数学必修四第一章 章末检测(B)含答案
- 格式:docx
- 大小:71.84 KB
- 文档页数:8
第一章章末检测班级____ 姓名____ 考号____ 分数____ 本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列命题中正确的是( ) A .终边相同的角一定相等 B .锐角都是第一象限角 C .第一象限角都是锐角 D .小于90°的角都是锐角 答案:B2.已知sin(2π-α)=45,α∈⎝ ⎛⎭⎪⎫3π2,2π,则sin α+cos αsin α-cos α等于( )A.17 B .-17 C .-7 D .7 答案:A解析:∵sin(2π-α)=sin(-α)=-sin α=45,∴sin α=-45.∵α∈⎝ ⎛⎭⎪⎫3π2,2π,∴cos α=1-sin 2α=35.∴sin α+cos αsin α-cos α=-45+35-45-35=-15-75=17. 3.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4 答案:B解析:∵sin α=-12=-12,且α的终边在第四象限,∴α=116π.4.若函数y =2cos ωx 在区间⎣⎢⎡⎦⎥⎤0,2π3上递减,且有最小值1,则ω的值可以是( )A .2 B.12C .3 D.13答案:B解析:由y =2cos ωx 在⎣⎢⎡⎦⎥⎤0,2π3上是递减的,且有最小值为1,则有f ⎝ ⎛⎭⎪⎫2π3=1,即2×cos ⎝ ⎛⎭⎪⎫ω×2π3=1,cos ⎝ ⎛⎭⎪⎫2π3ω=12,检验各选项,得出B 项符合.5.sin(-1740°)的值是( ) A .-32 B .-12C.12D.32 答案:D解析:sin(-1740°)=sin60°=32.6.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( )A.⎣⎢⎡⎦⎥⎤-3,3B.⎣⎢⎡⎦⎥⎤-3,3C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3答案:B解析:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.7.下列函数中,在⎝ ⎛⎭⎪⎫0,π2上是增函数的偶函数是( )A .y =|sin x |B .y =|sin2x |C .y =|cos x |D .y =tan x 答案:A解析:作图比较可知.8.要得到函数y =cos(3x +2)的图象,只要将函数y =cos3x 的图象( ) A .向左平移2个单位 B .向右平移2个单位 C .向左平移23个单位D .向右平移23个单位答案:C解析:∵y =cos(3x +2)=cos3⎝ ⎛⎭⎪⎫x +23,∴只要将函数y =cos3x 的图象向左平移23个单位即可.9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3的值为( ) A .-12 B.32C .-32 D.12答案:B解析:f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.10.若函数f (x )=2sin ⎝⎛⎭⎪⎫ax +π4(a >0)的最小正周期为1,且g (x )=⎩⎪⎨⎪⎧sin ax xg x -x,则g ⎝ ⎛⎭⎪⎫56等于( )A .-12 B.12C .-32 D.32答案:C解析:由条件得f (x )=2sin ⎝ ⎛⎭⎪⎫ax +π4,又函数的最小正周期为1,故2πa =1,∴a =2π,∴g ⎝ ⎛⎭⎪⎫56=g ⎝ ⎛⎭⎪⎫-16=sin ⎝ ⎛⎭⎪⎫-a 6= sin ⎝ ⎛⎭⎪⎫-π3=-32.11.已知ω>0,函数f (x )=sin(ωx +π4)在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12 D .(0,2] 答案:A解析:因为ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,所以ωπ2+π4≤ωx+π4≤ωπ+π4,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A.12.下图为一半径为3m 的水轮,水轮圆心O 距离水面2m ,已知水轮自点A 开始旋转,15s 旋转一圈.水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系式y =A sin(ωx +φ)+2,则有()A .ω=2π15,A =3B .ω=152π,A =3C .ω=2π15,A =5D .ω=152π,A =5答案:A解析:∵T =15,故ω=2πT =2π15,显然y max -y min 的值等于圆O 的直径长,即y max -y min =6,故A =y max -y min 2=62=3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知sin ⎝ ⎛⎭⎪⎫π4-α=m ,则cos ⎝ ⎛⎭⎪⎫π4+α=________.答案:m解析:cos ⎝ ⎛⎭⎪⎫π4+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4-α=m .14.已知f (x )的定义域为(0,1],则f (sin x )的定义域是________. 答案:(2k π,2k π+π),k ∈Z解析:由0<sin x ≤1得2k π<x <2k π+π(k ∈Z ). 15.函数y =sin x +cos x -12的定义域为________.答案:{x |2k π≤x ≤2k π+π3,k ∈Z }.解析:由题意知⎩⎨⎧sin x ≥0cos x -12≥0,即⎩⎨⎧sin x ≥0cos x ≥12,如图,结合三角函数线知:⎩⎨⎧2k π≤x ≤2k π+πk ∈Z 2k π-π3≤x ≤2k π+π3k ∈Z,解得2k π≤x ≤2k π+π3(k ∈Z ),∴函数的定义域为{x |2k π≤x ≤2k π+π3,k ∈Z }.16.关于函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R )有下列命题,其中正确的是________.①y =f (x )的表达式可改写为y =4cos ⎝ ⎛⎭⎪⎫2x -π6;②y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称;③y =f (x )的最小正周期为2π;④y =f (x )的图象的一条对称轴为x =-π6.答案:①②解析:4sin ⎝ ⎛⎭⎪⎫2x +π3=4cos ⎝⎛⎭⎪⎫2x -π6,故①②正确,③④错误.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α的终边经过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值; (2)求sin ⎝ ⎛⎭⎪⎫π2-αα+·α--α的值.解:(1)∵|OP |=1,∴点P 在单位圆上.由正弦函数的定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α.由余弦函数的定义得cos α=45,故所求式子的值为54.18.(12分)已知sin θ,cos θ是关于x 的方程x 2-2 2ax +a =0的两个根.(1)求实数a 的值;(2)若θ∈⎝ ⎛⎭⎪⎫-π2,0,求sin θ-cos θ的值.解:(1)∵(sin θ+cos θ)2-2sin θcos θ=1, 又∵⎩⎪⎨⎪⎧sin θ+cos θ=2 2a ,sin θ·cos θ=a ,∴a =12或a =-14,经检验Δ≥0都成立,∴a =12或a =-14.(2)∵θ∈⎝ ⎛⎭⎪⎫-π2,0,∴a <0,∴a =-14且sin θ-cos θ<0,∴sin θ-cos θ=-62.19.(12分)若函数f (x )=a -b cos x 的最大值为52,最小值为-12,求函数g (x )=-4a sin bx 的最值和最小正周期.解:当b >0时,⎩⎨⎧a +b =52a -b =-12⇒⎩⎨⎧a =1,b =32,g (x )=-4sin 32x .最大值为4,最小值为-4,最小正周期为4π3.当b <0时,⎩⎨⎧a -b =52a +b =-12⇒⎩⎨⎧a =1,b =-32,g (x )=-4sin(-32x )=4sin 32x .最大值为4,最小值为-4,最小正周期为4π3.b =0时不符合题意.综上所述,函数g (x )的最大值为4,最小值为-4,最小正周期为4π3.20.(12分)如图,单摆从某点开始来回摆动,离开平衡位置的距离s (cm)和时间t (s)的函数关系是s =A sin(ω t +φ),0<φ<π2,根据图象,求:(1)函数解析式;(2)单摆摆动到最右边时,离开平衡位置的距离是多少? (3)单摆来回摆动一次需要多长时间?解:(1)由图象知,34T =1112-16=34,所以T =1.所以ω=2πT =2π.又因为当t =16时取得最大值,所以令2π·16+φ=π2+2k π,∵φ∈⎝ ⎛⎭⎪⎫0,π2. 所以φ=π6.又因为当t =0时,s =3,所以3=A sin π6,所以A =6,所以函数解析式为s =6sin ⎝ ⎛⎭⎪⎫2πt +π6.(2)因为A =6,所以单摆摆动到最右边时,离开平衡位置6cm. (3)因为T =1,所以单摆来回摆动一次需要 1s.21.(12分)设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期.(1)求f (0); (2)求f (x )的解析式;(3)已知f ⎝ ⎛⎭⎪⎫α4+π12=95,求sin α的值.解:(1)f (0)=3sin ⎝⎛⎭⎪⎫ω×0+π6=3sin π6=32.(2)∵T =2πω=π2,∴ω=4,所以f (x )的解析式为:f (x )=3sin(4x +π6).(3)由f ⎝ ⎛⎭⎪⎫α4+π12=95得3sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫α4+π12+π6=95,即sin ⎝ ⎛⎭⎪⎫α+π2=35,∴cos α=35,∴sin α=±1-cos 2α=±1-⎝ ⎛⎭⎪⎫352=±45.22.(12分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4,x ∈R .(1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤-π8,π2时,方程f (x )=k 恰有两个不同的实数根,求实数k 的取值范围;(3)将函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4的图象向右平移m (m >0)个单位后所得函数g (x )的图象关于原点中心对称,求m 的最小值.解:(1)因为f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4,所以函数f (x )的最小正周期为T =2π2=π,由-π+2k π≤2x -π4≤2k π,得-3π8+k π≤x ≤π8+k π,故函数f (x )的递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z );(2)因为f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤-π8,π8上为增函数,在区间⎣⎢⎡⎦⎥⎤π8,π2上为减函数又f ⎝ ⎛⎭⎪⎫-π8=0,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π2=2cos ⎝ ⎛⎭⎪⎫π-π4=-2cos π4=-1,∴当k ∈[0,2)时方程f (x )=k 恰有两个不同实根. (3)∵f (x )=2sin ⎝ ⎛⎭⎪⎫-2x +3π4=2sin ⎝ ⎛⎭⎪⎫2x +π4=2sin2⎝ ⎛⎭⎪⎫x +π8∴g (x )=2sin2⎝ ⎛⎭⎪⎫x +π8-m =2sin ⎝ ⎛⎭⎪⎫2x +π-2m由题意得π4-2m=2kπ,∴m=-kπ+π8,k∈Z当k=0时,m=π8,此时g(x)=2sin2x关于原点中心对称.。
2018-2019学年必修四第一章训练卷三角函数(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)( )A. B.23C. D.21 2.已知点33sin ,cos 44P ⎛⎫ππ ⎪⎝⎭落在角θ的终边上,且[)0,2θ∈π,则θ的值为( )A.4πB.43π C.45π D.47π 3.已知3tan 4α=,3,2α⎛⎫∈ππ ⎪⎝⎭,则cos α的值是( ) A.45±B.45 C.45-D.354.已知sin 24()5απ-=,32α⎛⎫∈π,2π ⎪⎝⎭,则sin cos sin cos αααα+-等于( ) A.17 B.17-C.7-D.75.已知函数()(2)sin f x x ϕ+=的图象关于直线8x π=对称,则ϕ可能取值是( ) A.2π B.4π-C.4π D.43π 6.若点sin cos ,t ()an P ααα-在第一象限,则在[)0,2π内α的取值范围是( ) A.35,,244πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭B.5,,424πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭C.353,,2442ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D.3,,244ππ3π⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭7.已知a 是实数,则函数()1sin f x a ax +=的图象不可能是( )8.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象( )A.向右平移6π个单位长度 B.向右平移3π个单位长度 C.向左平移6π个单位长度 D.向左平移3π个单位长度 9.电流强度I (安)随时间t (秒)变化的函数()sin 0,0,02I A x A ωϕωϕπ⎛⎫=+>><< ⎪⎝⎭的图象如右图所示,则当1100t =秒时,电流强度是( ) 此卷只装订不密封班级 姓名 准考证号 考场号座位号A.5A -B.5AC.D.10A10.