③正确, 故选D .6.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CEAB AC =⎧⎨=⎩,∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .1.【答案】D【解析】图中的三角形有:△ABC ,△BCD ,△BCE ,△ABE ,△CDE 共5个.故选D . 2.【答案】A【解析】根据三角形具有稳定性可知,只有选项A 不具有稳定性,故选A . 3.【答案】B【解析】设两个锐角分别为x 、y ,由题意得,,解得,所以最大锐角为55°.故选B . 4.【答案】A【解析】∵到角的两边的距离相等的点在角的平分线上, ∴这个点是三角形三条角平分线的交点.故选A . 5.【答案】D【解析】根据全等“SAS”判定可知,要证△ABE ≌△DBC 还需补充条件AB ,BE 与BC ,BD 的夹角相等,即∠ABE =∠CBD 或者∠1=∠2,故选D . 6.【答案】B【解析】∵∠1+∠C +∠ABC =∠2+∠D +∠DAB =180°,且∠1=∠2,∠C =∠D , ∴∠ABC =∠DAB ,∴∠ABC –∠2=∠DAB –∠1,∴∠DAE =∠CBE .故A 正确;∵∠1=∠2,∴AE =BE .在△DEA 和△CEB 中DAE CBE C D AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEA ≌△CEB (AAS ),故B 错误;由△DEA ≌△CEB 可得CE =DE .故C 正确.∵∠1=∠2,∴BE =AE ,∴△EAB 是等腰三角形故D 正确;故选B .=90=20x y x y +︒-︒⎧⎨⎩=55=35x y ︒︒⎧⎨⎩7.【答案】135 【解析】如图所示:由题意可知△ABC ≌△EDC ,∴∠3=∠BAC , 又∵∠1+∠BAC =90°,∴∠1+∠3=90°,∵DF =DC ,∴∠2=45°,∴∠1+∠2+∠3=135度, 故答案是:135.8.【答案】ASA ,AAS ,SAS ,HL【解析】(1)在△ABC 和△DEF 中,因为∠B =∠E =90°, AB =DE ,∠A =∠D ,所以△ABC ≌△DEF (ASA); (2)在△ABC 和△DEF 中,因为∠B =∠E =90°, ∠A =∠D ,BC =EF ,所以△ABC ≌△DEF (AAS); (3)在△ABC 和△DEF 中,因为AB =DE ,∠B =∠E =90°, BC =EF ,所以△ABC ≌△DEF (SAS);(4)在Rt △ABC 和Rt △DEF 中,因为AC =DF ,AB =DE , 所以Rt △ABC ≌Rt △DEF (HL). 故答案为:ASA ;AAS ;SAS ;HL.10.【解析】,,,,,, ,90BAC ∠= CE AE ⊥BD AE ⊥90ABD BAD ∠∠∴+= 90BAD DAC ∠∠+= 90ADB AEC ∠∠== ABD DAC ∠∠∴=在和中,,∴≌(AAS ),,, ,∴BD =EC +ED .11.【解析】(1)如图,∵CM 和DM 的夹角为90°,∴∠1+∠2=90°,∵∠DBA =90°,∴∠2+∠D =90°,∴∠1=∠D ,在△CAM 和△MBD 中,,∴△CAM ≌△MBD (AAS ),∴AM =DB ,AC =MB , ∵AC =3m ,∴MB =3m ,∵AB =12m ,∴AM =9m ,∴DB =9m ; (2)9÷0.5=18(s ).学_科网答:小强从M 点到达A 点还需要18秒.1.【答案】CABD CAE ABD EAC BDA E AB AC ∠=∠∠=∠=⎧⎪⎨⎪⎩ABD CAE BD AE ∴=EC AD =AE AD DE =+ 1A B D CM MD ∠=∠∠=∠=⎧⎪⎨⎪⎩【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选C.2.【答案】A【解析】三角形具有稳定性.故选A.3.【答案】A【解析】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.4.【答案】A【解析】三角形三条中线的交点是三角形的重心,故选A.5.【答案】C【解析】设第三边长为x,则8–2<x<2+8,6<x<10,故选C.6.【答案】B【解析】根据三角形中线的定义知线段BE是△ABC的中线,故选B.7.【答案】B【解析】∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选B.8.【答案】C【解析】如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°–∠C=30°+90°+180°–90°=210°,故选C . 9.【答案】C【解析】∵∠A =60°,∠B =40°,∴∠ACD =∠A +∠B =100°, ∵CE 平分∠ACD ,∴∠ECD =12∠ACD =50°,故选C . 10.【答案】A【解析】由折叠得:∠A =∠A ',∵∠BDA '=∠A +∠AFD ,∠AFD =∠A '+∠CEA ', ∵∠A =α,∠CEA ′=β,∠BDA '=γ,∴∠BDA '=γ=α+α+β=2α+β,故选.11.【答案】B【解析】乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等; 在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等; 不能判定甲与△ABC 全等;故选B .13.【答案】D【解析】∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠AFB =∠CED =90°,∠A +∠D =90°,∠C +∠D =90°,∴∠A =∠C ,∵AB =CD ,∴△ABF ≌△CDE ,∴AF =CE =a ,BF =DE =b , ∵EF =c ,∴AD =AF +DF =a +(b –c )=a +b –c ,故选D . 14.