【课堂新坐标】高中数学 第三章 统计案例综合检测 北师大版选修2-3
- 格式:doc
- 大小:157.50 KB
- 文档页数:8
一、选择题1.下列说法错误的是( )A .在回归直线方程0.2 0.8y x =+中,当解释变量x 每增加1个单位时,预报变量y 平均增加0.2个单位.B .对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小.C .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1.D .回归直线过样本点的中心(),x y .2.为检测某药品服用后的多长时间开始有药物反应,现随机抽取服用了该药品的1000人,其服用后开始有药物反应的时间(分钟)与人数的数据绘成的频率分布直方图如图所示.若将直方图中分组区间的中点值设为解释变量x (分钟),这个区间上的人数为y (人),易见两变量x ,y 线性相关,那么一定在其线性回归直线上的点为( )A .()1.5,0.10B .()2.5,0.25C .()2.5,250D .()3,3003.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问400名不同的大学生是否爱好某项运动,利用22⨯列联表,计算可得2K 的观测值7.556k ≈,附表:20()P K k ≥0.15 0.100.050.025 0.010 0.005 0.001 0k 2.0722.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是A .有99%以上的把握认为“爱好该项运动与性别无关”B .有99%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别无关” 4.下列判断错误的是A .若随机变量ξ服从正态分布()()21,,30.72N P σξ≤=,则()10.28P ξ≤-=;B .若n 组数据()()()1122,,,,...,,n n x y x y x y 的散点都在1y x =-+上,则相关系数1r =-;C .若随机变量ξ服从二项分布: 15,5B ξ⎛⎫~ ⎪⎝⎭, 则()1E ξ=; D .am bm >是a b >的充分不必要条件;5.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试,统计得到成绩与专业的列联表:( )附:参考公式及数据:(1)统计量:()()()()()22n ad bc K a b c d a c b d -=++++,(n a b c d =+++).(2)独立性检验的临界值表:则下列说法正确的是A .有95%的把握认为环保知识测试成绩与专业有关B .有95%的把握认为环保知识测试成绩与专业无关C .有99%的把握认为环保知识测试成绩与专业有关D .有99%的把握认为环保知识测试成绩与专业无关6.某种产品的广告费支出x 与销售额y (单位:万元)之间有下表关系:y 与x 的线性回归方程为 6.5175ˆ.y x =+,当广告支出5万元时,随机误差的效应(残差)为( ) A .40 B .20 C .30D .107.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k 2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )A .90%B .95%C .97.5%D .99.5%8.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0019.某家具厂的原材料费支出x 与销售量y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为ˆ8ˆy x b =+,则^b为( )A .5B .15C .10D .2010.已知样本789x y 、、、、的平均数是8xy 值为 A .8B .32C .60D .8011.已知,x y 的取值如下表:( )y1 1.3 3.2 5.6 8.9若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-12.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:由上表中数据计算得2K =()21051030204555503075⨯⨯-⨯⨯⨯⨯≈6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”( )A .1%B .99%C .2.5%D .97.5%二、填空题13.给出以下四个命题:①设,,a b c 是空间中的三条直线,若a b ⊥,b c ⊥,则//a c .②在面积为S 的ABC 的边AB 上任取一点P ,则PBC 的面积大于S4的概率为34.③已知一个回归直线方程为 1.545y x =+{}()1,5,7,13,19,1,2,...,5i x i ∈=,则58.5=y . ④数列{}n a 为等差数列的充要条件是其通项公式为n 的一次函数. 其中正确命题的序号为________.(把所有正确命题的序号都填上)14.在一次独立试验中,有200人按性别和是否色弱分类如下表(单位:人)男 女 正常 73 117 色弱73你能在犯错误的概率不超过_____的前提下认为“是否色弱与性别有关”?15.以下结论正确..的序号有_________ (1)根据22⨯列联表中的数据计算得出2K ≥6.635, 而P (2K ≥6.635)≈0.01,则有99% 的把握认为两个分类变量有关系.(2)在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关.(3)在线性回归分析中,相关系数为r ,r 越接近于1,相关程度越大;r 越小,相关程度越小.(4)在回归直线0.585y x =-中,变量200x =时,变量y 的值一定是15. 16.给出下列命题:①线性相关系数越大,两个变量的线性相关越强;反之,线性相关性越弱; ②由变量和的数据得到其回归直线方程:,则一定经过;③从越苏传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好; ⑤在回归直线方程中,当解释变量每增加一个单位时,预报变量增加0.1个单位,其中真命题的序号是___________.17.在吸烟与患肺病这两个分类变量的计算中,“若2x 的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系”这句话的意思: ①是指“在100个吸烟的人中,必有99个人患肺病 ②是指“有1%的可能性认为推理出现错误”; ③是指“某人吸烟,那么他有99%的可能性患有肺病”; ④是指“某人吸烟,如果他患有肺病,那么99%是因为吸烟”. 其中正确的解释是______.18.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R 的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.19.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.20.下列说法中,正确的有_______.①回归直线ˆˆˆy bx a =+恒过点(),x y ,且至少过一个样本点;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系;③2k 是用来判断两个分类变量是否相关的随机变量,当2k 的值很小时可以推断两个变量不相关;三、解答题21.有治疗某种疾病的A B 、两种药物,为了分析药物的康复效果进行了如下随机抽样调查:AB 、两种药物各有100位病人服用,他们服用药物后的康复时间(单位:天数)及人数记录如下: 服用A 药物:(1)若康复时间低于15天(不含15天),记该种药物对某病人为“速效药物”.当17a >时,请完成下列22⨯列联表,并判断是否有99%的把握认为病人服用药物A 比服用药物B 更速效?A 药物的7人为Ⅰ组,服用B 药物的7人为Ⅱ组.现从Ⅰ、Ⅱ两组中随机各选一人,分别记为甲、乙.①a 为何值时,Ⅰ、Ⅱ两组人康复时间的方差相等(不用说明理由); ②在①成立且12a >的条件下,求甲的康复时间比乙的康复时间长的概率. 参考数据:参考公式:2()()()()()n ad bc K a b c b a c b d -=++++,其中n =a +b +c +d.22.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,从上述500名患者中抽取300人,得到如下列联表,根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:短潜伏者 长潜伏者 合计60岁及以上 90 70 160 60岁以下 60 80 140 合计 150150300附表及公式:20P K k ≥()0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++23.我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在2020年2月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如表频数分布表:(1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值;(2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如表列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.参考公式和数据:()()()()()22n ad bcKa b c d a c b d-=++++.(其中n a b c d=+++为样本容量)24.2020年3月,因为新冠肺炎疫情的影响,我市全体学生只能在网上在线学习,为了研究学生在线学习情况,市教研院数学学科随机从市区各高中学校抽取120名学生对线上教学情况进行调查(其中,男生与女生的人数之比为3:1),结果发现:男生中有40名对于线上教学满意,女生中有10名表示对于线上教学不满意.(1)请完成如表2×2列联表,并回答能否有95%的把握认为对“线上教学是否满意与性别有关”;态度性别满意不满意合计男生女生合计120(2)采用分层抽样的方法,从被调查的对线上教学满意的学生中,抽取6名学生,再从这6名学生中抽取2名学生,作线上学习的经验介绍,求所选取的2名学生性别不同的概率.