已知函数())2sin 0(y x ωθθ=+<<π为偶函数,其图象与直线2y =的某两个交点横坐标为1x 、2x ,若21x x -的最小值为π,则( ) A.2ω=,2θπ= B.12ω=,2θπ= C.12ω=,4θπ=D.2ω=,4θπ=11.设0ω>,函数sin 23y x ωπ⎛⎫=++ ⎪⎝⎭的图象向右平移34π个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D.312.如果函数(3cos 2)y x ϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,那么ϕ的最小值为( ) A.6πB.4π C.3π D.2π二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知一扇形的弧所对的圆心角为54︒,半径20 cm r =,则扇形的周长为_______.14.方程1sin 4x x π=的解的个数是________.15.已知函数()2sin()f x x ωϕ+=的图象如图所示,则712f π⎛⎫= ⎪⎝⎭________.16.已知函数sin 3xy π=在区间[]0,t 上至少取得2次最大值,则正整数t 的最小值是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)求函数234sin 4cos y x x =--的最大值和最小值,并写出函数取最值时对应的x 的值.18.(12分)已知函数cos 233y a x π⎛⎫=++ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的最大值为4,求实数a 的值.19.(12分)如右图所示,函数()2cos 0,02y x x ωθωθπ⎛⎫=+∈>≤≤ ⎪⎝⎭R,的图象与y 轴交于点(,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点,02A π⎛⎫⎪⎝⎭,点P 是该函数图象上一点,点00(,)Q x y 是PA 的中点,当0y =0,2x π⎡⎤∈π⎢⎥⎣⎦时,求0x 的值.20.(12分)已知α是第三象限角,()()()()()()sin cos 2tan tan sin f ααααααπ-⋅π-⋅--π=-⋅-π-.(1)化简()f α;(2)若31cos 25α⎛⎫-π= ⎪⎝⎭,求()f α的值;(3)若1860α=-︒,求()f α的值.21.(12分)在已知函数()sin()f x A x ωϕ+=,x ∈R 0,002A ωϕπ⎛⎫>><< ⎪⎝⎭其中,的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.22.(12分)已知函数()sin()f x A x ωϕ+=0002A ϕωπ⎛⎫>><< ⎪⎝⎭且,的部分图象,如图所示.(1)求函数()f x 的解析式;(2)若方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根,试求a 的取值范围.2018-2019学年必修四第一章训练卷三角函数(一)答案一、选择题1.【答案】Bsin120=︒=故选B.2.【答案】D【解析】点33sin,cos44P⎛⎫ππ⎪⎝⎭即P⎝⎭;它落在角θ的终边上,且[)0,2θ∈π,∴4θ=7π,故选D.3.【答案】C【解析】∵3tan4α=,3,2α⎛⎫∈ππ⎪⎝⎭,∴cos45α=-,故选C.4.【答案】A【解析】4sin2sin()5αα=-π-=,∴sin45α=-.又32α⎛⎫∈π,2π⎪⎝⎭,∴cos35α=.∴sin cos1sin cos7αααα+=-,故选A.5.【答案】C【解析】检验sin84fϕππ⎛⎫=⎪⎝+⎭⎛⎫⎪⎝⎭是否取到最值即可.故选C.6.【答案】B【解析】sin cos0αα->且tan0α>,∴,42αππ⎛⎫∈ ⎪⎝⎭或5,4απ⎛⎫∈π⎪⎝⎭.故选B.7.【答案】D【解析】当0a=时()1f x=,C符合,当01a<<时2T>π,且最小值为正数,A符合,当1a>时2T<π,B符合.排除A、B、C,故选D.8.【答案】B【解析】sin2cos2cos2cos2cos2626333y x x x x xπ⎡ππ⎤2π2ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=--=-=-=-⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选B.9.【答案】A【解析】由图象知10A=,4112300300100T=-=,∴150T=,∴2100Tωπ==π.∴()10sinI tϕ=100π+.∵1,10300⎛⎫⎪⎝⎭为五点中的第二个点,∴11003002ϕππ⨯+=.∴6ϕπ=.∴10sin6I tπ⎛⎫=100π+⎪⎝⎭,当1100t=秒时, 5 AI=-,故选A.10.【答案】A【解析】∵()2siny xωθ=+为偶函数,∴2θπ=.∵图象与直线2y=的某两个交点横坐标为1x、2x,21minx x-=π,即minT=π,∴2ωπ=π,2ω=,故选A.11.【答案】C【解析】由函数向右平移34π个单位后与原图象重合,得34π是此函数周期的整数倍.又0ω>,∴243kωπ⋅=π,∴()32k kω=∈Z,∴min32ω=.故选C.12.【答案】A【解析】∵(3cos2)y xϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,即43cos 203ϕπ⎛⎫⨯+= ⎪⎝⎭,∴,32k k ϕ8ππ+=+π∈Z . ∴136k ϕπ=-+π,∴当2k =时,ϕ有最小值6π.故选A .二、填空题13.【答案】640cm () π+ 【解析】∵圆心角35410απ=︒=,∴6l r α=⋅=π. ∴周长为640cm () π+. 14.【答案】7【解析】在同一坐标系中作出sin y x =π与14y x =的图象, 观察易知两函数图象有7个交点,所以方程有7个解. 15.【答案】0【解析】方法一,由图可知,54432T ππ=-=π,即3T 2π=, ∴3T ω2π==.∴(32sin )y x ϕ+=,将,04π⎛⎫ ⎪⎝⎭代入上式sin 04ϕ3π⎛⎫⎪⎝⎭=+. ∴4k ϕ3π+=π,k ∈Z ,则4k ϕ3π=π-. ∴2sin 447012f k 7π3ππ⎛⎛⎫== ⎫+π- ⎪⎪⎝⎭⎝⎭.方法二,由图可知,54432T ππ=-=π,即3T 2π=, 又由正弦图象性质可知, 若()0002T f x f x ⎛⎫= ⎪⎝⎭=+,∴7012434f f f ππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 16.【答案】8 【解析】6T =,则54T t ≤,∴152t ≥,∴min 8t =.三、解答题 17.【答案】见解析.【解析】222134sin 4cos 4sin 4sin 14sin 22y x x x x x ⎛⎫=--=--=-- ⎪⎝⎭,令sin t x =,则11t -≤≤, ∴()2142112y t t ⎛⎫=---≤≤ ⎪⎝⎭.∴当12t =,即26x k π=+π或()26x k k 5π=+π∈Z 时,min 2y =-;当1t =-,即()22x k k 3π=+π∈Z 时,max 7y =. 18.【答案】2或1-.【解析】∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴42,333x πππ⎡⎤+∈⎢⎥⎣⎦,∴11cos 232x π⎛⎫-≤+≤ ⎪⎝⎭.当0a >,1cos 232x π⎛⎫+= ⎪⎝⎭时,y 取得最大值132a +,∴1342a +=,∴2a =. 当0a <,cos 213x π⎛⎫+=- ⎪⎝⎭时,y 取得最大值3a -+,∴34a -+=,∴1a =-,综上可知,实数a 的值为2或1-. 19.【答案】(1)6π,2;(2)023x π=或43π.因为02θπ≤≤,所以6θπ=. 由已知T =π,且0ω>,得222T ωππ===π. (2)因为点,02A π⎛⎫⎪⎝⎭,00(,)Q x y 是PA 的中点,0y =所以点P 的坐标为022x π⎛- ⎝. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,且02x π≤≤π,所以056c 4os x ⎛⎫ ⎪⎝⎭π-=,且056646x 7ππ19π-≤≤, 从而得05664x π11π-=,或05664x π13π-=,即023x π=,或04x 3π=. 20.【答案】(1)cos α;(2);(3)12. 【解析】(1)()()()()()()sin cos 2tan sin cos tan cos tan sin tan sin f ααααααααααααπ-⋅π-⋅--π-⋅⋅===-⋅-π--⋅.(2)∵33cos cos sin 22ααα⎛⎫⎛⎫-π=π-=- ⎪ ⎪⎝⎭⎝⎭,又31cos 25α⎛⎫-π= ⎪⎝⎭,∴1sin 5α=-.又α是第三象限角, ∴cos α==, ∴()f α=. (3)()()()11860cos 1860cos1860cos 536060cos60()2f f α︒︒=︒=⨯︒+=︒=-︒==-. 21.【答案】(1)()sin 226f x x π⎛⎫+ ⎝=⎪⎭;(2)[]1,2-.由x 轴上相邻两个交点之间的距离为2π,得T 2=π2,即T =π, ∴222T ωππ===π. 由点2,23M π⎛⎫- ⎪⎝⎭在图象上得3sin 2222ϕπ⎛⎫⎝+⨯=-⎪⎭, 即sin 13ϕ4π⎛⎫=- ⎪⎝⎭+,故()223k k ϕπ+=π-4π∈Z ,∴()1126k k ϕπ=π-∈Z . 又0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴6ϕπ=,故()sin 226f x x π⎛⎫+ ⎝=⎪⎭.(2)∵,122x ππ⎡⎤∈⎢⎥⎣⎦,∴,2636x ππ7π⎡⎤+∈⎢⎥⎣⎦,当262x ππ+=,即6x π=时,()f x 取得最大值2; 当626x π7π+=,即2x π=时,()f x 取得最小值1-, 故()f x 的值域为[]1,2-.22.【答案】(1)()sin 3f x x π+=⎛⎫ ⎪⎝⎭;(2)() 1,0a ⎫∈-⎪⎪⎝⎭.【解析】(1)由图象易知函数()f x 的周期为724263T ππ⎛⎫=⨯-=π ⎪⎝⎭,1A =, 所以1ω=.方法一,由图可知此函数的图象是由sin y x =的图象向左平移3π个单位得到的, 故3ϕπ=,所以函数解析式为()sin 3f x x π+=⎛⎫ ⎪⎝⎭.方法二,由图象知()f x 过点,03π⎛⎫- ⎪⎝⎭,则sin 03ϕπ⎛⎫-+= ⎪⎝⎭,∴3k ϕπ-+=π,k ∈Z .∴3k ϕπ=π+,k ∈Z , 又∵0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴3ϕπ=,∴()sin 3f x x π+=⎛⎫ ⎪⎝⎭.(2)方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根等价于()y f x =与y a =的图象在50,3π⎛⎫⎪⎝⎭上有两个交点,在图中作y a =的图象, 如图为函数()sin 3f x x π+=⎛⎫ ⎪⎝⎭在50,3π⎛⎫ ⎪⎝⎭上的图象,当0x =时,()f x =当53x π=时,()0f x =, 由图中可以看出有两个交点时,() 1,0a ⎫∈-⎪⎪⎝⎭.。
人教版高中数学必修四第一章单元测试(一)及参考答案2018-201年必修四第一章训练卷三角函数(一)注意事项:1.答题前请填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上。
2.选择题请用2B铅笔将答案标号涂黑,非选择题请用签字笔直接答在答题卡上。
3.考试结束后,请将试题卷和答题卡一并上交。
一、选择题1.sin²120°等于( )A。
±33B。
2C。
±3/2D。
1/22.已知点P的坐标为(sin(3π/4)。
cos(3π/4)),则点P落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A。
π/4B。
3π/4C。
5π/4D。
7π/43.已知tanα=3/4,α∈(3π/2.2π),则cosα的值是( )A。
±4/5B。
±3/5C。
±5/4D。
±5/34.已知sin(2π-α)=4/5,α∈(2π/3.π),则sinα+cosα的值等于( )A。
1/7B。
-1/7C。
-7D。
75.已知函数f(x)=sin(2x+θ)的图象关于直线x=π/8对称,则θ可能取值是( )A。
π/2.3π/2B。
-π/4C。
4πD。
4π/36.若点P(sinα-cosα。
tanα)在第一象限,则在[0,2π)内α的取值范围是( )A。
(π/2.π)B。
(0.π/2)C。
(π/3.π/2)D。
(π/4.π/3)7.已知a是实数,则函数f(x)=1+asinax的图象不可能是( )A。
一条直线B。
一段正弦曲线C。
一段余弦曲线D。
一段正切曲线8.为了得到函数y=sin(2x+π/3)的图象向左平移π/12个单位,应该将x改为( )A。
2x+π/12B。
2x-π/12C。
2(x+π/12)D。
2(x-π/12)A.将函数y=cos2x的图象向右平移π/6个单位长度。
B.已知函数y=Asin(ωt+φ)的图象如右图所示,当t=1/100秒时,电流强度是5A。