【答案】B【解析】由题意可得,OC 为∠MON 的平分线, ∵OA =OB ,OC 平分∠AOB ,∴OC ⊥AB , 设OC 与AB 交于点D ,作BE ⊥AC 于点E ,∵AB =6,OA =5,AC =OA ,OC ⊥AB ,∴AC =5,∠ADC =90°,AD =3, ∴CD =4,∵2AB CD ⋅=2AC BE ⋅,∴642⨯=52BE ⨯,解得,BE =245,故选B . 15【解析】∵AD 、BE 为BC ,AC 边上的中线,∴BD =12BC =2,AE =12AC =32,点O 为△ABC 的重心,∴AO =2OD ,OB =2OE , ∵BE ⊥AD ,∴BO 2+OD 2=BD 2=4,OE 2+AO 2=AE 2=94,∴BO 2+14AO 2=4,14BO 2+AO 2=94,∴54BO 2+54AO 2=254,∴BO 2+AO 2=5,∴AB. 16.【答案】5【解析】根据三角形的三边关系,得4<第三边<6. 又第三条边长为整数,则第三边是5.故答案为:5. 17.【答案】7【解析】∵a ,b 满足|a –7|+(b –1)2=0,∴a –7=0,b –1=0,解得a =7,b =1, ∵7–1=6,7+1=8,∴6<c <8,又∵c 为奇数,∴c =7,故答案是:7.18.【解析】∵在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ).19.【解析】∵AC 平分∠BAD ,∴∠BAC =∠DAC ,在△ABC 和△ADC 中,,∴△ABC ≌△ADC .A EAC EC ACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩AB AD BAC DAC AC AC =∠=∠=⎧⎪⎨⎪⎩。
全等三角形的五种模型一、手拉手模型已知:△ABE和△ACD为两个的等腰三角形,∠BAE=∠CAD=∠α,连接EC,BD交于点O结论:①△ABD ≌△AEC;②∠α+∠BOC=180°;③OA平分∠BOC已知:△ABD和△ACE均为等腰直角三角形,连接CD,BE交于点O结论:①△ACD ≌△ABE;②∠BOC=90°;③OA平分∠BOC已知:直线AB的同一侧作△ABD和△BCE都为等边三角形,连接AE,CD,二者交点为H结论:①△ABE≌△DBC;②AE=DC;③∠DHA=60°;④△AGB≌△DFB;⑤△EGB≌△CFB;⑥连接GF,GF∥AC;⑦连接HB,HB平分∠AHC模型应用1. (2010·深圳改编)如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D 在AB上.(1)求证:△AOC≌△BOD;(2)判断△CAD是什么形状的三角形,说明理由.2.如图,△ABC与△ADE都是等腰直角三角形,连接CD,BE,CD,BE相交于点O,判断CD 与BE的位置关系,并说明理由半角模型已知:正方形ABCD中,E,F分别是BC,CD边上的点,且∠EAF=45°结论:将△ADF绕点A旋转90°到△ABG,则:①EF=DF+BE;②△CEF的周长为正方形ABCD周长的一半已知:正方形ABCD中,E,F分别是BC,CD边上的点,且∠EAF=45°结论:将△AEB绕点A为旋转90°到△ADE′,则:EF=DF-BE已知:在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF,AE,AF,过A 作AH⊥EF于点H,BE=EH结论:①△ABE≌△AHE;②△AHF≌△ADF;③∠EAF=45°;④EF=BE+DF模型应用3. (2015·深圳改编)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE 折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③∠GDE=45°;④DG=DE.在以上4个结论中,正确的共有()A. 1个B. 2 个C. 3 个D. 4个4. 如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF,AE,AF,过A作AH⊥EF于点H.若EF=BE+DF,那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF =45°;④S△EAF=S△ABE+S△ADF;⑤△CEF的周长为2.其中正确结论的个数是() A. 2 B. 3C. 4D. 5第三题第四题倍长中线模型已知:在△ABC 中,AD 是BC 边中线结论:延长AD 到E ,使DE =AD ,连接BE ,则:①△ADC ≌△EDB ;②AD< 21(AB +AC)已知:在△ABC 中,AD 是BC 边中线结论:作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E ,连接BE ,则:①△BDE ≌△CDF ;②BE ∥FC模型应用6. 已知:在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF.一直线三垂直模型已知:AE=DE,AE⊥DE,∠B=∠C=90结论:①△ABE≌△ECD;②BC=AB+CD已知:在正方形ABCD中,∠ABF=∠C=90°,AF⊥BE,交于点H结论:①△ABF≌△BCE;②EC=AB-FC模型应用7. (2016·深圳改编)如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF 为正方形,过点F作FG∠CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S∠FAB∠S四边形CBFG=1∠2;③∠ABC=∠ABF.其中正确的结论的个数是()A.1B. 2C. 3D. 08. 如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③MD=2AM=4EM.其中正确的结论有()A. 0个B. 1个C. 2个D. 3个9. 如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE∠AG于点E,BF∠DE,交AG 于点F.给出以下结论:①∠AED∠∠BFA;②DE-BF=EF;③∠BGF∠∠DAE;④DE-BG=FG.其中正确的有()A. 1个B. 2个C. 3个D. 4个10. (2018·深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是________.对角互补模型已知:已知∠AOB=∠DCE=90°,OC平分∠AOB结论模型应用11.(2012·深圳)如图,Rt∠ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形6,则另一直角边BC的长为________.对角线交于点O,连接OC,已知AC=5,OC=212. (2017·深圳)如图,在Rt∠ABC中,∠ABC=90°,AB=3,BC=4,Rt∠MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.。