附:参考公式及临界值表()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++P (K 2>k 0)0.150.100.050.0250.0100.0050.001 k 02.0722.7063.8415.0246.6357.87910.82825.某地为响应国家“脱贫攻坚战”的号召,帮助贫困户脱贫,安排贫困人员参与工厂生产.现用A ,B 两条生产线生产某产品.为了检测该产品的某项质量指标值(记为Z ),现随机抽取这两种这两条生产线的产品各100件,由检测结果得到如下频率分布直方图.(Ⅰ)分别估计A ,B 两条生产线的产品质量指标值的平均数(同一组数据中的数据用该组区间的中点值作代表),从平均数结果看,哪条生产线的质量指标值更好?(Ⅱ)计算A 生产线的产品质量指标值的众数和中位数(中位数计算结果精确到小数点后两位).(Ⅲ)该公司规定当92Z ≥时,产品为超优品.根据所检测的结果填写22⨯列联表,并判断是否有95%的把握认为“生产超优品是否与生产线有关”.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++()20P K k ≥0.050 0.010 0.005 0.001 0k 3.8416.6357.87910.82822⨯列联表A 生产线B 生产线 总计超优品非超优品 总计26.根据国家统计局数据,1999年至2019年我国进出口贸易总额从3万亿元跃升至31.6万亿元,中国在国际市场上的贸易份额越来越大对外贸易在国民经济中的作用日益突出.将年份1999,2004,2009,2014,2019分别用1,2,3,4,5代替,并表示为t ,y 表示全国进出口贸易总额.(1)根据以上统计数据及图表,给出了下列两个方案,请解决方案1中的问题. 方案1:用y bt a =+作为全国进出口贸易总额y 关于t 的回归方程,根据以下参考数据,求出y 关于t 的回归方程,并求相关指数21R .方案2:用dt y ce =作为全国进出口贸易总额y 关于t 的回归方程,求得回归方程0.57212.3259x y e =,相关指数22R .(2)通过对比(1)中两个方案的相关指数,你认为哪个方案中的回归方程更合适,并利用此回归方程预测2020年全国进出口贸易总额. 参考数据:y()()51=--∑iii t t y y()521ii y y =-∑17.14 74 555.792①0.140.340.66 1.86 2.048.192++++=②222220.140.34 1.86 2.04 2.1412.336++++=③8.1920.0147555.792≈④12.3360.0222555.792≈参考公式:线性回归方程中的斜率和截距的最小二乘法估计公式分别为:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-,相关指数()()221211ni ii n ii y y R yy==-=--∑∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据线性回归方程,相关系数,独立性检验的相关知识即可判断选项的正误. 【详解】对于选项A :在回归直线方程0.2.8ˆ0yx =+中,当解释变量x 每增加1个单位时,预报变量y 平均增加0.2个单位,正确.对于选项B :对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系"的把握程度越大,错误.对于选项C :两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1,正确. 对于选项D :回归直线过样本点的中心(),x y ,正确. 故选: B 【点睛】本题主要考查了线性回归的有关知识,考查了随机变量的相关性,考查了推理能力,属于中档题.2.C解析:C 【分析】写出四个区间中点的横纵坐标,从而可求出 2.5x =,250y =,进而可选出正确答案. 【详解】解:由频率分布直方图可知, 第一个区间中点坐标,111.0,0.101000100x y ==⨯=, 第二个区间中点坐标,222.0,0.211000210x y ==⨯=, 第三个区间中点坐标,333.0,0.301000300x y ==⨯=, 第四个区间中点坐标,444.0,0.391000390x y ==⨯=, 则()12341 2.54x x x x x =+++=,()123412504y y y y y =+++=, 则一定在其线性回归直线上的点为(),x y ()2.5,250=. 故选:C. 【点睛】本题考查了频率分布直方图,考查了线性回归直线方程的性质.本题的关键是利用线性回归直线方程的性质,即点(),x y 一定在方程上.3.B解析:B 【分析】根据2K 的观测值7.556k ≈,对照表中数据,即可得到相应的结论. 【详解】根据2K 的观测值7.556k ≈,对照表中数据得出有0.01的几率说明这两个变量之间的关系是不可信的,即有10.0199%-=的把握说明两个变量之间有关系,故选B . 【点睛】本题主要考查独立性检验的应用,独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式计算2K 的观测值k ;(3)查表比较k 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误)4.D解析:D 【解析】分析:根据正态分布的对称性求出()1P ξ≤-的值,判断A 正确; 根据线性相关关系与相关系数的定义,判断B 正确; 根据二项分布的均值计算公式求出()E ξ的值,判断C 正确; 判断充分性和必要性是否成立,得出D 错误.详解:对于A ,随机变量ξ服从正态分布()21,N σ,∴曲线关于1ξ=对称,131310.720.28PP P ξξξ∴≤-=≥=-≤=-=()()(),A 正确;对于B ,若n 组数据()()()1122,,,,...,,n n x y x y x y 的散点都在1y x =-+上, 则x y ,成负相关,且相关关系最强,此时相关系数1r =-,B 正确;对于C ,若随机变量ξ服从二项分布: 15,5B ξ⎛⎫~ ⎪⎝⎭,则1515E(),ξ=⨯= C 正确;对于D ,am >bm 时,a >b 不一定成立,即充分性不成立,a b am bm >时,> 不一定成立,即必要性不成立,是既不充分也不必要条件,D 错误. 故选:D .点睛:本题考查了命题真假的判断问题,是综合题.5.A解析:A 【解析】分析:首先计算观测值k 0的值,然后给出结论即可.详解:由列联表计算观测值:()2401413672804.912 3.8412119202057k ⨯⨯-⨯==≈>⨯⨯⨯, 则有95%的把握认为环保知识测试成绩与专业有关. 本题选择A 选项.点睛:本题主要考查独立性检验及其应用等知识,意在考查学生的转化能力和计算求解能力.6.D解析:D 【解析】∵y 与x 的线性回归方程为 6.5175ˆ.y x =+ 当5x =时,ˆ50y=. 当广告支出5万元时,由表格得:60y = 故随机误差的效应(残差)为605010.-= 故选D .7.C解析:C 【详解】∵2 6.023 5.024K =>∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 故选C.点睛:本题主要考查独立性检验的实际应用.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22()()()()()n ad bc K a b c d a c b d -=++++,计算出2K 的值;(3)查表比较2K 与临界值的大小关系,作统计判断.8.D解析:D 【解析】010.828,10.0010.99999.90k ≥∴-==,则有0099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.C解析:C由题意可得:2456855x ++++==,2535605575505y ++++==,回归方程过样本中心点,则:5285,1ˆˆ0bb =⨯+∴=. 本题选择C 选项.10.C解析:C 【解析】由78982x y++++⎧=⎪⎪=得=60xy ,故选C. 11.A解析:A 【解析】 设2t x = ,则11(014916)6,(1 1.3 3.2 5.68.9)455t y =++++==++++=,所以点(6,4)在直线12y t a =+上,求出1a =,选A. 点睛:本题主要考查了散点图,属于基础题.样本点的中心(),x y 一定在直线回归直线上,本题关键是将原曲线变形为12y t a =+,将点(6,4)代入,求出值. 12.D解析:D 【解析】 试题由题根据二列联表得出;2K =()21051030204555503075⨯⨯-⨯⨯⨯⨯≈6.109,对应参考值得 2 5.024K >,则有10.0250.975-=,即有97.5%的把握认为文化程度与月收入有关系。