章末综合测评 第一章(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若三角形的三条边长之比为3∶5∶7,与它相似的三角形的最长边长度为21cm ,则其余两边的长度之和为( )A.24cmB.21cmC.19cmD.9cm【解析】 设其余两边的长度分别为x cm ,y cm ,则217k =x 5k =y3k ,解得x =15cm ,y =9cm.故x +y =24cm. 【答案】 A2.如图1所示,D 、E 分别是AB 、AC 上的点,DE ∥BC ,AE AC =23,则△ADE 与四边形DBCE 的面积之比为( )图1A.13B.23C.45D.49【解析】 ∵DE ∥BC , ∴△ADE ∽△ABC ,∴S △ADE ∶S △ABC =(AE ∶AC )2=4∶9.则△ADE 与四边形DBCE 的面积的比为4∶(9-4)=4∶5. 【答案】 C3.如图2所示,梯形ABCD 的对角线交于点O ,则下列四个结论:图2①△AOB ∽△COD ; ②△AOD ∽△ACB ; ③S △DOC ∶S △AOD =CD ∶AB ; ④S △AOD =S △BOC . 其中正确的个数为( ) A.1 B.2 C.3 D.4【解析】 ∵DC ∥AB ,∴△AOB ∽△COD ,①正确.由①知,DC AB =OCOA .S △DOC ∶S △AOD =OC ∶OA =CD ∶AB ,③正确.∵S △ADC =S △BCD ,∴S △ADC -S △COD =S △BCD -S △COD , ∴S △AOD =S △BOC ,④正确. 故①③④正确. 【答案】 C4.如图3所示,铁道口的栏杆短臂长1m ,长臂长16m ,当短臂端点下降0.5m 时,长臂端点升高( ) 【导学号:61650022】图3A.11.25mB.6.6mC.8mD.10.5m【解析】 本题是一个实际问题,可抽象为如下数学问题:如图,等腰△AOC ∽等腰△BOD ,OA =1m ,OB =16m ,高CE =0.5m ,求高DF .由相似三角形的性质可得OA ∶OB =CE ∶DF ,即1∶16=0.5∶DF ,解得DF =8m.【答案】 C5.如图4,⊙O经过⊙O1的圆心,∠ADB=α,∠ACB=β,则α与β之间的关系是()图4A.β=αB.β=180°-2αC.β=12(90°-α)D.β=12(180°-α)【解析】如右图所示,分别连接AO1,BO1.根据圆内接四边形的性质定理,可得∠AO1B+∠ADB=180°,∴∠AO1B=180°-∠ADB=180°-α.∵∠ACB=12∠AO1B,∴β=12(180°-α),故选D.【答案】 D6.已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD的长为()A.8B.9C.10D.11【解析】如图,连接AC,CB.∵AB是⊙O的直径,∴∠ACB=90°.设AD=x,∵CD⊥AB于D,∴由射影定理得CD 2=AD ·DB . 即62=x (13-x ),∴x 2-13x +36=0, 解得x 1=4,x 2=9. ∵AD >BD ,∴AD =9. 【答案】 B7.如图5所示,AB 为⊙O 的直径,P 为⊙O 外一点,P A 交⊙O 于D ,PB 交⊙O 于C ,连结BD 、AC 交于E ,下列关系式中不成立的是( )图5A.∠ADB =∠ACB =90°B.∠AED =∠PC.∠P =12∠AEB D.∠P AC =∠DBP【解析】 由直径AB 所对的圆周角是直角和A 正确.由P ,D ,E ,C 四点共圆知B 正确.又易知∠P AC =∠DBP =90°-∠P ,∴D 正确.【答案】 C8.如图6,△ABC 内接于⊙O ,AB =AC ,直线MN 切⊙O 于点C ,BE ∥MN 交AC 于点E ,若AB =6,BC =4,则AE =( )图6A.103B.23C.1D.43【解析】 ∵MN 为⊙O 的切线,∴∠BCM=∠A.∵MN∥BE,∴∠BCM=∠EBC,∴∠A=∠EBC.又∠ACB=∠BCE,∴△ABC∽△BEC.∴ABBE=BCEC.∵AB=AC,∴BE=BC.∴64=4EC.∴EC=83,∴AE=6-83=103.【答案】 A9.如图7,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于()图7A.70°B.64°C.62°D.51°【解析】∵AB、AC为⊙O的切线,∴∠CAO=∠BAO,又∵OB=BD,∴∠OAB=∠DAB,∵∠DAC=78°,∴∠OAD=23×78°=52°,∴∠ADO=64°.【答案】 B10.如图8,已知AT切⊙O于T.若AT=6,AE=3,AD=4,DE=2,则BC =()图8A.3B.4C.6D.8【解析】 ∵AT 为⊙O 的切线, ∴AT 2=AD ·AC ,∵AT =6,AD =4,∴AC =9.∵∠ADE =∠B ,∠EAD =∠CAB , ∴△EAD ∽△CAB ,即DE BC =AE AC ,∴BC =DE ·AC AE =2×93=6. 【答案】 C11.在Rt △ABC 中,∠A =90°,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F ,若AB =a ,AC =b ,则⊙O 的半径为( )A.abB.a +b abC.ab a +bD.a +b 2【解析】 如图所示,分别连接OE 、OF ,则四边形OEAF 是正方形,不妨设⊙O 的半径为r ,则由切线长定理,可得AE =AF =r , ∵BE =AB -AE ,CF =AC -AF , ∴BE =a -r ,CF =b -r ,∵△BEO 与△OFC 相似,∴BE OF =OECF , ∴a -r r =r b -r ,解得r =ab a +b .【答案】 C12.如图9所示,PT 与⊙O 切于T ,CT 是⊙O 的直径,PBA 是割线,与⊙O 的交点是A 、B ,与直线CT 的交点D ,已知CD =2,AD =3,BD =4,那么PB =( )图9A.10B.20C.5D.8 5【解析】根据相交弦定理,可得AD·DB=CD·DT,∴3×4=2DT,解得DT=6,∴圆的半径r=4,AB=7,不妨设PB=x,则P A=x+7,根据切割线定理,可得PT2=PB·P A,∴PT2=x·(x +7),在Rt△PTD中,DT2+PT2=PD2,∴36+PT2=(x+4)2,∴36+x(x+7)=(x+4)2,解得x=20.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中横线上)13.如图10,在△ABC中,M,N分别是AB,BC的中点,AN,CM交于点O,那么△MON与△AOC面积的比是________.图10【解析】∵MN是△ABC的中位线,∴△MON∽△COA,且MNAC=12,∴S△MON ∶S△COA=(12)2=14.【答案】1∶414.D、E分别是△ABC中AB、AC边上的点,且AD∶DB=1∶2,AE=1.5,AC=4.5,若AM交DE于N,交BC于M,则AN∶NM=________.【解析】如图,∵ADDB=12,∴ADAB=13.又AEAC=1.54.5=13,∴ADAB=AEAC.又∠DAE=∠BAC,∴△ADE∽△ABC.∴ANAM=ADAB=13,ANAN+MN=13,化简得AN NM=12.【答案】1 215.(湖南高考)如图11,A,E是半圆周上的两个三等分点,直径BC=4,AD ⊥BC,垂足为D,BE与AD相交于点F,则AF的长为________.图11【解析】如图,连AE,易知AE∥BD,∴BDAE=DFAF,易知△ABO是等边三角形,可得BD=1,AD=AF+FD = 3.∴AF=23 3.【答案】23 316.如图12,P是圆O外的一点,PD为切线,D为切点,割线PEF经过圆心O,PF=6,PD=23,则∠DFP=________.图12【解析】 如图,连接OD .∵PD 为⊙O 的切线, ∴OD ⊥PD ,PD 2=PE ·PF , ∴PE =2.∴OP =4, ∴sin ∠POD =234=32.∴∠POD =60°,∴∠DFP =30°. 【答案】 30°三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知如图13,正方形ABCD 的边长为4,P 为AB 上的一点,且AP ∶PB =1∶3,PQ ⊥PC ,试求PQ 的长.图13【解】 ∵PQ ⊥PC , ∴∠APQ +∠BPC =90°, ∴∠APQ =∠BCP . ∴Rt △APQ ∽Rt △BCP ,∵AB =4,AP ∶PB =1∶3,∴PB =3,AP =1,∴AP BC =AQBP , 即AQ =AP ·BP BC =1×34=34. ∴PQ =AQ 2+AP 2=916+1=54.18.(本小题满分12分)(全国卷Ⅰ)如图14,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE .图14(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.证明(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE,由已知CB =CE得∠CBE=∠E,故∠D=∠E.(2)如图,设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E,由(1)知,∠D=∠E,所以△ADE为等边三角形.19.(本小题满分12分)如图15所示,在△ABC中,D为BC边上的中点,延长AD到点E,使AD=2DE,延长AB交CE的延长线于点P.求证:AP=3AB.图15【证明】如图所示,过点E作EF∥BC交AP于点F,则△ABD∽△AFE.∵AD=2DE,∴AD∶AE=2∶3.∴AB∶AF=BD∶EF=AD∶AE=2∶3.∵BD=DC,∴BC∶EF=4∶3.∵EF ∥BC ,∴△PEF ∽△PCB .∴PF ∶PB =EF ∶BC =3∶4.∴PF ∶FB =3∶1,∵AB ∶AF =2∶3,∴AB ∶BF =2∶1.∴PF ∶FB ∶AB =3∶1∶2.∴AP ∶AB =6∶2=3∶1.即AP =3AB .20.(本小题满分12分)(全国卷Ⅲ)如图16,⊙O 中AB ︵的中点为P ,弦PC ,PD分别交AB 于E ,F 两点.图16(1)若∠PFB =2∠PCD ,求∠PCD 的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD .【导学号:61650023】解:(1)连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD .因为AP ︵=BP ︵,所以∠PBA =∠PCB .又∠BPD =∠BCD ,所以∠BFD =∠PCD .又∠PFB +∠BFD =180°,∠PFB =2∠PCD ,所以3∠PCD =180°,因此∠PCD =60°.(2)证明:因为∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD .21.(本小题满分12分)如图17所示,P A 为⊙O 的切点,PBC 是过点O 的割线,P A =10,PB =5,∠BAC 的平分线与BC 和⊙O 分别交于点D 和E ,求AD ·AE 的值.图17【解】 如图所示,连接CE .∵P A 是⊙O 的切线,PBC 是⊙O 的割线,∴P A 2=PB ·PC .又P A =10,PB =5,∴PC =20,BC =15.∵P A 切⊙O 于A ,∴∠P AB =∠ACP .又∠P 为公共角,△P AB ∽△PCA ,∴AB AC =P A PC =1020=12.∵BC 为⊙O 的直径,∴∠CAB =90°,∴AC 2+AB 2=BC 2=225.∴AC =65,AB =35,又∠ABC =∠E ,∠CAE =∠EAB .∴△ACE ∽△ADB ,∴AB AE =AD AC ,∴AD ·AE =AB ·AC =90.22.(本小题满分12分)(辽宁高考)如图18,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED .(1)证明:CD ∥AB ;(2)延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B ,G ,F 四点共圆.图18【证明】 (1)因为EC =ED ,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE.因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.连接AF,BG,则△EF A≌△EGB,故∠F AE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠F AB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F四点共圆.。
北师大版数学精品教学资料阶段性测试题一(第一章综合测试题)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,其中有且仅有一个是正确的.)1.(2014·山东济南一中高一月考)下列角与-750°角终边不同的是( ) A .330° B .-30° C .680° D .-1 110°[答案] C[解析] -750°=-2×360°+(-30°), 330°=360°+(-30°), 680°=2×360°+(-40°), -1 110°=-3×360°+(-30)°, 故680°角与-750°角终边不同.2.(2014·山东德州高一期末测试)sin(-116π)=( )A .-12B .12C .-32D .32 [答案] B[解析] sin(-11π6)=-sin 11π6=-sin(2π-π6)=sin π6=12.3.(2014·浙江嘉兴一中高一月考)下列不等式中,正确的是( ) A .tan 13π4<tan 13π5B .sin π5>cos(-π7)C .sin(π-1)<sin1°D .cos 7π5<cos(-2π5)[答案] D[解析] tan 13π4=tan(3π+π4)=tan π4=1,tan 13π5=tan(2π+3π5)=tan 3π5<0,∴tan 13π4>tan 13π5,排除A ;cos(-π7)=cos π7,∵π5+π7<π2,∴π5<π2-π7, ∴sin π5<sin(π2-π7)=cos π7,排除B ;sin(π-1)=sin1>sin1°,排除C ;cos 7π5=cos(π+2π5)=-cos 2π5<0,cos(-2π5)=cos 2π5>0,故选D.4.若α是钝角,则θ=k π+α,k ∈Z 是( ) A .第二象限角B .第三象限角C .第二象限角或第三象限角D .第二象限角或第四象限角[答案] D[解析] ∵α是钝角,∴π2<α<π,∵θ=k π+α(k ∈Z ),∴令k =0,则θ=α是第二象限角,令k =1,则θ=π+α是第四象限角,故选D. 5.下列命题中不正确的个数是( ) ①终边不同的角的同名三角函数值不等; ②若sin α>0,则α是第一、二象限角;③若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y 2.A .0B .1C .2D .3[答案] D[解析] π4和3π4终边不同,但正弦值相等,所以①错.sin π2=1,但π2不是一、二象限角,是轴线角所以②错,对于③由定义cos α=x x 2+y2,所以③错,故选D.6.若角α的终边落在直线x +y =0上,则|tan α|tan α+sin α1-cos 2α的值等于( )A .2或-2B .