2024年中考数学《全等三角形》专题练习附带答案学校:___________班级:___________姓名:___________考号:___________知识重点1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。
(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,△ABC≌△EDC,AC=3cm,DC=5cm,则BE=()A.1cm B.2cm C.3cm D.4cm3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.30°C.35°D.25°4.小亮设计了如下测量一池塘两端AB的距离的方案:先取一个可直接到达点A,B的点O,连接AO,BO,延长AO至点P,延长BO至点Q,使得OP=AO,OQ=BO再测出PQ的长度,即可知道A,B之间的距离.他设计方案的理由是()A.SAS B.AAS C.ASA D.SSS5.如图,点F,E在AC上AD=CB,∠D=∠B添加一个条件,不一定能证明△ADE≌△CBF的是()A.AD∥BC B.DE∥FB C.DE=BF D.AE=CF6.如图所示∠E=∠D,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD 7.如图,OD平分∠AOB,DE⊥AO于点E,DE=5 F是射线OB上的任意一点,则DF的长度不可能是()A.4 B.5 C.5.5 D.68.如图,AD是△BAC的平分线,DE⊥AB于点E,S△ABC=32,DE=4,AB=9,则AC的长是()A.5 B.6 C.7 D.8二、填空题9.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF 相等,那么判定△ABC与△DEF全等的依据是.10.若△ABC≌△DEF,A与D,B与E分别是对应顶点∠A=50°,∠B=60°则∠F=. 11.如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为;12.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知BC=8,DE=2则△BCE 的面积等于.13.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.三、解答题14.如图,点B,C,E,F在同一直线上,AB=DF,AC=DE,BE=CF.求证:AB∥DF.15.如图,在Rt△ABC中∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≅△ABC.16.如图,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE平分∠DAB.求证:CD+AB=AD.17.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:(1)OD=OE;(2)OB=OC.18.如图,在△ABC中AC>AB,射线AD平分∠BAC,交BC于点E,点F在边AB的延长线上AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.19.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.A2.B3.C4.A5.D6.B7.A8.C9.HL10.70°11.12.5cm212.813.1214.解:∵ BE=CF∴BE−CE=CF−CE∴BC=FE∵ AB=DF,AC=DE∴△ABC≌△DFE(SSS)∴∠B=∠F∴AB∥DF.15.证明:∵DE⊥AC,∠DEC=90°又∵∠B=90°∴∠DEC=∠B=90°∵CD∥AB,∴∠A=∠DCE在△CED和△ABC中{∠DCE=∠A CE=AB∠DEC=∠B∴△CED≅△ABC(ASA).16.证明:如图,过点E作EF⊥AD于F∵∠B=90°,AE平分∠DAB∴BE=EF在Rt△EFA和Rt△EBA中{EF=EBAE=AE∴Rt△EFA和≌Rt△EBA(HL).∴AF=AB∵E是BC的中点∴BE=CE=EF在Rt△EFD和Rt△ECD中{EF=ECDE=DE∴Rt△EFD和≌Rt△ECD(HL).∴DF=CD∴CD+AB=DF+AF=AD∴CD+AB=AD.17.(1)证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC ∴OD=OE(2)证明:∵CD⊥AB,BE⊥AC∴∠BDO=∠CEO=90°在△BDO和△CEO中{∠BDO=∠CEO DO=CO∠BOD=∠COE∴△BDO≌△CEO(ASA)∴OB=OC18.(1)证明:射线AD平分∠BAC∴∠CAE=∠FAE 在△AEC和△AEF中{AC=AF∠CAE=∠FAE AE=AE∴△AEC≌△AEF(SAS);(2)解:∵△AEC≌△AEF(SAS)∴∠AEC=∠AEF∵∠AEB=50°∴∠AEC=180°−∠AEB=180°−50°=130°∴∠AEF=∠AEC=130°∴∠BEF=∠AEF−∠AEB=80°∴∠BEF为80°.19.18.(1)解:∵∠BAC=90°,∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°,∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。