一、选择题1.某商场为了了解不同厂家生产的散装面包的月销售量y (千克)与售价x (元/千克)之间的关系,随机统计了某几个月的月销售量与当月各散装面包的售价,相关数据如下表:由表中数据算出线性回归方程为 3.1ˆˆyx a =-+,则样本在()18180,处的残差为( ) A .0B .1.4C .2D .2.12.下列说法中错误的是( )A .先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这种抽样方法是系统抽样法.B .一组数据的方差为2s ,平均数为x ,将这组数据的每一个数都乘以2,所得的一组新数据的方差和平均数为24s ,2x .C .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1.D .若一组数据1,a ,3的平均数是2,则该组数据的方差是23. 3.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问400名不同的大学生是否爱好某项运动,利用22⨯列联表,计算可得2K 的观测值7.556k ≈,附表:参照附表,得到的正确结论是A .有99%以上的把握认为“爱好该项运动与性别无关”B .有99%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别无关”4.为了解高中生对电视台某节目的态度,在某中学随机调查了110名学生,根据得到的联表算得2K 的观测值 5.278k ≈. 附表:参照附表,得到的正确结论是 ( )A .在犯错误的概率不超过1%的前提下,认为“喜欢该节目与性别有关”B .在犯错误的概率不超过1%的前提下,认为“喜欢该节目与性别无关”C .有97.5%以上的把握认为“喜欢该节目与性别有关”D .有97.5%以上的把握认为“喜欢该节目与性别无关”5.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是A .10200ˆyx =-+ B .10200ˆyx =+ C .10200ˆyx =-- D .10200ˆyx =- 6.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35,若X 与Y 有关系的可信程度为90%,则c =( ) A .4 B .5 C .6D .77.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是 ( ) A .0.1E ξ=B .•01D ξ=C .10()0.01?0.99k k P k ξ-==D .1010()0.99?0.01kkkP k C ξ-==8.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k 2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )A .90%B .95%C .97.5%D .99.5%9.某班主任对全班50名学生进行了作业量的调查,数据如下表:合计 26 24 50若推断“学生的性别与认为作业量大有关”,则这种推断犯错误的概率不超过( )附:()()()()()22n ad bc K a b c d a c b d -=++++ P(K 2>k 0) 0.15 0.10 0.05 0.025 0.01 0.001 k 02.0722.7063.8415.0246.63510.828A .0.01B .0.025C .0.10D .0.0510.如表为某公司员工工作年限x (年)与平均月薪y (千元)对照表.已知y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( ) x 3 4 5 6 y2.5t44.5A .回归直线一定过点(4.5,3.5)B .工作年限与平均月薪呈正相关C .t 的取值是3.5D .工作年限每增加1年,工资平均提高700元11.下列命题中:①线性回归方程y bx a =+必过点(),x y ;②在回归方程35y x =-中,当变量增加一个单位时,y 平均增加5个单位; ③在回归分析中,相关指数2R 为0.80的模型比相关指数2R 为0.98的模型拟合的效果要好;④在回归直线0.58ˆyx =-中,变量2x =时,变量y 的值一定是-7. 其中假命题的个数是 ( ) A .1B .2C .3D .412.下列说法:①将一组数据中的每个数据都乘以同一个非零常数a 后,标准差也变为原来的a 倍; ②设有一个回归方程35y x =-,变量x 增加1个单位时,y 平均减少5个单位; ③线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果ξ服从正态分布()()21,0N σσ>,若ξ位于区域()0,1的概率为0.4,则ξ位于区域()1,+∞内的概率为0.6⑤利用统计量2χ来判断“两个事件,X Y 的关系”时,算出的2χ值越大,判断“X 与Y 有关”的把握就越大其中正确的个数是 A .1B .2C .3D .4二、填空题13.如图所示是世界20个地区受教育程度的人口百分比与人均收入的散点图,样本点基本集中在一个条型区域,因此两个变量呈线性相关关系.利用散点图中的数据建立的回归方程为ˆ 3.19388.193yx =+,若受教育的人口百分比相差10%,则其人均收入相差_________.14.对相关系数r ,①r 越大,线性相关程度越大; ②r 越小,线性相关程度越大;③|r|越大,线性相关程度越小,|r|越接近0,线性相关程度越大; ④|r|≤1且|r|越接近1,线性相关程度越大,|r|越接近0,线性相关程度越小 以上说法中,正确说法的序号是__________.15.如果根据性别与是否爱好运动的列联表得到K 2≈3.852>3.841,则判断性别与是否爱好运动有关,那么这种判断犯错的可能性不超过________. 16.某班主任对全班50名学生作了一次调查,所得数据如表:认为作业多认为作业不多总计喜欢玩电脑游戏18927不喜欢玩电脑游戏81523总计262450由表中数据计算得到K 2的观测值k≈5.059,于是________(填“能”或“不能”)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.17.已知方程是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm ,的单位是kg ,那么针对某个体(160,53)的残差是________.18.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 19.给出下列四个结论:(1)相关系数r 的取值范围是1r <;(2)用相关系数r 来刻画回归效果,r 的值越大,说明模型的拟合效果越差;(3)一个袋子里装有大小相同的5个白球和5个黑球,从中任取4个,则其中所含白球个数的期望是2;(4) 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,且(),,0,1a b c ∈,已知他投篮一次得分的数学期望为2,则213a b+的最小值为163.其中正确结论的序号为______________.20.2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:感染 未感染 总计 注射 10 40 50 未注射 20 30 50 总计3070100关系.(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.) 20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001三、解答题21.某共享单车经营企业欲向甲巿投放单车,为制定适宜的经营策略﹐该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷﹑整理分析及开座谈会三个阶段.在随机问卷阶段,A ,B 两个调查小组分赴全市不同区域发放问卷并及时收回﹔在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15岁至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:参考公式:()()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数﹔②为听取对发展共享单车的建议,调查组专门组织所抽取的"年龄达到35岁且偶尔使用单车的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A 组,求A 组这4人中得到礼品的人数X 的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,当年龄设定为25岁时,根据已有数据,完成下列2×2列联表(单位:人),并判断是否在犯错误的概率不超过1%的前提下有把握认为“经常使用共享单车与年龄有关”?22.为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.(1)根据所给样本数据画出22⨯列联表;(2)请问能有多大把握认为药物有效?附公式:()()()()()22=n ad bc K a b c d a c b d -++++.23.新高考,取消文理科,实行“33+”,成绩由语文、数学、外语统一高考 成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在[)15,45称为中青年,年龄在[)45,75称为中老年),并把调查结果制成下表:(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面22⨯列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?附:()()()()()22n ad bcKa b c d a c b d-=++++.24.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康,经过不懈的努力奋斗拼搏,新农村建设取得了巨大进步,农民年收入也逐年增加.为了实现2020年脱贫的工作计划,该地扶贫办随机收集了以下50位农民的统计数据,以此研究脱贫攻坚的效果是否与农民的受教育的发展状况有关:(1)根据列联表运用独立性检验的思想方法分析:能否有99%的把握认为“脱贫攻坚的效果与农民的受教育的发展状况有关”,并说明理由;(2)现用分层抽样的方法在全部受过教育的农民中随机抽取5位农民作为代表,再从这5位农民代表中任选2位继续调查,求这2位农民代表中至少有1位脱贫攻坚效果明显的概率.参考附表:参考公式:()()()()()22n ad bcKa b a c b d c d+=++++,其中n a b c d=+++.25.新冠状病毒严重威胁着人们的身体健康,我国某医疗机构为了调查新冠状病毒对我国公民的感染程度,选了某小区的100位居民调查结果统计如下:(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过5%的前提下认为感染新冠状病与不同年龄有关?(3)已知在被调查的年龄大于50岁的感染者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.26.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取100名观众进行调查,将日均收看体育节目时间不低于40分钟的观众称为“体育迷”,数据统计如下表:(1)是否有99%的把握认为“体育迷”与性别有关?(2)该体育类节目为了提升收视率,规定“体育迷”每天奖励积分2分,“非体育迷”每天奖励积分1分,积分累计一定数量可以用积分换购自己喜爱的物品.用表中的样本频率作为概率的估计值.