-2或0C .2或-2D .0或2[答案] B[解析] 由题意知α终边可在第二或第四象限. 当α终边在第二象限时,tan α<0,sin α>0, ∴原式=-1+1=0.当α终边在第四象限时,tan α<0,sin α<0, ∴原式=-1+(-1)=-2.7.(2014·河南洛阳市八中高一月考)为得到函数y =cos(x +π3)的图象,只需将函数y =sin x的图象( )A .向左平移5π6个长度单位B .向右平移π6个长度单位C .向左平移π6个长度单位D .向右平移5π6个长度单位[答案] A[解析] y =sin(x +5π6)=sin[π2+(x +π3)]=cos(x +π3),故选A.8.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π2[答案] A[解析] 由y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,知f ⎝⎛⎭⎫4π3=0,即3cos ⎝⎛⎭⎫8π3+φ=0,∴8π3+φ=k π+π2.(k ∈Z ),∴φ=k π+π2-8π3(k ∈Z ).|φ|的最小值为π6.9.(2014·浙江临海市杜桥中学高一月考)函数y =cos(x -π2)在下面某个区间上是减函数,这个区间为( )A .[0,π]B .[-π2,π2]C .[π2,π]D .[0,π4][答案] C[解析] y =cos(x -π2)=cos(π2-x )=sin x ,故选C.10.函数y =|sin(13x -π4)|的最小正周期为( )A .3πB .4πC .5πD .6π [答案] A[解析] ∵y =sin(13x -π4)的周期T =6π,∴y =|sin(13x -π4)|的周期为T =3π.11.已知函数f (x )=sin(πx -π2)-1,下列命题正确的是( )A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数 [答案] B[解析] ∵f (x )=sin(πx -π2)-1=-cosπx -1,∴周期T =2ππ=2,又f (-x )=-cos(-πx )-1=-cos x -1=f (x ), ∴f (x )为偶函数.12.如果函数f (x )=sin(x +π3)+32+a 在区间[-π3,5π6]的最小值为3,则a 的值为( )A .3+12B .32C .2+32D .3-12[答案] A[解析] ∵-π3≤x ≤5π6,∴0≤x +π3≤7π6,∴-12≤sin(x +π3)≤1,∴f (x )的最小值为-12+32+a ,∴-12+32+a =3,∴a =3+12.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.(2014·江西九江外国语高一月考)点P (-1,2)在角α的终边上,则tan αcos 2α=________. [答案] -10[解析] 由三角函数的定义知,sin α=25=255,cos α=-15=-55,∴tan α=-2.∴tan αcos 2α=-215=-10. 14.cos π3-tan 5π4+34tan 2⎝⎛⎭⎫-π6+sin 11π6+cos 27π6+sin 7π2=________. [答案] -1[解析] 原式=cos π3-tan ⎝⎛⎭⎫π+π4+34tan 2π6+sin ⎝⎛⎭⎫2π-π6+cos 2⎝⎛⎭⎫π+π6+sin ⎝⎛⎭⎫3π+π2 =cos π3-tan π4+34tan 2π6-sin π6+cos 2π6-sin π2=12-1+34×13-12+34-1=-1. 15.函数y =cos x 的单调递减区间是________. [答案] ⎣⎡⎦⎤2k π,2k π+π2(k ∈Z ) [解析] 由cos x ≥0得,-π2+2k π≤x ≤π2+2k π(k ∈Z ),∴函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ),要求y =cos x 的单调递减区间,即求y =cos x 在定义域范围内的单调递减区间. 故所求函数的单调递减区间为[2k π,2k π+π2](k ∈Z ).16.若函数y =f (x )同时具有性质: ①是周期函数且最小正周期为π; ②在⎣⎡⎦⎤-π6,π3上是增函数; ③对任意x ∈R ,都有f ⎝⎛⎭⎫π3-x =f ⎝⎛⎭⎫π3+x .则函数y =f (x )的解析式可以是________.(只需写出满足条件的函数y =f (x )的一个解析式即可)[答案] f (x )=sin ⎝⎛⎭⎫2x -π6 [解析] 由①知ω=2.由③知x =π3为对称轴,∴f (x )=sin ⎝⎛⎭⎫2x -π6(答案不惟一). 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)若集合M =⎩⎨⎧⎭⎬⎫θ⎪⎪ sin θ≥12,0≤θ≤π,N =⎩⎨⎧⎭⎬⎫θ⎪⎪cos θ≤12,0≤θ≤π,求M ∩N .[解析] 解法一:可根据正弦函数图象和余弦函数图象,作出集合N 和集合M ,然后求M ∩N .首先作出正弦函数与余弦函数的图象以及直线y =12.如图.结合图象得集合M 、N 分别为M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 解法二:如图所示,由单位圆中的三角函数线知M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 由此可得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 18.(本小题满分12分)是否存在实数m ,使sin x =11-m ,cos x =mm -1成立,且x 是第二象限角?若存在,请求出实数m ;若不存在,试说明理由.[解析] 假设存在m ∈R ,使sin x =11-m ,cos x =mm -1,∵x 是第二象限角,∴sin x >0,cos x <0,∴0<m <1.由sin 2x +cos 2x =1(1-m )2+m 2(m -1)2=1,解得m =0,这时sin x =1,cos x =0,x =2k π+π2(k ∈Z ),不是第二象限角,故m 不存在.19.(本小题满分12分)已知sin α、cos α是关于x 的方程 8x 2+6mx +2m +1=0的两根,求1sin α+1cos α的值. [解析] ∵sin α、cos α是方程 8x 2+6mx +2m +1=0的两根, ∴sin α+cos α=-3m4,sin αcos α=2m +18.∴(-3m 4)2-2×2m +18=1,整理得 9m 2-8m -20=0,即(9m +10)(m -2)=0. ∴m =-109或m =2.又sin α、cos α为实根,∴Δ=36m 2-32(2m +1)≥0.即9m 2-16m -8≥0,∴m =2不合题意,舍去. 故m =-109.∴1sin α+1cos α=sin α+cos αsin αcos α=-3m42m +18=-6m 2m +1=-6×(-109)2×(-109)+1=-6011.20.(本小题满分12分)如图为函数f (x )=A sin(ωx +φ)的一段图象,已知A >0,ω>0,φ∈⎝⎛⎭⎫-π2,π2,求函数f (x )的解析式.[解析] 由图知A =2,T =8,ω=2πT =π4.当x =7时,有0=2sin ⎝⎛⎭⎫π4·7+φ, ∴φ∈⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π-7π4,k ∈Z . 又∵φ∈⎝⎛⎭⎫-π2,π2, 所以φ=π4,∴f (x )=2sin ⎝⎛⎭⎫π4x +π4. 21.(本小题满分12分)已知函数f (x )=2cos(2x -π4),x ∈R .(1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.[解析] (1)∵f (x )=2cos(2x -π4),∴函数f (x )的最小正周期T =2π2=π.由-π+2k π≤2x -π4≤2k π,得k π-3π8≤x ≤k π+π8,故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)∵f (x )=2cos(2x -π4)在区间[-π8,π8]上为单调递增函数,在区间[π8,π2]上为单调递减函数,且f (-π8)=0,f (π8)=2,f (π2)=-1,故函数f (x )在区间[-π8,π2]上的最大值为2,此时,x =π8;最小值为-1,此时x =π2.22.(本小题满分14分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)若方程f (x )=m 在(0,π)内有两个不同的实数根,求实数m 的取值范围. [解析] (1)观察图象,得A =2,T =(11π12-π6)×43=π,∴ω=2πT=2,∴f (x )=2sin(2x +φ).∵函数图象经过点(π6,2),∴2sin(2×π6+φ)=2,即sin(π3+φ)=1.又∵|φ|<π2,∴φ=π6,∴函数的解析式为f (x )=2sin(2x +π6).(2)∵0<x <π,∴f (x )=m 的根的情况,相当于f (x )=2sin(2x +π6)与g (x )=m 在(0,π)内的交点个数情况,∴在同一坐标系中画出y =2sin(2x +π6)和y =m (m ∈R )的图象如图所示.由图可知,当-2<m <1或1<m <2时,直线y =m 与曲线y =2sin(2x +π6)有两个不同的交点,即原方程有两个不同的实数根,∴m 的取值范围为-2<m <1或1<m <2.。
北师大版数学精品教学资料阶段性测试题一(第一章综合测试题)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,其中有且仅有一个是正确的.)1.(2014·山东济南一中高一月考)下列角与-750°角终边不同的是( ) A .330° B .-30° C .680° D .-1 110°[答案] C[解析] -750°=-2×360°+(-30°), 330°=360°+(-30°), 680°=2×360°+(-40°), -1 110°=-3×360°+(-30)°, 故680°角与-750°角终边不同.2.(2014·山东德州高一期末测试)sin(-116π)=( )A .-12B .12C .-32D .32 [答案] B[解析] sin(-11π6)=-sin 11π6=-sin(2π-π6)=sin π6=12.3.(2014·浙江嘉兴一中高一月考)下列不等式中,正确的是( ) A .tan 13π4<tan 13π5B .sin π5>cos(-π7)C .sin(π-1)<sin1°D .cos 7π5<cos(-2π5)[答案] D[解析] tan 13π4=tan(3π+π4)=tan π4=1,tan 13π5=tan(2π+3π5)=tan 3π5<0,∴tan 13π4>tan 13π5,排除A ;cos(-π7)=cos π7,∵π5+π7<π2,∴π5<π2-π7, ∴sin π5<sin(π2-π7)=cos π7,排除B ;sin(π-1)=sin1>sin1°,排除C ;cos 7π5=cos(π+2π5)=-cos 2π5<0,cos(-2π5)=cos 2π5>0,故选D.4.若α是钝角,则θ=k π+α,k ∈Z 是( ) A .第二象限角B .第三象限角C .第二象限角或第三象限角D .第二象限角或第四象限角[答案] D[解析] ∵α是钝角,∴π2<α<π,∵θ=k π+α(k ∈Z ),∴令k =0,则θ=α是第二象限角,令k =1,则θ=π+α是第四象限角,故选D. 5.下列命题中不正确的个数是( ) ①终边不同的角的同名三角函数值不等; ②若sin α>0,则α是第一、二象限角;③若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y 2.A .0B .1C .2D .3[答案] D[解析] π4和3π4终边不同,但正弦值相等,所以①错.sin π2=1,但π2不是一、二象限角,是轴线角所以②错,对于③由定义cos α=x x 2+y2,所以③错,故选D.6.若角α的终边落在直线x +y =0上,则|tan α|tan α+sin α1-cos 2α的值等于( )A .2或-2B .-2或0C .2或-2D .0或2[答案] B[解析] 由题意知α终边可在第二或第四象限. 当α终边在第二象限时,tan α<0,sin α>0, ∴原式=-1+1=0.当α终边在第四象限时,tan α<0,sin α<0, ∴原式=-1+(-1)=-2.7.(2014·河南洛阳市八中高一月考)为得到函数y =cos(x +π3)的图象,只需将函数y =sin x的图象( )A .向左平移5π6个长度单位B .向右平移π6个长度单位C .向左平移π6个长度单位D .向右平移5π6个长度单位[答案] A[解析] y =sin(x +5π6)=sin[π2+(x +π3)]=cos(x +π3),故选A.8.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π2[答案] A[解析] 由y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,知f ⎝⎛⎭⎫4π3=0,即3cos ⎝⎛⎭⎫8π3+φ=0,∴8π3+φ=k π+π2.(k ∈Z ),∴φ=k π+π2-8π3(k ∈Z ).|φ|的最小值为π6.9.(2014·浙江临海市杜桥中学高一月考)函数y =cos(x -π2)在下面某个区间上是减函数,这个区间为( )A .[0,π]B .[-π2,π2]C .[π2,π]D .[0,π4][答案] C[解析] y =cos(x -π2)=cos(π2-x )=sin x ,故选C.10.函数y =|sin(13x -π4)|的最小正周期为( )A .3πB .4πC .5πD .6π [答案] A[解析] ∵y =sin(13x -π4)的周期T =6π,∴y =|sin(13x -π4)|的周期为T =3π.11.已知函数f (x )=sin(πx -π2)-1,下列命题正确的是( )A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数 [答案] B[解析] ∵f (x )=sin(πx -π2)-1=-cosπx -1,∴周期T =2ππ=2,又f (-x )=-cos(-πx )-1=-cos x -1=f (x ), ∴f (x )为偶函数.12.