某日3名观众来领取积分,记此3人当日的积分总和为随机变量ξ,求ξ的分布列和数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据表中的数据求出(),x y ,利用回归直线方程经过样本中心点(),x y 求出ˆa ,把18x = 代入回归直线方程求出ˆy,利用残差的定义ˆy y -即可求解. 【详解】由表格得(),x y 为()24,160 ,又回归直线方程 3.1ˆˆyx a =-+经过样本中心点(),x y , 所以160 3.124ˆa=-⨯+,解得ˆ234.4a =, 所以回归直线方程为 3.123.4ˆ4yx =-+, 把18x = 代入回归直线方程可得,ˆ178.6y=, 故样本在()18180, 处的残差为180178.6 1.4-=. 故选:B 【点睛】本题考查回归直线方程经过样本中心点和利用回归直线方程求某点处的残差;考查运算求解能力;熟练掌握回归直线方程经过样本中心点和残差的定义是求解本题的关键;属于中档题.2.C解析:C 【分析】根据题意,对选项中的命题进行分析,判断真假性即可. 【详解】对于A ,根据抽样方法特征是数据多,抽样间隔相等,是系统抽样,所以A 正确; 对于B ,一组数据的方差为2s ,平均数为x ,将这组数据的每一个数都乘以2,所得的一组新数据的方差和平均数为24s ,2x ,所以B 正确;对于C ,两个随机变量的线性相关性越强,则相关系数||r 的值越接近于1,所以C 错误;对于D ,一组数据1、a 、3的平均数是2,所以2a =;所以该组数据的方差是222212[(12)(22)(32)]33s =⨯-+-+-=,所以D 正确.故选:C . 【点睛】本题主要考查抽样和统计,考查方差和平均数的计算,考查两个随机变量的相关性,意在考查学生对这些知识的理解掌握水平3.B解析:B 【分析】根据2K 的观测值7.556k ≈,对照表中数据,即可得到相应的结论. 【详解】根据2K 的观测值7.556k ≈,对照表中数据得出有0.01的几率说明这两个变量之间的关系是不可信的,即有10.0199%-=的把握说明两个变量之间有关系,故选B . 【点睛】本题主要考查独立性检验的应用,独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式计算2K 的观测值k ;(3)查表比较k 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误)4.C解析:C 【分析】因为5.278 6.635<,根据附表中的数据,即可得到判断的结论,得到答案. 【详解】因为5.278 6.635<,所以不能在犯错误的概率不超过1%的前提下,认为“喜欢该节目与性别有关”;又5.278 5.024>,所以有97.5%以上的把握认为“喜欢该节目与性别有关”,故选C . 【点睛】本题主要考查独立性检验的应用,独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式计算2K 的观测值k ;(3)查表比较k 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误)5.A解析:A 【解析】试题分析:因为商品销售量x 与销售价格ˆy负相关,所以排除B ,D 选项, 将0x =代入10200ˆyx =--可得2000ˆy =-<,不符合实际.故A 正确. 考点:线性回归方程.【方法点睛】本题主要考查线性回归方程,属容易题.线性回归方程ˆˆˆy bx a =+当ˆ0b<时ˆ,x y 负相关;当ˆ0b >时ˆ,x y 正相关. 6.B解析:B 【解析】 【分析】根据22⨯列联表,以及独立检验随机变量的临界值参考表,计算2K 对应的值,验证24,5,6,7,c K =是否恰好满足即可【详解】列22⨯列联表可知:()22661030521 3.024 2.70615513135K ⨯⨯-⨯=≈>⨯⨯⨯,所以5c =时,X 与Y 有关系的可信程度为90%,而其余的值4,6,7c c c ===皆不满足,故选B . 【点睛】独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)7.A解析:A【解析】【分析】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,实验的结果只有发生和不发生两种结果,故本题符合独立重复试验,由独立重复试验的期望公式得到结果.【详解】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,故本题符合独立重复试验,即ξ~(10,0.01)B.∴100.010.1Eξ=⨯=故选A.【点睛】解决离散型随机变量分布列和期望问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.8.C解析:C【详解】∵2 6.023 5.024K=>∴可断言市民收入增减与旅游欲望有关的把握为97.5%.故选C.点睛:本题主要考查独立性检验的实际应用.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22()()()()()n ad bcKa b c d a c b d-=++++,计算出2K的值;(3)查表比较2K与临界值的大小关系,作统计判断.9.B解析:B【解析】K2=≈5.059>5.024,因为P(K2>5.024)=0.025,所以这种推断犯错误的概率不超过0.025.选B10.C解析:C【解析】由已知中的数据可得:34564.54x+++==,2.54 4.51144t ty++++==,∵数据中心点(),x y 一定在回归直线上,∴110.7 4.50.354t+=⨯+解得3t =,故C 错误;故11 3.54t+=, 回归直线一定过点(4.53.5,),ABD 正确;故选C . 11.C解析:C 【解析】对于①,线性回归方程 ˆˆˆybx a =+必过点)x y (,,满足回归直线的性质,所以①正确;对于②,在回归方程ˆ35y x =-中,当变量x 增加一个单位时,y 平均减少5个单位,不是增加5个单位;所以②不正确;对于③,在回归分析中,相关指数2R 为0.80的模型比相关指数2R 为0.98的模型拟合的效果要好,该判断恰好相反;所以③不正确;对于④,在回归直线0.58ˆy x =-中,变量2x =时,变量y 的值一定是-7.不是一定为7,而是可能是7,也可能在7附近,所以④不正确;故选C.12.B解析:B 【解析】逐一考查所给的说法:①将一组数据中的每个数据都乘以同一个非零常数a 倍,原说法错误;②设有一个回归方程35y x =-,变量x 增加1个单位时,y 平均减少5个单位,原说法正确;③线性相关系数r 的绝对值越大,两个变量的线性相关性越强;反之,线性相关性越弱,原说法错误;④在某项测量中,测量结果ξ服从正态分布()()21,0N σσ>,若ξ位于区域()0,1的概率为0.4,则ξ位于区域()1,+∞内的概率为0.5,原说法错误;⑤利用统计量2χ来判断“两个事件,X Y 的关系”时,算出的2χ值越大,判断“X 与Y 有关”的把握就越大,原说法正确. 本题选择B 选项.二、填空题13.93美元【分析】设所受教育百分比分别为且利用回归方程计算即可【详解】设所受教育百分比分别为且根据回归方程为收入相差大约为:即受教育的人口百分比相差则其人均收入相差约美元故答案为:3193美元【点睛】解析:93美元 【分析】设所受教育百分比分别为%,%a b ,且10a b -=,利用回归方程计算即可. 【详解】设所受教育百分比分别为%,%a b ,且10a b -= 根据回归方程为 3.19388.193y x ∧=+, 收入相差大约为:()3.19388.193 3.19388.193 3.1931031.93a b ⨯+-⨯+=⨯=,即受教育的人口百分比相差10%,则其人均收入相差约31.93美元. 故答案为:31.93美元. 【点睛】本题考查了线性回归方程的应用问题,属于中档题.14.④【解析】两个变量之间的相关系数r 的绝对值越接近于1表示两个变量的线性相关性越强r 的绝对值非常接近于0时表示两个变量之间几乎不存在线性相关故答案为④解析:④ 【解析】两个变量之间的相关系数,r 的绝对值越接近于1,表示两个变量的线性相关性越强,r 的绝对值非常接近于0时,表示两个变量之间几乎不存在线性相关.故答案为④.15.【解析】∵P(K2≥3841)≈005∴判断性别与是否爱好运动有关出错的可能性不超过5点睛:根据卡方公式计算再与参考数据比较就可确定可能性 解析:5%【解析】∵P (K 2≥3.841)≈0.05.∴判断性别与是否爱好运动有关,出错的可能性不超过5%. 点睛:根据卡方公式计算2K ,再与参考数据比较,就可确定可能性.16.不能【解析】查表知若要在犯错误的概率不超过001的前提下认为喜欢玩电脑游戏与认为作业多有关则临界值k0=6635本题中k≈5059<6635所以不能在犯错误的概率不超过001的前提下认为喜欢玩电脑游解析:不能 【解析】查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k 0=6.635.本题中,k≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关. 考点:独立性检验.17.【解析】将x =160代入得所以残差考点:线性回归方程残差 解析:【解析】将x =160代入,得,所以残差考点:线性回归方程,残差.18.②⑥⑦【解析】①回归直线恒过样本点的中心可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后根据方差公式可知方差恒不变;③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率越解析:②⑥⑦ 【解析】①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后,根据方差公式可知方差恒不变; ③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于0,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越大;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做相关关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 故答案为:②⑥⑦19.