如果函数f (x )=sin(x +π3)+32+a 在区间[-π3,5π6]的最小值为3,则a 的值为( )A .3+12B .32C .2+32D .3-12[答案] A[解析] ∵-π3≤x ≤5π6,∴0≤x +π3≤7π6,∴-12≤sin(x +π3)≤1,∴f (x )的最小值为-12+32+a ,∴-12+32+a =3,∴a =3+12.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.(2014·江西九江外国语高一月考)点P (-1,2)在角α的终边上,则tan αcos 2α=________. [答案] -10[解析] 由三角函数的定义知,sin α=25=255,cos α=-15=-55,∴tan α=-2.∴tan αcos 2α=-215=-10. 14.cos π3-tan 5π4+34tan 2⎝⎛⎭⎫-π6+sin 11π6+cos 27π6+sin 7π2=________. [答案] -1[解析] 原式=cos π3-tan ⎝⎛⎭⎫π+π4+34tan 2π6+sin ⎝⎛⎭⎫2π-π6+cos 2⎝⎛⎭⎫π+π6+sin ⎝⎛⎭⎫3π+π2 =cos π3-tan π4+34tan 2π6-sin π6+cos 2π6-sin π2=12-1+34×13-12+34-1=-1. 15.函数y =cos x 的单调递减区间是________. [答案] ⎣⎡⎦⎤2k π,2k π+π2(k ∈Z ) [解析] 由cos x ≥0得,-π2+2k π≤x ≤π2+2k π(k ∈Z ),∴函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ),要求y =cos x 的单调递减区间,即求y =cos x 在定义域范围内的单调递减区间. 故所求函数的单调递减区间为[2k π,2k π+π2](k ∈Z ).16.若函数y =f (x )同时具有性质: ①是周期函数且最小正周期为π; ②在⎣⎡⎦⎤-π6,π3上是增函数; ③对任意x ∈R ,都有f ⎝⎛⎭⎫π3-x =f ⎝⎛⎭⎫π3+x .则函数y =f (x )的解析式可以是________.(只需写出满足条件的函数y =f (x )的一个解析式即可)[答案] f (x )=sin ⎝⎛⎭⎫2x -π6 [解析] 由①知ω=2.由③知x =π3为对称轴,∴f (x )=sin ⎝⎛⎭⎫2x -π6(答案不惟一). 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)若集合M =⎩⎨⎧⎭⎬⎫θ⎪⎪ sin θ≥12,0≤θ≤π,N =⎩⎨⎧⎭⎬⎫θ⎪⎪cos θ≤12,0≤θ≤π,求M ∩N .[解析] 解法一:可根据正弦函数图象和余弦函数图象,作出集合N 和集合M ,然后求M ∩N .首先作出正弦函数与余弦函数的图象以及直线y =12.如图.结合图象得集合M 、N 分别为M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 解法二:如图所示,由单位圆中的三角函数线知M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 由此可得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 18.(本小题满分12分)是否存在实数m ,使sin x =11-m ,cos x =mm -1成立,且x 是第二象限角?若存在,请求出实数m ;若不存在,试说明理由.[解析] 假设存在m ∈R ,使sin x =11-m ,cos x =mm -1,∵x 是第二象限角,∴sin x >0,cos x <0,∴0<m <1.由sin 2x +cos 2x =1(1-m )2+m 2(m -1)2=1,解得m =0,这时sin x =1,cos x =0,x =2k π+π2(k ∈Z ),不是第二象限角,故m 不存在.19.(本小题满分12分)已知sin α、cos α是关于x 的方程 8x 2+6mx +2m +1=0的两根,求1sin α+1cos α的值. [解析] ∵sin α、cos α是方程 8x 2+6mx +2m +1=0的两根, ∴sin α+cos α=-3m4,sin αcos α=2m +18.∴(-3m 4)2-2×2m +18=1,整理得 9m 2-8m -20=0,即(9m +10)(m -2)=0. ∴m =-109或m =2.又sin α、cos α为实根,∴Δ=36m 2-32(2m +1)≥0.即9m 2-16m -8≥0,∴m =2不合题意,舍去. 故m =-109.∴1sin α+1cos α=sin α+cos αsin αcos α=-3m42m +18=-6m 2m +1=-6×(-109)2×(-109)+1=-6011.20.(本小题满分12分)如图为函数f (x )=A sin(ωx +φ)的一段图象,已知A >0,ω>0,φ∈⎝⎛⎭⎫-π2,π2,求函数f (x )的解析式.[解析] 由图知A =2,T =8,ω=2πT =π4.当x =7时,有0=2sin ⎝⎛⎭⎫π4·7+φ, ∴φ∈⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π-7π4,k ∈Z . 又∵φ∈⎝⎛⎭⎫-π2,π2, 所以φ=π4,∴f (x )=2sin ⎝⎛⎭⎫π4x +π4. 21.(本小题满分12分)已知函数f (x )=2cos(2x -π4),x ∈R .(1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.[解析] (1)∵f (x )=2cos(2x -π4),∴函数f (x )的最小正周期T =2π2=π.由-π+2k π≤2x -π4≤2k π,得k π-3π8≤x ≤k π+π8,故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)∵f (x )=2cos(2x -π4)在区间[-π8,π8]上为单调递增函数,在区间[π8,π2]上为单调递减函数,且f (-π8)=0,f (π8)=2,f (π2)=-1,故函数f (x )在区间[-π8,π2]上的最大值为2,此时,x =π8;最小值为-1,此时x =π2.22.(本小题满分14分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)若方程f (x )=m 在(0,π)内有两个不同的实数根,求实数m 的取值范围. [解析] (1)观察图象,得A =2,T =(11π12-π6)×43=π,∴ω=2πT=2,∴f (x )=2sin(2x +φ).∵函数图象经过点(π6,2),∴2sin(2×π6+φ)=2,即sin(π3+φ)=1.又∵|φ|<π2,∴φ=π6,∴函数的解析式为f (x )=2sin(2x +π6).(2)∵0<x <π,∴f (x )=m 的根的情况,相当于f (x )=2sin(2x +π6)与g (x )=m 在(0,π)内的交点个数情况,∴在同一坐标系中画出y =2sin(2x +π6)和y =m (m ∈R )的图象如图所示.由图可知,当-2<m <1或1<m <2时,直线y =m 与曲线y =2sin(2x +π6)有两个不同的交点,即原方程有两个不同的实数根,∴m 的取值范围为-2<m <1或1<m <2.。
章末质量检测(四) 幂函数、指数函数和对数函数考试时间:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a>0,则a 14 ·a -34等于( ) A .a -12B .a -316C .a 13 D .a2.方程2x -1+x =5的解所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,43.函数y =lg x +lg (5-3x)的定义域是( )A .⎣⎢⎡⎭⎪⎫0,53 B .⎣⎢⎡⎦⎥⎤0,53 C .⎣⎢⎡⎭⎪⎫1,53 D .⎣⎢⎡⎦⎥⎤1,534.设a =log 20.3,b =30.2,c =0.30.2,则a ,b ,c 的大小关系是( )A .a>c>bB .a>b>cC .c>a>bD .b>c>a5.函数f(x)=⎝ ⎛⎭⎪⎫12 x 2-1的单调递增区间为( )A .(]-∞,0B .[)0,+∞C .()-1,+∞D .()-∞,-16.函数f(x)=e x +1|x|(e x-1)(其中e 为自然对数的底数)的图象大致为( )7.1614年纳皮尔在研究天文学的过程中为了简化计算而发明对数;1637年笛卡尔开始使用指数运算;1770年,欧拉发现了指数与对数的互逆关系,指出:对数源于指数,对数的发明先于指数,称为历史上的珍闻.若2x=52,lg 2=0.301 0,则x 的值约为( )A .1.322B .1.410C .1.507D .1.6698.已知函数f(x)=⎩⎨⎧-x 2+2x ,x ≤0ln()x +1,x>0 ,若|f(x)|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.若函数y =x α的定义域为R 且为奇函数,则α可能的值为( ) A .-1 B .1 C .2 D .3 10.下列说法正确的是( ) A .函数f ()x =1x在定义域上是减函数B .函数f ()x =2x-x 2有且只有两个零点C .函数y =2|x |的最小值是1D .在同一坐标系中函数y =2x与y =2-x的图象关于y 轴对称11.已知函数f ()x =log a x ()a >0,a ≠1图象经过点(4,2),则下列命题正确的有( ) A .函数为增函数 B .函数为偶函数 C .若x >1,则f (x )>0 D .若0<x 1<x 2,则f (x 1)+f (x 2)2<f ⎝ ⎛⎭⎪⎫x 1+x 22.12.已知函数f (x )=2x+log 2x ,且实数a >b >c >0,满足f (a )f (b )f (c )<0,若实数x 0是函数y =f (x )的一个零点,那么下列不等式中可能成立的是( )A .x 0<aB .x 0>aC .x 0<bD .x 0<c三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.若幂函数f (x )=(m 2-m -1)22m mx+的图象不经过原点,则实数m 的值为________.14.已知3a=5b=A ,且b +a =2ab ,则A 的值是________.15.已知函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0].若函数g (x )=ax +m-3的图象不经过第一象限,则m 的取值范围为________.16.已知函数f (x )=3|x +a |(a ∈R )满足f (x )=f (2-x ),则实数a 的值为________;若f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)求下列各式的值: (1)31log 43+2log 92-log 329(2)⎝ ⎛⎭⎪⎫278-23+π0+log 223-log 416918.(本小题满分12分)已知函数f (x )=log 2(x +3)-2x 3+4x 的图象在[-2,5]内是连续不断的,对应值表如下:(2)从上述对应填表中,可以发现函数f (x )在哪几个区间内有零点?说明理由.19.(本小题满分12分)已知函数f (x )=2x,x ∈R .(1)若函数f (x )在区间[a ,2a ]上的最大值与最小值之和为6,求实数a 的值;(2)若f ⎝ ⎛⎭⎪⎫1x=3,求3x +3-x的值.20.(本小题满分12分)已知函数f (x )=log 4(4x-1). (1)求函数f (x )的定义域;(2)若x ∈⎣⎢⎡⎦⎥⎤12,2,求f (x )的值域.21.(本小题满分12分)科技创新在经济发展中的作用日益凸显.某科技公司为实现9 000万元的投资收益目标,准备制定一个激励研发人员的奖励方案:当投资收益达到3 000万元时,按投资收益进行奖励,要求奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金总数不低于100万元,且奖金总数不超过投资收益的20%.(1)现有三个奖励函数模型:①f (x )=0.03x +8,②f (x )=0.8x+200,③f (x )=100log 20x +50,x ∈[3 000,9 000].试分析这三个函数模型是否符合公司要求?(2)根据(1)中符合公司要求的函数模型,要使奖金额达到350万元,公司的投资收益至少要达到多少万元?22.(本小题满分12分)已知函数f (x )=a x(a >0,且a ≠1)的图象经过点⎝ ⎛⎭⎪⎫12,3.(1)若函数F (x )=-3f (x )+10-m 在区间(0,2)内存在零点,求实数m 的取值范围; (2)若函数f (x )=g (x )+h (x ),其中g (x )为奇函数,h (x )为偶函数,若x ∈(0,1]时,2ln h (x )-ln g (x )-t ≥0恒成立,求实数t 的取值范围.章末质量检测(四) 幂函数、指数函数和对数函数1.解析:a 14·a -34=1344a -=a -12.故选A. 答案:A2.解析: 设f (x )=2x -1+x -5,则由指数函数与一次函数的性质可知,函数y =2x -1与y =x 在R 上都是递增函数,所以f (x )在R 上单调递增,故函数f (x )=2x -1+x -5最多有一个零点,而f (2)=22-1+2-5=-1<0,f (3)=23-1+3-5=2>0,根据零点存在定理可知,f (x )=2x -1+x -5有一个零点,且该零点处在区间(2,3)内.故选C. 答案:C3.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧lg x ≥05-3x >0,解得1≤x <53,则函数的定义域为⎣⎢⎡⎭⎪⎫1,53.故选C. 答案:C4.解析:a =log 20.3<log 21=0,b =30.2>30=1,c =0.30.2<0.30=1,且0.30.2>0,∴b >c >a . 故选D. 答案:D5.解析:令t =x 2-1,则y =⎝ ⎛⎭⎪⎫12t ,因为y =⎝ ⎛⎭⎪⎫12t 为单调递减函数,且函数t =x 2-1在(]-∞,0上递减,所以函数f (x )=⎝ ⎛⎭⎪⎫12x 2-1的单调递增区间为(]-∞,0.故选A. 答案:A6.解析:由题意,函数f (x )的定义域为(-∞,0)∪(0,+∞),且f (-x )=e -x+1|-x |(e -x -1)=e x (e -x +1)|-x |(e -x -1)e x =e x+1|x |(1-e x)=-f (x ),即f (x )为奇函数,排除A ,B ;当x →+∞时,e x+1e x -1→1,1|x |→0,即x →+∞时,e x+1|x |(e x-1)→0,可排除D , 故选C. 答案:C7.解析:∵2x=52,∴x =log 252=lg 5-lg 2lg 2=1-2lg 2lg 2=1-2×0.301 00.301 0≈1.322.故选A. 答案:A8.解析:作出y =||f (x )的图象如图,由对数函数图象的变化趋势可知,要使ax ≤|f (x )|,则a ≤0,且ax ≤x 2-2x (x <0),即a ≥x -2对任意x <0恒成立,所以a ≥-2,综上-2≤a ≤0.故选D. 答案:D9.解析:当α=-1时,幂函数y =x -1的定义域为(-∞,0)∪(0,+∞),A 不符合;当α=1时,幂函数y =x ,符合题意;当α=2时,幂函数y =x 2的定义域为R 且为偶函数,C 不符合题意;当α=3时,幂函数y =x 3的定义域为R 且为奇函数,D 符合题意.故选BD.答案:BD10.解析:对于A ,f ()x =1x在定义域上不具有单调性,故命题错误;对于B ,函数f ()x =2x-x 2有三个零点,一个负值,两个正值,故命题错误;对于C ,∵|x |≥0,∴2|x |≥20=1,∴函数y =2|x |的最小值是1,故命题正确; 对于D ,在同一坐标系中,函数y =2x与y =2-x的图象关于y 轴对称,命题正确. 故选CD.答案:CD11.解析:由题2=log a 4,a =2,故f (x )=log 2x . 对A ,函数为增函数正确. 对B, f (x )=log 2x 不为偶函数.对C ,当x >1时, f (x )=log 2x >log 21=0成立. 对D ,因为f (x )=log 2x 往上凸,故若0<x 1<x 2,则f (x 1)+f (x 2)2<f ⎝ ⎛⎭⎪⎫x 1+x 22成立.故选ACD. 答案:ACD12.解析:易知函数f (x )=2x+log 2x 在(0,+∞)为增函数,由f (a )f (b )f (c )<0, 则f (a ),f (b ),f (c )中为负数的个数为奇数,对于选项A ,B ,C 可能成立.故选ABC. 答案:ABC13.解析:由函数f (x )=(m 2-m -1)xm 2+2m 是幂函数, 所以m 2-m -1=1,解得m =-1或m =2;当m =-1时,f (x )=x -1,图象不经过原点,满足题意; 当m =2时,f (x )=x 8,图象经过原点,不满足题意; 所以m =-1. 答案:-114.解析:由 3a=5b =A ,得a =log 3A ,b =log 5A . 当a =b =0时,A =1,满足条件.当ab ≠0时,由b +a =2ab ,即1a +1b=2,将a ,b 代入得:1log 3A +1log 5A =2,即log A 3+log A 5=log A 15=2,得A =15, 所以A =15或1. 答案:15或115.解析:函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0]. 当a >1时,f (x )=log a (-x +1)单调递减, ∴⎩⎪⎨⎪⎧f (-2)=log a 3=0,f (0)=log a 1=-1,无解;当0<a <1时,f (x )=log a (-x +1)单调递增, ∴⎩⎪⎨⎪⎧f (-2)=log a 3=-1,f (0)=log a 1=0,解得a =13.∵g (x )=⎝ ⎛⎭⎪⎫13x +m-3的图象不经过第一象限,∴g (0)=⎝ ⎛⎭⎪⎫13m-3≤0,解得m ≥-1,即m 的取值范围是[-1,+∞). 答案:[-1,+∞)16.解析:(1)∵f (x )=f (2-x ),取x =0得,f (0)=f (2), ∴3|a |=3|2+a |,即|a |=|2+a |,解得a =-1;(2)由(1)知f (x )=3|x -1|=⎩⎪⎨⎪⎧3x -1,x ≥1,31-x ,x <1,f (x )在(-∞,1)上单调递减,在[1,+∞)上单调递增. ∵f (x )在[m ,+∞)上单调递增, ∴m ≥1,m 的最小值为1. 答案:-1 117.解析:(1)原式=14+(log 32-log 329)=14+2=94;(2)原式=⎝ ⎛⎭⎪⎫232+1+log 223-log 243 =49+1+log 212 =49. 18.解析:(1)由题意可知a =f (-2)=log 2(-2+3)-2·(-2)3+4·(-2)=0+16-8=8,b =f (1)=log 24-2+4=4.(2)∵f (-2)·f (-1)<0,f (-1)·f (0)<0,f (1)·f (2)<0, ∴函数f (x )分别在区间(-2,-1),(-1,0),(1,2)内有零点.19.解析:(1)f (x )=2x为R 上的增函数,则f (x )在区间[a ,2a ]上为增函数, ∴f (x )min =2a,f (x )max =22a,由22a +2a =6,得22a +2a -6=0,即2a =-3(舍去),或2a=2,即a =1; (2)若f ⎝ ⎛⎭⎪⎫1x =3,则21x =3,即1x =log 23=lg 3lg 2=1lg 2lg 3=1log 32,则x =log 32, ∴3x +3-x=3log 32+3-log 32=2+12=52.20.解析:(1)∵f (x )=log 4(4x-1), ∴4x-1>0解得x >0,故函数f (x )的定义域为(0,+∞). (2)令t =4x-1,∵x ∈⎣⎢⎡⎦⎥⎤12,2,∴t ∈[1,15], ∴y =log 4t ∈[0,log 415], ∴f (x )∈[0,log 415],即函数f (x )的值域为[0,log 415].21.解析:(1)由题意符合公司要求的函数f (x )在[3 000,9 000]为增函数, 且对∀x ∈[3 000,9 000],恒有f (x )≥100且f (x )≤x5.①对于函数f (x )=0.03x +8,当x =3 000时,f (3 000)=98<100,不符合要求; ②对于函数f (x )=0.8x+200为减函数,不符合要求;③对于函数f (x )=100log 20x +50在[3 000,10 000 ],显然f (x )为增函数,且当x =3 000时,f (3 000)>100log 2020+50≥100; 又因为f (x )≤f (9 000)=100log 209 000+50<100log 20160 000+50=450;而x 5≥3 0005=600,所以当x ∈[3 000,9 000]时,f (x )max ≤⎝ ⎛⎭⎪⎫x 5min . 所以f (x )≤x5恒成立;因此,f (x )=100log 20x +50为满足条件的函数模型. (2)由100log 20x +50≥350得:log 20x ≥3,所以x ≥8 000, 所以公司的投资收益至少要达到8 000万元.22.解析:(1)因为函数f (x )=a x(a >0,且a ≠1)的图象经过点⎝ ⎛⎭⎪⎫12,3, 所以a 12=3,解得a =3, 则f (x )=3x,因为x ∈(0,2),故1<3x<9,11 令t =3x ,则1<t <9,函数F (x )=-3f (x )+10-m 在区间(0,2)内存在零点,即函数G (t )=-3t +10-m 在区间(1,9)内有零点,所以G (1)·G (9)<0,即(7-m )(-17-m )<0,解得-17<m <7,所以实数m 的取值范围为(-17,7);(2)由题意可得,函数f (x )=g (x )+h (x ),其中g (x )为奇函数,h (x )为偶函数,可得⎩⎪⎨⎪⎧f (x )=g (x )+h (x )=3xf (-x )=g (-x )+h (-x )=3-x ,即⎩⎪⎨⎪⎧g (x )+h (x )=3x -g (x )+h (x )=3-x ,解得⎩⎪⎨⎪⎧g (x )=3x -3-x 2h (x )=3x+3-x 2, 因为2ln h (x )-ln g (x )-t ≥0,所以t ≤ln h 2(x )g (x )=ln ⎝ ⎛⎭⎪⎫3x +3-x 223x -3-x 2=ln (3x -3-x )2+42(3x -3-x ),设a =3x -3-x ,因为0<x ≤1,且a =3x -3-x 在R 上为单调递增函数,所以0<a ≤83,所以t ≤ln a 2+42a =ln ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫a +4a ,因为a +4a ≥2a ·4a =4, 当且仅当a =4a ,即a =2时取等号,所以t ≤ln 2,故实数t 的取值范围为(-∞,ln 2].。
第一章章末检测班级____ 姓名____ 考号____ 分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列命题中正确的是( )A .终边相同的角一定相等B .锐角都是第一象限角C .第一象限角都是锐角D .小于90°的角都是锐角答案:B2.已知sin(2π-α)=45,α∈⎝⎛⎭⎫3π2,2π,则sin α+cos αsin α-cos α等于( ) A.17 B .-17C .-7D .7答案:A解析:∵sin(2π-α)=sin(-α)=-sin α=45, ∴sin α=-45. ∵α∈⎝⎛⎭⎫3π2,2π,∴cos α=1-sin 2α=35. ∴sin α+cos αsin α-cos α=-45+35-45-35=-15-75=17. 3.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4答案:B解析:∵sin α=-12=-12,且α的终边在第四象限,∴α=116π. 4.若函数y =2cos ωx 在区间⎣⎡⎦⎤0,2π3上递减,且有最小值1,则ω的值可以是( ) A .2 B.12C .3 D.13答案:B解析:由y =2cos ωx 在⎣⎡⎦⎤0,2π3上是递减的,且有最小值为1,则有f ⎝⎛⎭⎫2π3=1,即2×cos ⎝⎛⎭⎫ω×2π3=1,cos ⎝⎛⎭⎫2π3ω=12,检验各选项,得出B 项符合. 5.sin(-1740°)的值是( )A .-32B .-12C.12D.32答案:D解析:sin(-1740°)=sin60°=32. 6.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3 答案:B解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1,故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3,即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 7.下列函数中,在⎝⎛⎭⎫0,π2上是增函数的偶函数是( ) A .y =|sin x | B .y =|sin2x |C .y =|cos x |D .y =tan x答案:A解析:作图比较可知.8.要得到函数y =cos(3x +2)的图象,只要将函数y =cos3x 的图象( )A .向左平移2个单位B .向右平移2个单位C .向左平移23个单位 D .向右平移23个单位 答案:C解析:∵y =cos(3x +2)=cos3⎝⎛⎭⎫x +23, ∴只要将函数y =cos3x 的图象向左平移23个单位即可. 9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为( ) A .-12 B.32C .-32 D.12答案:B解析:f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫π3=sin π3=32. 10.若函数f (x )=2sin ⎝⎛⎭⎫ax +π4(a >0)的最小正周期为1,且g (x )=⎩⎪⎨⎪⎧sin ax (x <0)g (x -1)(x ≥0),则g ⎝⎛⎭⎫56等于( )A .-12 B.12C .-32 D.32答案:C 解析:由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,∴g ⎝⎛⎭⎫56=g ⎝⎛⎭⎫-16=sin ⎝⎛⎭⎫-a 6= sin ⎝⎛⎭⎫-π3=-32. 11.已知ω>0,函数f (x )=sin(ωx +π4)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2] 答案:A解析:因为ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,所以ωπ2+π4≤ωx +π4≤ωπ+π4,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A. 12.下图为一半径为3m 的水轮,水轮圆心O 距离水面2m ,已知水轮自点A 开始旋转,15s 旋转一圈.水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系式y =A sin(ωx +φ)+2,则有( )A .ω=2π15,A =3B .ω=152π,A =3 C .ω=2π15,A =5 D .ω=152π,A =5 答案:A解析:∵T =15,故ω=2πT =2π15,显然y max -y min 的值等于圆O 的直径长,即y max -y min =6,故A =y max -y min 2=62=3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知sin ⎝⎛⎭⎫π4-α=m ,则cos ⎝⎛⎭⎫π4+α=________. 答案:m解析:cos ⎝⎛⎭⎫π4+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α=m . 14.已知f (x )的定义域为(0,1],则f (sin x )的定义域是________.答案:(2k π,2k π+π),k ∈Z解析:由0<sin x ≤1得2k π<x <2k π+π(k ∈Z ).15.函数y =sin x +cos x -12的定义域为________. 答案:{x |2k π≤x ≤2k π+π3,k ∈Z }.