(3)(4)【解析】分析:(1)相关系数的范围;(2)由相关指数r 的含有知|r|的值越大说明模型的拟合效果越好;(3)离散型随机变量的期望;(4)根据期望公式得到3a+2b=2进而利用均值不等式求最解析:(3)(4) 【解析】分析:(1)相关系数的范围;(2)由相关指数r 的含有知,|r|的值越大,说明模型的拟合效果越好;(3)离散型随机变量的期望;(4)根据期望公式得到3a+2b=2,进而利用均值不等式求最值.详解:(1)相关系数r 的取值范围是1r ≤,故(1)错误;(2)用相关指数r 来刻画回归效果,|r|的值越大,说明模型的拟合效果越好,故(2)错误;(3)含零个白球的概率为5210,含一个白球的概率为50210,含二个白球的概率为100210,含三个白球的概率为50210,含四个白球的概率为5210,白球个数的期望为:550100505012342210210210210210⨯+⨯+⨯+⨯+⨯=,故(3)正确;(4)∵3a+2b+0•c=2,a ,b ,c ∈(0,1),∴213a b +=(213a b +)•12(3a+2b )=12(6+4b a +a b +23)≥12(203 =12(203+4)=163(当且仅当a=2b ,即a=12,b=14时取“=”),故(4)正确. 其中正确结论的序号为:(3)(4). 故答案为(3)(4).点睛:本题考查相关系数的有关概念,考查离散型随机变量的期望及概率统计与基本不等式的综合应用,属于中档题.20.05【详解】分析:直接利用独立性检验公式计算即得解详解:由题得所以犯错误的概率最多不超过005的前提下可认为注射疫苗与感染流感有关系故答案为005点睛:本题主要考查独立性检验和的计算意在考查学生对这解析:05 【详解】分析:直接利用独立性检验2K 公式计算即得解.详解:由题得22100(10302040)100 4.762 3.8413070505021K ⨯-⨯==≈>⨯⨯⨯,所以犯错误的概率最多不超过0.05的前提下,可认为“注射疫苗”与“感染流感”有关系. 故答案为0.05.点睛:本题主要考查独立性检验和2K 的计算,意在考查学生对这些知识的掌握水平和解决实际问题的能力.三、解答题21.(1)① 9人;②分布列答案见解析,数学期望:43;(2)列联表答案见解析,在犯错误的概率不超过1%的前提下没有把握认为“经常使用共享单车与年龄有关”. 【分析】(1)利用分层抽样,按比例计算这60人中“年龄达到35岁且偶尔使用单车”的人数﹔直接分析X 服从超几何分布,求概率,写出分布列,求出数学期望;(2)根据题意,25m =填写2×2列联表,套公式计算 3.063K ≈,对应参考值下结论. 【详解】解:(1)①从300人中抽取60人,其中“年龄达到35岁”的有1006020300⨯=人, 再将这20人用分层抽样法按"是否经常使用单车"进行名额划分,其中“年龄达到35岁且偶尔使用单车”的人数为45209100⨯=. ②A 组这4人中得到礼品的人数X 的可能取值为0,1,2,3,相应概率为:()35395042C P X C ===,()12453910121C C P X C ===, ()214539C C 52C 14P X ===,()3439C 13C 21P X ===.故其分布列为∴数学期望()0123422114213E X =⨯+⨯+⨯+⨯= (2)25m =时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表()2300678711333300210049 3.06320010018012020010018012016K ⨯⨯-⨯⨯===≈⨯⨯⨯⨯⨯⨯ ∴3.063 6.635<所以在犯错误的概率不超过1%的前提下没有把握认为“经常使用共享单车与年龄有关”. 【点睛】(1) 求离散型随机变量的分布列时,要特别注意. 随机变量是否服从二项分布、超几何分布等特殊的分布;(2)独立性检验的题目直接根据题意完成完成2×2列联表,直接套公式求出K ,对照参数下结论,一般较易.22.(1)列联表见解析;(2)大概有90%把握认为药物有效. 【分析】(1)根据服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本,根据各种数据,列好表格,填好数据,得到列联表.(2)根据列联表数据,代入临界值公式,做出观测值,进行比较,即可得出结果. 【详解】(1)根据服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本,得到列联表。
一、选择题1.已知x 与y 之间的几组数据如下表:参考公式:线性回归方程y bx a =+,其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-;相关系数()()niix x y y r --=∑上表数据中y 的平均值为2.5,若某同学对m 赋了三个值分别为1.5,2,2.5得到三条线性回归直线方程分别为11y b x a =+,22y b x a =+,33y b x a =+,对应的相关系数分别为1r ,2r ,3r ,下列结论中错误..的是( ) A .三条回归直线有共同交点 B .相关系数中,2r 最大 C .12b b >D .12a a >2.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e3.为了调查某校高二学生的身高是否与性别有关,随机调查该校64名高二学生,得到2×2列联表如表:附:K 2()()()()2()n ad bc a b c d a c b d -=++++由此得出的正确结论是( )A .在犯错误的概率不超过0.01的前提下,认为“身高与性别无关”B .在犯错误的概率不超过0.01的前提下,认为“身高与性别有关”C .有99.9%的把握认为“身高与性别无关”D .有99.9%的把握认为“身高与性别有关” 4.下列命题正确的个数是:( )①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大;②在相关关系中,若用211c x y c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为23; ④“0,0a b >>”是“2b aa b+≥”的充分不必要条件 A .1B .2C .3D .45.对四对变量Y 和x 进行线性相关性检验,已知n 是观测值组数,r 是相关系数,且已知: ①n=7,r=0.953 3;②n=15,r=0.301 2;③n=17,r=0.499 1;④n=3,r=0.995 0,则变量Y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④6.下列说法中,不正确的是A .两个变量的任何一组观测值都能得到线性回归方程B .在平面直角坐标系中,用描点的方法得到表示两个变量的关系的图象叫做散点图C .线性回归方程反映了两个变量所具备的线性相关关系D .线性相关关系可分为正相关和负相关7.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A .平均数与方差 B .回归分析 C .独立性检验 D .概率8.某商场为了解毛衣的月销售量y (件)与月平均气温()x C 之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:)C(件)由表中数据算出线性回归方程ˆybx a =+中的2b =-,气象部门預测下个月的平均气温约为6C ,据此估计该商场下个月毛衣销售量约为( )件. A .46 B .40 C .38 D .589.下列说法:①将一组数据中的每个数据都乘以同一个非零常数a 后,标准差也变为原来的a 倍; ②设有一个回归方程35y x =-,变量x 增加1个单位时,y 平均减少5个单位; ③线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果ξ服从正态分布()()21,0N σσ>,若ξ位于区域()0,1的概率为0.4,则ξ位于区域()1,+∞内的概率为0.6⑤利用统计量2χ来判断“两个事件,X Y 的关系”时,算出的2χ值越大,判断“X 与Y 有关”的把握就越大 其中正确的个数是 A .1B .2C .3D .410.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,2,1,3b x y ===,则1a =.④如果两个变量x 与y 之间不存在着线性关系,那么根据它们的一组数据()(,1,2,,)i i x y i n =不能写出一个线性方程正确的个数是( )A .1B .2C .3D .411.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,统计数据如下表合计 72 228 3002()P K k ≥ 0.050 0.010 0.001 k 3.8416.63510.828附:经计算2 4.514K ≈,现判断数学成绩与物理成绩有关系,则判断出错的概率不会超过 A .0.5%B .1%C .2%D .5%12.已知回归方程0.8585.7y x ∧=-,则该方程在样本()165,57 处的残差为( ) A .111.55B .54.5C .3.45D .2.45二、填空题13.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:参照附表,在犯错误的概率最多不超过______(填百分比)的前提下,可认为“该种疫苗有预防埃博拉病毒感染的效果”.参考公式:K 2=2()()()()()n ad bc a b c d a c b d -++++14.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表: 专业 性别非统计专业统计专业男生1310女生7 20为了检验主修统计专业是否与性别有关系,根据表中的数据得到随机变量K 2的观测值为.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________.15.如表是降耗技术改造后生产某产品过程中记录产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆˆ0.70.3yx =+,那么表中m 的值为__________.x3 4 5 6y2.5m44.516.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程=+x 中=﹣2,据此预测当气温为5℃时,用电量的度数约为_____.17.在吸烟与患肺病这两个分类变量的计算中,“若2x 的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系”这句话的意思: ①是指“在100个吸烟的人中,必有99个人患肺病 ②是指“有1%的可能性认为推理出现错误”; ③是指“某人吸烟,那么他有99%的可能性患有肺病”; ④是指“某人吸烟,如果他患有肺病,那么99%是因为吸烟”. 其中正确的解释是______.18.4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区进行了“经常使用共享单车与年龄关系”的调查,得下列22⨯列联表:年轻人 非年轻人 合计 经常使用单车用户 100 20 120 不常使用单车用户 60 20 80 合计16040200则得到的2χ=__________.(小数点后保留一位) (附:()()()()()22χ-=++++n ad bc a b c d a c b d )19.以下说法正确的是_____________ . ①类比推理属于演绎推理.②设有一个回归方程ˆ23yx =- ,当变量每增加1个单位,y 平均增加3个单位. ③样本相关系数r 满足以下性质:1r ≤,并且r 越接近1,线性相关程度越强;r 越接近0,线性相关程度越弱.④对复数12,z z 和自然数n 有()1212nn n z z z z ⋅=⋅.20.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表三、解答题21.奥运会期间,为调查某高校学生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了60人,结果如下:(2)你能否在犯错误的概率不超过0.01的前提下认为该高校学生是否愿意提供志愿者服务与性别有关? 下面的临界值表供参考:独立性检验统计量()()()()2n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.22.某学校为了推进素质教育,因材施教,提高课堂教学及学生学习效率,特将高一入学的前80名均分设立第一层次的两个零级班零甲班和零乙班,现以一次考试的数学成绩为样本,并规定成绩数据落在[]120150,之内的数据为优秀,否则为不够优秀,考试成绩数据如表所示:(1)若从零甲的数学考试成绩中,依次有放回的随机抽查5个数据,设抽到优秀成绩的次数为ξ,求ξ的分布列与数学期望及方差;(以频率作为概率)(2)由以上统计数据完成下面22⨯列联表,并回答有多大的把握认为抽取的数据为优秀成绩与对两个班级的选择有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.23.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下: (1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.24.“海水稻”就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区,具有耐盐碱的水稻,它比其它普通的水稻均有更强的生存竞争能力,具有抗涝,抗病虫害,抗倒伏等特点,还具有预防和治疗多种疾病的功效,防癌效果尤为显著.海水稻的灌溉是将海水稀释后进行灌溉.某试验基地为了研究海水浓度x (‰)对亩产量y (吨)的影响,通过在试验田的种植实验,测得了某种海水稻的亩产量与海水浓度的数据如表.绘制散点图发现,可用线性回归模型拟合亩产量y 与海水浓度x 之间的相关关系,用最小二乘法计算得y 与x 之间的线性回归方程为.88ˆ0ˆy bx=+.(2)①完成上述残差表:②统计学中,常用相关指数2R 来刻画回归效果,2R 越大,模型拟合效果越好,并用它来说明预报变量与解释变量的相关性.你能否利用以上表格中的数据,利用统计学的相关知识,说明浇灌海水浓度对亩产量的贡献率?(计算中数据精确到0.01)(附:残差公式ˆˆi i i ey y =-,相关指数()()22121ˆ1niii nii y yR y y ==-=--∑∑)25.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).(1)(i )请根据图示,将2×2列联表补充完整;优分 非优分 总计男生 女生总计50(ii )据列联表判断,能否在犯错误概率不超过10o o 的前提下认为“学科成绩与性别有关”?(2)将频率视作概率,从高二年级该学科成绩中任意抽取3名学生的成绩,求成绩为优分人数X 的分布列与数学期望.参考公式:()()()()()22()n ad bc K n a b c d a b c d a c b d -==+++++++. 参考数据:()20P K k ≥ 0.1000.050 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.82826.为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]得到如图所示的频率分布直方图.(Ⅰ)求a 的值;(Ⅱ)记A 表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80分”,估计A 的概率;(Ⅲ)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请在答题卡上将22⨯列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意可得5m n +=,分别取m 与n 的值,由公式计算出1122123,,,,,,b a b a r r r 的值,逐一分析四个选项,即可得到答案. 【详解】由题意,1410m n +++=,即5m n +=. 若 1.5m =,则 3.5n =,此时12342.54x +++==, 2.5y =.()()()()()()()()()()411 2.51 2.52 2.5 1.5 2.53 2.5 3.5 2.54 2.54 2.5 5.5iii x x y y =--=--+--+--+--=∑ ,()()()4222221 1.50.50.5 1.55i i x x =-=-+-++=∑ , ()()()42222211.511 1.5 6.5i i y y =-=-+-++=∑.则1 5.51.15b ==,1 2.5 1.1 2.50.25a =-⨯=- ,1r =≈; 若2m =,则3n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.52 2.53 2.53 2.54 2.54 2.55iii x x y y =--=--+--+--+--=∑,()4215i i x x=-=∑,()()()42222211.50.50.5 1.55i i y y =-=-+-++=∑.2515b ==,2 2.51 2.50a =-⨯=,21r ==; 若 2.5m =,则 2.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 2.5 2.53 2.5 2.5 2.54 2.54 2.5 4.5iii x x y y =--=--+--+--+--=∑,()4215i i x x =-=∑,()()422211.5 1.5 4.5i i y y =-=-+=∑,3r ==由样本点的中心相同,故A 正确;由以上计算可得,相关系数中,2r 最大,12b b >,12a a <,故B ,C 正确,D 错误. 故选:D . 【点睛】本题考查线性回归方程与相关系数的求法,考查计算能力,是中档题.2.B解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e =.故选:B.【点睛】本题考查非线性回归问题的转化,是基础题.3.D解析:D 【分析】根据22⨯列联表,计算2k ,与临界值表比较即可得出结论. 【详解】K 的观测值:K 2264(862426)34303232⨯⨯-⨯=≈⨯⨯⨯20.330;由于20.330>10.828,∴有99.9%的把握认为“身高与性别有关”,即在犯错误的概率不超过0.001的前提下,认为“身高与性别有关” 故选:D . 【点睛】本题主要考查了独立性检验的应用问题,K 2的计算,22⨯列联表,考查了运算能力,属于中档题.4.C解析:C 【解析】分析:根据独立性检验的性质可判断①;根据回归分析的基本原理可判断②;根据几何概型概率公式可判断③; 根据不等式的性质可判断④.详解:①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越小,①错误;②在相关关系中,若用211c x y c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好,②正确;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为1123103-=-,正确; ④“0,0a b >>”可得到“2b a a b +≥”, “2b aa b+≥”时“0,0a b >>”不一定成立,所以“0,0a b >>”是“2b aa b+≥”的充分不必要条件,正确,即正确命题的个数是3,故选C. 点睛:本题主要通过对多个命题真假的判断,主要综合独立性检验、回归分析、几何概型概率公式、不等式的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.5.B解析:B 【解析】分析:先查相关系数检验的临界值表,再判断变量Y 和x 具有线性相关关系的选项. 详解: 查相关系数检验的临界值表 ①r 0.05=0.754,r >r 0.05; ②r 0.05=0.514,r <r 0.05; ③r 0.05=0.482,r >r 0.05; ④r 0.05=0.997,r 0.05>r.∴y 和x 具有线性相关关系的是①③.故答案为B.点睛:本题主要考查相关系数,意在考查学生对这些知识的掌握水平.6.A解析:A 【解析】要得到线性回归方程应至少有两个变量的两组观测值,因此A 不正确.根据散点图、线性回归方程、线性相关关系的概念可得B ,C ,D 都正确.故选A .7.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 考点:独立性检验的意义.8.A解析:A 【解析】试题分析:根据题意,样本中心点的坐标为()10,38,所以38210,58a a =-⨯+∴=,因此回归直线方程为2ˆ58yx =-+,所以当6x =时,估计该商场下个月毛衣销售量约为26ˆ5846y=-⨯+=,故选A. 考点:回归直线方程.9.B解析:B 【解析】逐一考查所给的说法:①将一组数据中的每个数据都乘以同一个非零常数a 倍,原说法错误;②设有一个回归方程35y x =-,变量x 增加1个单位时,y 平均减少5个单位,原说法正确;③线性相关系数r 的绝对值越大,两个变量的线性相关性越强;反之,线性相关性越弱,原说法错误;④在某项测量中,测量结果ξ服从正态分布()()21,0N σσ>,若ξ位于区域()0,1的概率为0.4,则ξ位于区域()1,+∞内的概率为0.5,原说法错误;⑤利用统计量2χ来判断“两个事件,X Y 的关系”时,算出的2χ值越大,判断“X 与Y 有关”的把握就越大,原说法正确. 本题选择B 选项.10.C解析:C 【解析】①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大,正确; ②∵kx y ce =,∴两边取对数,可得lny ln =(kx ce )kx lnc lnce lnc kx =+=+, 令z lny =,可得z lnc kx =+, ∵0.34z x =+, ∴40.3lnc k ==, ∴4c e =.即②正确;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y =a +bx 中,2,1,3b x y ===,则a =1,正确。