解析:由题意知⎩⎪⎨⎪⎧ sin x ≥0cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x ≥0cos x ≥12, 如图,结合三角函数线知:⎩⎪⎨⎪⎧ 2k π≤x ≤2k π+π (k ∈Z )2k π-π3≤x ≤2k π+π3 (k ∈Z ),解得2k π≤x ≤2k π+π3(k ∈Z ), ∴函数的定义域为{x |2k π≤x ≤2k π+π3,k ∈Z }. 16.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R )有下列命题,其中正确的是________. ①y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ②y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ③y =f (x )的最小正周期为2π;④y =f (x )的图象的一条对称轴为x =-π6. 答案:①②解析:4sin ⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫2x -π6,故①②正确,③④错误. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α的终边经过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值. 解:(1)∵|OP |=1,∴点P 在单位圆上.由正弦函数的定义得sin α=-35. (2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α. 由余弦函数的定义得cos α=45,故所求式子的值为54. 18.(12分)已知sin θ,cos θ是关于x 的方程x 2-2 2ax +a =0的两个根.(1)求实数a 的值;(2)若θ∈⎝⎛⎭⎫-π2,0,求sin θ-cos θ的值. 解:(1)∵(sin θ+cos θ)2-2sin θcos θ=1,又∵⎩⎨⎧sin θ+cos θ=2 2a ,sin θ·cos θ=a , ∴a =12或a =-14,经检验Δ≥0都成立, ∴a =12或a =-14.(2)∵θ∈⎝⎛⎭⎫-π2,0,∴a <0, ∴a =-14且sin θ-cos θ<0, ∴sin θ-cos θ=-62. 19.(12分)若函数f (x )=a -b cos x 的最大值为52,最小值为-12,求函数g (x )=-4a sin bx 的最值和最小正周期.解:当b >0时,⎩⎨⎧ a +b =52a -b =-12⇒⎩⎪⎨⎪⎧ a =1,b =32, g (x )=-4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. 当b <0时,⎩⎨⎧ a -b =52a +b =-12⇒⎩⎪⎨⎪⎧a =1,b =-32, g (x )=-4sin(-32x )=4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. b =0时不符合题意.综上所述,函数g (x )的最大值为4,最小值为-4,最小正周期为4π3. 20.(12分)如图,单摆从某点开始来回摆动,离开平衡位置的距离s (cm)和时间t (s)的函数关系是s =A sin(ω t +φ),0<φ<π2,根据图象,求:(1)函数解析式;(2)单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需要多长时间?解:(1)由图象知,34T =1112-16=34,所以T =1.所以ω=2πT=2π. 又因为当t =16时取得最大值,所以令2π·16+φ=π2+2k π, ∵φ∈⎝⎛⎭⎫0,π2. 所以φ=π6.又因为当t =0时,s =3, 所以3=A sin π6,所以A =6,所以函数解析式为s =6sin ⎝⎛⎭⎫2πt +π6. (2)因为A =6,所以单摆摆动到最右边时,离开平衡位置6cm.(3)因为T =1,所以单摆来回摆动一次需要 1s.21.(12分)设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期. (1)求f (0);(2)求f (x )的解析式;(3)已知f ⎝⎛⎭⎫α4+π12=95,求sin α的值.解:(1)f (0)=3sin ⎝⎛⎭⎫ω×0+π6=3sin π6=32. (2)∵T =2πω=π2,∴ω=4,所以f (x )的解析式为:f (x )=3sin(4x +π6). (3)由f ⎝⎛⎭⎫α4+π12=95得3sin ⎣⎡⎦⎤4⎝⎛⎭⎫α4+π12+π6=95,即sin ⎝⎛⎭⎫α+π2=35,∴cos α=35, ∴sin α=±1-cos 2α=± 1-⎝⎛⎭⎫352=±45. 22.(12分)已知函数f (x )=2cos ⎝⎛⎭⎫2x -π4,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤-π8,π2时,方程f (x )=k 恰有两个不同的实数根,求实数k 的取值范围; (3)将函数f (x )=2cos ⎝⎛⎭⎫2x -π4的图象向右平移m (m >0)个单位后所得函数g (x )的图象关于原点中心对称,求m 的最小值.解:(1)因为f (x )=2cos ⎝⎛⎭⎫2x -π4,所以函数f (x )的最小正周期为T =2π2=π, 由-π+2k π≤2x -π4≤2k π,得-3π8+k π≤x ≤π8+k π,故函数f (x )的递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ); (2)因为f (x )=2cos ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤-π8,π8上为增函数,在区间⎣⎡⎦⎤π8,π2上为减函数 又f ⎝⎛⎭⎫-π8=0,f ⎝⎛⎭⎫π8=2,f ⎝⎛⎭⎫π2=2cos ⎝⎛⎭⎫π-π4=-2cos π4=-1, ∴当k ∈[0,2)时方程f (x )=k 恰有两个不同实根. (3)∵f (x )=2sin ⎝⎛⎭⎫-2x +3π4=2sin ⎝⎛⎭⎫2x +π4=2sin2⎝⎛⎭⎫x +π8 ∴g (x )=2sin2⎝⎛⎭⎫x +π8-m = 2sin ⎝⎛⎭⎫2x +π4-2m 由题意得π4-2m =2k π,∴m =-k π+π8,k ∈Z 当k =0时,m =π8,此时g (x )=2sin2x 关于原点中心对称.。
学业分层测评(十)第二章(建议用时:分钟)[学业达标]一、选择题(每小题分,共分).梯形中,∥,若梯形不在平面α内,则它在α内的正射影是( ).梯形.平行四边形.一条线段或梯形.一条线段【解析】当梯形所在的平面平行于投影线时,梯形在α上的正射影是一条线段.当梯形所在的平面与投影线不平行时,梯形在α上的正射影是一个梯形.【答案】.如果一个三角形的平行射影仍是一个三角形,则下列结论正确的是( ).内心的平行射影还是内心.重心的平行射影还是重心.垂心的平行射影还是垂心.外心的平行射影还是外心【解析】三角形的平行射影仍是三角形,但三角形的形状通常会发生变化,此时三角形的各顶点、各边的位置也会发生变化,其中重心、垂心、外心这些由顶点和边确定的点通常随着发生变化,而内心则始终是原先角平分线的交点,射影前后相对的位置关系不变.【答案】.圆锥的顶角为°,圆锥的截面与轴线所成的角为°,则截线是( ).椭圆.圆.双曲线.抛物线【解析】由已知α==°,β=°,∴β>α.故截线是椭圆,故选.【答案】.设平面π与圆柱的轴的夹角为β(°<β<°),现放入双球使之与圆柱面和平面π都相切,若已知双球与平面π的两切点的距离恰好等于圆柱的底面直径,则截线椭圆的离心率为( )【解析】双球与平面π的切点恰好是椭圆的焦点,圆柱的底面直径恰好等于椭圆的短轴长,由题意知,=.∴====.【答案】二、填空题(每小题分,共分).已知圆锥面的轴截面为等腰直角三角形,用一个与轴线成°角的不过圆锥顶点的平面去截圆锥面时,所截得的截线的离心率为.【导学号:】【解析】∵圆锥的轴截面为等腰直角三角形,所以母线与轴线的夹角α=°;又截面与轴线的夹角β=°,即β<α,∴截线是双曲线,其离心率=β α)=° °)==.【答案】.一平面与圆柱面的母线成°角,平面与圆柱面的截线椭圆的长轴长为,则圆柱面内切球的半径为.【解析】由=,得=,又=°=,∴=·=×=.∴===.∴圆柱面内切球的半径=.【答案】三、解答题(每小题分,共分).如图--,正方体-中,、分别是、的中点,是正方形的中心,画出空间四边形在该正方体的面上的正投影.图--【解】如图(),点落在点上,点落在的中点′上,点在面上的正射影仍为点,点落在的中点′上,擦去命名点,其图形如图()所示.。
班级姓名考号必修4第一章《三角函数》章末检测(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题5分,共50分)1.sin 600°+tan 240°的值是()A.-32 B.32C.-12+ 3 D.12+ 32.把-114π表示成θ+2kπ(k∈Z)的形式,使|θ|的最小的θ值是()A.-34πB.-π4 C.π4 D.3π43.设α角属于第二象限,且⎪⎪⎪⎪cosα2=-cosα2,则α2角属于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知tan α=34,α∈⎝⎛⎭⎫π,32π,则cos α的值是()A.±45 B.45C.-45 D.355.已知一扇形的弧所对的圆心角为54°,半径r=20 cm,则扇形的周长为() A.6π cm B.60 cmC.(40+6π) cm D.1 080 cm6.若点P(sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是() A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫3π4,π7.下列四个命题中,正确的是()A.函数y=tan⎝⎛⎭⎫x+π4是奇函数B.函数y=⎪⎪⎪⎪sin⎝⎛⎭⎫2x+π3的最小正周期是πC.函数y=tan x在(-∞,+∞)上是增函数D.函数y=cos x在区间⎣⎡⎦⎤2kπ+π,2kπ+74π(k∈Z)上是增函数8.为了得到函数y=sin⎝⎛⎭⎫2x-π6的图象,可以将函数y=cos 2x的图象() A.向右平移π6个单位长度B.向右平移π3个单位长度C.向左平移π6个单位长度D.向左平移π3个单位长度9.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()第9题 第13题10.把函数y =cos ⎝⎛⎭⎫x +4π3的图象向左平移φ (φ>0)个单位,所得的函数为偶函数,则φ的最小值是( )A.4π3B.2π3C.π3D.5π3二、填空题(本大题共5小题,每小题5分,共25分)11.已知tan α=2,则sin αcos α+2sin 2α的值是________. 12.函数f (x )=|sin x |的单调递增区间是________________.13.已知函数f (x )=2sin(ωx +φ)的图象如上图所示,则f (7π12)=___ ____.14.已知函数y =sin π3x 在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是____ __.15.方程sin πx =14x 的解的个数是 .三、解答题(本大题共6小题,共75分) 16.(本小题12分)求函数y =3-4sin x -4cos 2x 的最大值和最小值,并写出函数取最值时对应的x 的值.17.(本小题12分)求函数12y=log sin 2x 3π⎛⎫-⎪⎝⎭的单调递增区间.18.( 本小题12分)已知函数y =a cos ⎝⎛⎭⎫2x +π3+3,x ∈⎣⎡⎦⎤0,π2的最大值为4,求实数a 的值.19.(本小题12分)已知α是第三象限角,f (α)=sin (π-α)·cos (2π-α)·tan (-α-π)tan (-α)·sin (-π-α).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-32π=15,求f (α)的值;(3)若α=-1860°,求f (α)的值.20.( 本小题13分)在已知函数f (x )=A sin(ωx +φ),x ∈R ⎝⎛⎭⎫其中A >0,ω>0,0<φ<π2的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.21.(本小题14分)已知函数f (x )=A sin(ωx +φ) (A >0且ω>0,0<φ<π2)的部分图象,如图所示.(1)求函数解析式;(2)若方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根,试求a 的取值范围.必修4第一章《三角函数》章末检测参考答案1.B 2.A 3.C 4.C.5.C.6.B 7.D.8.B 9.D 10.B11.2 12.⎣⎡⎦⎤k π,k π+π2,k ∈Z 13.0 14.8 15. 716.解 y =3-4sin x -4cos 2x=4sin 2x -4sin x -1=4⎝⎛⎭⎫sin x -122-2, 令t =sin x ,则-1≤t ≤1,∴y =4⎝⎛⎭⎫t -122-2 (-1≤t ≤1). ∴当t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )时,y min =-2;当t =-1,即x =3π2+2k π (k ∈Z )时,y max =7.17.解 y =log 2⎣⎡⎦⎤-sin ⎝⎛⎭⎫2x -π3log 212=-log 2⎣⎡⎦⎤-sin ⎝⎛⎭⎫2x -π3, ∵2>1,由复合函数的单调性知,要求sin ⎝⎛⎭⎫2x -π3的单调递增且小于0恒成立. ∴2x -π3在第四象限.∴2k π-π2<2x -π3<2k π(k ∈Z ).解得:k π-π12<x <k π+π6(k ∈Z ).∴原函数的单调递增区间为⎝⎛⎭⎫-π12+k π,π6+k π,k ∈Z .18.解 ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π3∈⎣⎡⎦⎤π3,4π3, ∴-1≤cos ⎝⎛⎭⎫2x +π3≤12. 当a >0,cos ⎝⎛⎭⎫2x +π3=12时,y 取得最大值12a +3, ∴12a +3=4,∴a =2. 当a <0,cos ⎝⎛⎭⎫2x +π3=-1时,y 取得最大值-a +3, ∴-a +3=4,∴a =-1,综上可知,实数a 的值为2或-1.19.解 (1)f (α)=sin α·cos (-α)·[-tan (π+α)]-tan α[-sin (π+α)]=-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝⎛⎭⎫α-32π=cos ⎝⎛⎭⎫32π-α=-sin α,又cos ⎝⎛⎭⎫α-32π=15,∴sin α=-15. 又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.(3)f (α)=f (-1 860°)=cos(-1 860°)=cos 1 860°=cos(5×360°+60°)=cos 60°=12.20.解 (1)由最低点为M ⎝⎛⎭⎫2π3,-2得A =2.由x 轴上相邻两个交点之间的距离为π2,得T 2=π2,即T =π,∴ω=2πT =2ππ=2.由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫2×2π3+φ=-2,即sin ⎝⎛⎭⎫4π3+φ=-1, 故4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,∴φ=π6,故f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵x ∈⎣⎡⎦⎤π12,π2,∴2x +π6∈⎣⎡⎦⎤π3,7π6, 当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].21.解 (1)由图象易知函数f (x )的周期为T =4⎝⎛⎭⎫7π6-2π3=2π,A =1,所以ω=1.方法一 由图可知此函数的图象是由y =sin x 的图象沿x 轴负方向平移π3个单位得到的,故φ=π3,其函数解析式为f (x )=sin ⎝⎛⎭⎫x +π3. 方法二 由图象知f (x )过点⎝⎛⎭⎫-π3,0,则sin ⎝⎛⎭⎫-π3+φ=0, ∴-π3+φ=k π,k ∈Z .∴φ=k π+π3,k ∈Z ,又∵φ∈⎝⎛⎭⎫0,π2,∴φ=π3, ∴f (x )=sin ⎝⎛⎭⎫x +π3. (2)方程f (x )=a 在⎝⎛⎭⎫0,5π3上有两个不同的实根等价于y =f (x )与y =a 的图象在⎝⎛⎭⎫0,5π3上有两个交点,在图中作y =a 的图象,如图为函数f (x )=sin ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫0,5π3上的图象, 当x =0时,f (x )=32,当x =5π3时,f (x )=0,由图中可以看出有两个交点时,a ∈⎝⎛⎭⎫32,1∪(-1,0).。
第一章 三角函数(B) (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知cos α=12,α∈(370°,520°),则α等于( )A .390°B .420°C .450°D .480° 2.若sin x ·cos x <0,则角x 的终边位于( ) A .第一、二象限 B .第二、三象限 C .第二、四象限 D .第三、四象限3.函数y =tan x2是( )A .周期为2π的奇函数B .周期为π2的奇函数C .周期为π的偶函数D .周期为2π的偶函数4.已知tan(-α-43π)=-5,则tan(π3+α)的值为( )A .-5B .5C .±5D .不确定5.已知函数y =2sin (ωx +φ))(ω>0)在区间[0,2π]的图象如图,那么ω等于( )A .1B .2 C.12 D.136.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于( )A .-π2B .2k π-π2(k ∈Z )C .k π(k ∈Z )D .k π+π2(k ∈Z )7.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( )A .-310 B.310 C .±310 D.348.将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫2x -π5C .y =sin ⎝⎛⎭⎫12x -π10D .y =sin ⎝⎛⎭⎫12x -π20 9.将函数y =sin(x -θ)的图象F 向右平移π3个单位长度得到图象F ′,若F ′的一条对称轴是直线x =π4,则θ的一个可能取值是( )A.5π12 B .-5π12 C.11π12 D .-11π1210.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )11.在同一平面直角坐标系中,函数y =cos ⎝⎛⎭⎫x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是( )A .0B .1C .2D .412.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <b13.如果cos α=15,且α是第四象限的角,那么cos(α+π2)=________.14.设定义在区间(0,π2)上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________. 15.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________. 16.给出下列命题:(1)函数y =sin |x |不是周期函数;(2)函数y =tan x 在定义域内为增函数;(3)函数y =|cos 2x +12|的最小正周期为π2;(4)函数y =4sin(2x +π3),x ∈R 的一个对称中心为(-π6,0).其中正确命题的序号是________.三、解答题(本大题共6小题,共70分)17.(10分)已知α是第三象限角,f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α).(1)化简f (α);(2)若cos(α-32π)=15,求f (α)的值.18.(12分)已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.19.(12分)已知sin α+cos α=15.求:(1)sin α-cos α;(2)sin 3α+cos 3α.20.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.21.(12分)函数y =A sin(ωx +φ)(A >0,ω>0,0≤φ≤π2)在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π,y min =-3. (1)求出此函数的解析式; (2)求该函数的单调递增区间; (3)是否存在实数m ,满足不等式A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)?若存在,求出m 的范围(或值),若不存在,请说明理由.22.(12分)已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?第一章 三角函数(B)答案1.B 2.C 3.A 4.A5.B [由图象知2T =2π,T =π,∴2πω=π,ω=2.]6.D [若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0,∴φ=k π+π2,(k ∈Z ).]7.B [∵sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2,∴tan θ=3.∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=310.]8.C [函数y =sin x y =sin ⎝⎛⎭⎫x -π10――→横坐标伸长到原来的2倍纵坐标不变y =sin ⎝⎛⎭⎫12x -π10.] 9.A [将y =sin(x -θ)向右平移π3个单位长度得到的解析式为y =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π3-θ=sin(x -π3-θ).其对称轴是x =π4,则π4-π3-θ=k π+π2(k ∈Z ).∴θ=-k π-7π12(k ∈Z ).当k =-1时,θ=5π12.]10.D [图A 中函数的最大值小于2,故0<a <1,而其周期大于2π.故A 中图象可以是函数f (x )的图象.图B 中,函数的最大值大于2,故a 应大于1,其周期小于2π,故B 中图象可以是函数f (x )的图象.当a =0时,f (x )=1,此时对应C 中图象,对于D 可以看出其最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D 中图象不可能为函数f (x )的图象.]11.C [函数y =cos ⎝⎛⎭⎫x 2+3π2=sin x 2,x ∈[0,2π],图象如图所示,直线y =12与该图象有两个交点.]12.D [∵a =sin5π7=sin(π-5π7)=sin 2π7. 2π7-π4=8π28-7π28>0. ∴π4<2π7<π2.又α∈⎝⎛⎭⎫π4,π2时,sin α>cos α. ∴a =sin 2π7>cos 2π7=b . 又α∈⎝⎛⎭⎫0,π2时,sin α<tan α. ∴c =tan 2π7>sin 2π7=a .∴c >a .∴c >a >b .] 13.265解析 ∵α是第四象限的角且cos α=15.∴sin α= -1-cos 2α=-265,∴cos(α+π2)=-sin α=265.14.23解析 由⎩⎪⎨⎪⎧y =6cos x ,y =5tan x消去y 得6cos x =5tan x .整理得6cos 2 x =5sin x,6sin 2x +5sin x -6=0,(3sin x -2)(2sin x +3)=0, 所以sin x =23或sin x =-32(舍去).点P 2的纵坐标y 2=23,所以|P 1P 2|=23.15.3解析 由函数y =A sin(ωx +φ)的图象可知: T 2=(-π3)-(-23π)=π3,∴T =23π. ∵T =2πω=23π,∴ω=3.16.(1)(4)解析 本题考查三角函数的图象与性质.(1)由于函数y =sin |x |是偶函数,作出y 轴右侧的图象,再关于y 轴对称即得左侧图象,观察图象可知没有周期性出现,即不是周期函数;(2)错,正切函数在定义域内不单调,整个图象具有周期性,因此不单调;(3)由周期函数的定义f (x +π2)=|-cos 2x +12|≠f (x ),∴π2不是函数的周期;(4)由于f (-π6)=0,故根据对称中心的意义可知(-π6,0)是函数的一个对称中心,故只有(1)(4)是正确的.17.解 (1)f (α)=sin (α-π2)cos (3π2+α)tan (π-α)tan (-α-π)sin (-π-α)=-sin (π2-α)sin α(-tan α)(-tan α)sin α=cos αsin αtan α-tan αsin α=-cos α.(2)∵cos(α-3π2)=cos(3π2-α)=-sin α=15.∴sin α=-15.∵α是第三象限角,∴cos α=-265.∴f (α)=-cos α=265.18.解 由已知4sin θ-2cos θ3sin θ+5cos θ=611,∴4tan θ-23tan θ+5=611. 解得:tan θ=2.(1)原式=5tan 2θ+2tan θ-3=55=1.(2)原式=sin 2θ-4sin θcos θ+3cos 2θ=sin 2θ-4sin θcos θ+3cos 2θsin 2θ+cos 2θ=tan 2θ-4tan θ+31+tan 2θ=-15. 19.解 (1)由sin α+cos α=15,得2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925,∴sin α-cos α=±75.(2)sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α)=(sin α+cos α)(1-sin αcos α),由(1)知sin αcos α=-1225且sin α+cos α=15,∴sin 3α+cos 3α=15×⎝⎛⎭⎫1+1225=37125. 20.解 (1)由图象知A =2.f (x )的最小正周期T =4×(5π12-π6)=π,故ω=2πT =2.将点(π6,2)代入f (x )的解析式得sin(π3+φ)=1,又|φ|<π2,∴φ=π6,故函数f (x )的解析式为f (x )=2sin(2x +π6).(2)变换过程如下:y =2sin x 6π−−−−−−−→图像向左平移个单位y =2sin(x +π6)12→所有点的横坐标缩短为原来的纵坐标不变y =2sin(2x +π6). 21.解 (1)由题意得A =3,12T =5π⇒T =10π,∴ω=2πT =15.∴y =3sin(15x +φ),由于点(π,3)在此函数图象上,则有3sin(π5+φ)=3,∵0≤φ≤π2,∴φ=π2-π5=3π10.∴y =3sin(15x +3π10).(2)当2k π-π2≤15x +3π10≤2k π+π2时,即10k π-4π≤x ≤10k π+π时,原函数单调递增.∴原函数的单调递增区间为[10k π-4π,10k π+π](k ∈Z ).(3)m 满足⎩⎪⎨⎪⎧-m 2+2m +3≥0,-m 2+4≥0,解得-1≤m ≤2.∵-m 2+2m +3=-(m -1)2+4≤4, ∴0≤-m 2+2m +3≤2,同理0≤-m 2+4≤2.由(2)知函数在[-4π,π]上递增,若有: A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ),只需要:-m 2+2m +3>-m 2+4,即m >12成立即可,所以存在m ∈(12,2],使A sin(ω-m 2+2m +3+φ)>A sin(ω-m 2+4+φ)成立.22.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放,∴12cos π6t +1>1,∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,即12k -3<t <12k +3.①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。