一、选择题1.给出下列说法:①回归直线ˆˆˆy bx a =+恒过样本点的中心(,)x y ,且至少过一个样本点;②两个变量相关性越强,则相关系数||r 就越接近1; ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy 平均减少0.5个单位.其中说法正确的是( ) A .①②④B .②③④C .①③④D .②④2.已知x 与y 之间的几组数据如下表:参考公式:线性回归方程y bx a =+,其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-;相关系数()()niix x y y r --=∑上表数据中y 的平均值为2.5,若某同学对m 赋了三个值分别为1.5,2,2.5得到三条线性回归直线方程分别为11y b x a =+,22y b x a =+,33y b x a =+,对应的相关系数分别为1r ,2r ,3r ,下列结论中错误..的是( ) A .三条回归直线有共同交点 B .相关系数中,2r 最大 C .12b b >D .12a a >3.为检测某药品服用后的多长时间开始有药物反应,现随机抽取服用了该药品的1000人,其服用后开始有药物反应的时间(分钟)与人数的数据绘成的频率分布直方图如图所示.若将直方图中分组区间的中点值设为解释变量x (分钟),这个区间上的人数为y (人),易见两变量x ,y 线性相关,那么一定在其线性回归直线上的点为( )A .()1.5,0.10B .()2.5,0.25C .()2.5,250D .()3,3004.以下四个结论,正确的是( )①质检员从匀速传递的产品生产流水线上,每间隔15分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②在回归直线方程0.1.3ˆ1y x =+中,当变量ˆx 每增加一个单位时,变量ˆy增加0.13个单位;③在频率分布直方图中,所有小矩形的面积之和是1;④对于两个分类变量X 与Y ,求出其统计量2K 的观测值k ,观测值k 越大,我们认为“X 与Y 有关系”的把握程度就越大. A .②④B .②③C .①③D .③④5.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试,统计得到成绩与专业的列联表:( )优秀 非优秀 总计 A 班14 6 20 B 班7 13 20 总计211940附:参考公式及数据:(1)统计量:()()()()()22n ad bc K a b c d a c b d -=++++,(n a b c d =+++).(2)独立性检验的临界值表:()20P K k ≥0.050 0.0100k 3.841 6.635则下列说法正确的是A .有95%的把握认为环保知识测试成绩与专业有关B .有95%的把握认为环保知识测试成绩与专业无关C .有99%的把握认为环保知识测试成绩与专业有关D .有99%的把握认为环保知识测试成绩与专业无关6.某中学采取分层抽样的方法从高二学生中按照性别抽出20名学生,其选报文科、理科的情况如下表所示,男 女文科2 5理科 10 3参考公式和数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.20()P K k ≥0.25 0.15 0.10 0.05 0.025 0.010 0.0050k 1.323 2.072 2.706 3.841 5.024 6.635 7.879则以下判断正确的是A .至少有97.5%的把握认为学生选报文理科与性别有关B .至多有97.5%的把握认为学生选报文理科与性别有关C .至少有95%的把握认为学生选报文理科与性别有关D .至多有95%的把握认为学生选报文理科与性别有关7.为了普及环保知识,增强环保意识,随机抽取某大学30名学生参加环保知识测试,得分如图所示,若得分的中位数为m e ,众数为m 0,平均数为x -,则( )A .m e =m 0=x -B .m 0<x -<m eC .m e <m 0<x -D .m 0<m e <x -8.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅临界值表来确定推断“X 与Y 有关系”的可信度,如果k >5.024,那么就推断“X 和Y 有关系”,这种推断犯错误的概率不超过( ) A .0.25 B .0.75 C .0.025 D .0.9759.若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( ) A .25B .25C .35D .321010.由某个22⨯列联表数据计算得随机变量2K 的观测值k 6.879=,则下列说法正确的是 ( )0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0.7081.3232.0722.7063.8415.0246.6357.87910.828A .两个分类变量之间有很强的相关关系B .有99%的把握认为两个分类变量没有关系C .在犯错误的概率不超过1.0%的前提下认为这两个变量间有关系D .在犯错误的概率不超过0.5%的前提下认为这两个变量间有关系 11.已知变量x ,y 的一组观测数据如表所示: x 3 4 5 6 7 y4.02.5-0.50.5-2.0据此得到的回归方程为y bx a =+,若a =7.9,则x 每增加1个单位,y 的预测值就( ) A .增加1.4个单位B .减少1.2个单位C .增加1.2个单位D .减少1.4个单位12.对两个变量x 和y 进行回归分析,得到一组样本数据: ()()1122,,,x y x y ,…(),n n x y ,则下列说法中不正确的是( )A .由样本数据得到的回归方程ˆˆˆy bx a =+必过样本中心(),x yB .残差平方和越小的模型,拟合的效果越好C .若变量y 和x 之间的相关系数为0.9362r =-,则变量y 和x 之间具有线性相关关系D .用相关指数2R 来刻画回归效果, 2R 越小,说明模型的拟合效果越好二、填空题13.回归方程ˆˆ 2.50.2x y=+在样本(4,1.2)处的残差为________. 14.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1; ③某项测量结果服从正太态布,则; ④对于两个分类变量和的随机变量的观测值来说,越小,判断“与有关系”的把握程度越大.以上命题中其中真命题的个数为___________. 15.给出下列四个结论:(1)如图Rt ABC ∆中,2,90,30.AC B C =∠=︒∠=︒是斜边上的点,.以为起点任作一条射线交于点,则点落在线段上的概率是32;(2)设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为,则若该大学某女生身高增加,则其体重约增加;(3)若()f x 是定义在上的奇函数,且满足,则函数()f x 的图像关于对称;(4)已知随机变量ξ服从正态分布()()21,,40.79,N P σξ≤=则.其中正确结论的序号为________________16.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温(如表),并求得线性回归方程为^=-2x +60.不小心丢失表中数据c ,d ,那么由现有数据知2c+d=______. x c 13 10 -1 y243438d17.已知的取值如表所示:若与呈线性相关,且回归方程为,则等于 .23454618.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K 来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法; ②将参数方程cos sin x y θθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y +=;③极坐标系中,22,3A π⎛⎫⎪⎝⎭与()3,0B 19 ④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误.19.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________. 20.下列命题中:①已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,则点P 的轨迹是一个圆; ②已知(2,0),(2,0),||||3M N PM PN --=,则动点P 的轨迹是双曲线; ③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;④在平面直角坐标系内,到点(1,1)和直线23x y +=的距离相等的点的轨迹是抛物线; 正确的命题是_________.三、解答题21.2019年4月,中国电信公布了2019年的终端洞察报告,其中,国产手机品牌表现抢眼,统治地位不容置疑.在2018年6~11月上市的新机中,用户最满意机型与用户推荐机型的项目中国产手机优势明显,华为及荣耀手机分别占据不同价位段的榜单第一,OPPO 、vivo 、小米、魅族均有机型占据榜单.在用户满意机型调研项目中,曾经位于神坛地位的苹果手机也仅仅只有iPhone XR 一款位列第三.(1)从上表中15个机型中任取3个,求这3个机型恰好有2个是“华为”或“荣耀”的概率; (2)测试数据源于消费者的反馈,从反馈信息中随机抽取500个“华为畅享9plus ”消费者,其中来自城市300个,来自农村200个,统计他们对“华为畅想9plus ”的满意情况如下:满意 不满意城市 270 30农村170 30(附:()()()()()22n ad bc a b c d a c b d χ-=++++,当2 3.841χ>时,有95%的把握说事件A 与B 有关;当26.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的)22.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,从上述500名患者中抽取300人,得到如下列联表,根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:短潜伏者 长潜伏者 合计60岁及以上 90 70 160 60岁以下 60 80 140 合计 15015030020P K k ≥()0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.8282()()()()()n ad bc K a b c d a c b d -=++++23.为了解某班学生喜爱玩游戏是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱玩游戏的学生的概率为35.喜爱 不喜爱 合计男生5女生 10合计50(1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱玩游戏与性别有关?说明你的理由;(3)以该班学生的情况来估计全校女生喜爱玩游戏的情况,用频率代替概率.现从全校女生中抽取3人进一步调查,设抽到喜爱玩游戏的女生人数为ξ,求ξ的期望.下面的临界值表供参考:(参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)24.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康,经过不懈的努力奋斗拼搏,新农村建设取得了巨大进步,农民年收入也逐年增加.为了实现2020年脱贫的工作计划,该地扶贫办随机收集了以下50位农民的统计数据,以此研究脱贫攻坚的效果是否与农民的受教育的发展状况有关:(1)根据列联表运用独立性检验的思想方法分析:能否有99%的把握认为“脱贫攻坚的效果与农民的受教育的发展状况有关”,并说明理由;(2)如果从全部受过教育的农民中随机地抽取3名,求抽到脱贫攻坚效果不明显的人数X 的分布列和数学期望(将频率当作概率计算).参考附表:参考公式:()()()()()22n ad bcKa b a c b d c d+=++++,其中n a b c d=+++.25.支付宝和微信支付是目前市场占有率较高的支付方式,某第三方调研机构对使用这两种支付方式的人数作了对比,从全国随机抽取了100个地区作为研究样本,计算了各个地区样本的使用人数,其频率分布直方图如下,(1)记A表示事件“微信支付人数低于50千人”,估计A的概率;(2)填写下面2╳2列联表,并根据2╳2列联表判断是否有99%的把握认为支付人数与支付方式有关;支付人数<50千支付人数≥50千人总计人微信支付支付宝支付总计()()()()()2n ad bc K a b c d a c b d -=++++. 26.为了了解某校高中生的身体质量情况,某调查机构进行了一次高一学生体重和身高的抽样调查,从中抽取了8名学生(编号为18)的身高(cm)x 和体重(kg)y 数据.如下表,某调查机构分析发现学生的身高和体重之间有较强的线性相关关系,在编号为6的体检数据丢失之前,调查员甲已进行相关的数据分析并计算出该组数据的线性回归方程为ˆˆ0.5ya x =+,且根据回归方程预估一名身高为180cm 的学生体重为71kg ,计算得到的其他数据如下:81170,89920i ii x x y===∑.(1)求a 的值及表格中8名学生体重的平均值y ;(2)在数据处理时,调查员乙发现编号为8的学生体重数据有误,应为63kg ,身高数据无误.请你根据调查员乙更正的数据重新计算线性回归方程,并据此预估一名身高为180cm 的学生的体重.附:回归直线方程ˆˆˆy a bx=+的斜率和截距的最小二乘法估计分别为:1221ˆni ii n i i x ynx ybx nx==-=-∑∑,ˆˆa y bx=-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】①中,根据回归直线方程的特征,可判定是不正确;②中,根据相关系数的意义,可判定是是正确的;③中,根据方差的计算公式,可判定是正确的;④中,根据回归系数的含义,可判定是正确的. 【详解】对于①中,回归直线ˆˆˆy bx a =+恒过样本点的中心(,)x y ,但不一定过一个样本点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数||r 就越接近1,所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位,所以是正确的. 故选:B. 【点睛】本题主要考查了统计知识的相关概念及判定,其中解答中熟记回归直线方程的特征,回归系数的含义,相关系数的意义,以及方程的计算方法是解答的关键,属于基础题.2.D解析:D 【分析】由题意可得5m n +=,分别取m 与n 的值,由公式计算出1122123,,,,,,b a b a r r r 的值,逐一分析四个选项,即可得到答案. 【详解】由题意,1410m n +++=,即5m n +=. 若 1.5m =,则 3.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 1.5 2.53 2.5 3.5 2.54 2.54 2.5 5.5iii x x y y =--=--+--+--+--=∑ ,()()()4222221 1.50.50.5 1.55i i x x =-=-+-++=∑ , ()()()42222211.511 1.5 6.5i i y y =-=-+-++=∑.则1 5.51.15b ==,1 2.5 1.1 2.50.25a =-⨯=- ,1r =≈; 若2m =,则3n =,此时12342.54x +++==, 2.5y =.()()()()()()()()()()411 2.51 2.52 2.52 2.53 2.53 2.54 2.54 2.55iii x x y y =--=--+--+--+--=∑,()4215ii x x =-=∑,()()()42222211.50.50.5 1.55i i y y =-=-+-++=∑.2515b ==,2 2.51 2.50a =-⨯=,21r ==; 若 2.5m =,则 2.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 2.5 2.53 2.5 2.5 2.54 2.54 2.5 4.5iii x x y y =--=--+--+--+--=∑,()4215i i x x =-=∑,()()422211.5 1.5 4.5i i y y =-=-+=∑,3r ==由样本点的中心相同,故A 正确;由以上计算可得,相关系数中,2r 最大,12b b >,12a a <,故B ,C 正确,D 错误. 故选:D . 【点睛】本题考查线性回归方程与相关系数的求法,考查计算能力,是中档题.3.C解析:C 【分析】写出四个区间中点的横纵坐标,从而可求出 2.5x =,250y =,进而可选出正确答案. 【详解】解:由频率分布直方图可知, 第一个区间中点坐标,111.0,0.101000100x y ==⨯=, 第二个区间中点坐标,222.0,0.211000210x y ==⨯=, 第三个区间中点坐标,333.0,0.301000300x y ==⨯=, 第四个区间中点坐标,444.0,0.391000390x y ==⨯=, 则()12341 2.54x x x x x =+++=,()123412504y y y y y =+++=, 则一定在其线性回归直线上的点为(),x y ()2.5,250=. 故选:C. 【点睛】本题考查了频率分布直方图,考查了线性回归直线方程的性质.本题的关键是利用线性回归直线方程的性质,即点(),x y 一定在方程上.4.D解析:D【分析】利用系统抽样和分层抽样的知识判断①的正确性;利用回归直线方程的知识判断②的正确性;利用频率分布直方图的知识判断③的正确性;利用独立性检验的知识判断④的正确性.【详解】①,是系统抽样,不是分层抽样,所以①错误. ②,y增加0.1,所以②错误. ③,在频率分布直方图中,所有小矩形的面积之和是1,所以③正确. ④,对于两个分类变量X与Y,求出其统计量2K的观测值k,观测值k越大,我们认为“X与Y有关系”的把握程度就越大,所以④正确.综上所述,正确的序号为③④.故选:D【点睛】本小题主要考查抽样方法、回归直线方程、频率分布直方图和独立性检验等知识,属于基础题.5.A解析:A【解析】分析:首先计算观测值k0的值,然后给出结论即可.详解:由列联表计算观测值:()2401413672804.912 3.8412119202057k⨯⨯-⨯==≈>⨯⨯⨯,则有95%的把握认为环保知识测试成绩与专业有关.本题选择A选项.点睛:本题主要考查独立性检验及其应用等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C【解析】由题易得22⨯列联表如下:则2K的观测值为()220235104.432 3.841128713k⨯⨯-⨯=≈>⨯⨯⨯,所以至少有95%的把握认为学生选报文理科与性别有关,故选:C.【解题必备】(1)独立性检验是对两个分类变量有关系的可信程度的判断,而不是对其是否有关系的判断.独立性检验的结论只能是有多大的把握认为两个分类变量有关系,而不能是两个分类变量一定有关系或没有关系.(2)列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此,需要用独立性检验的方法确认所得结论在多大程度上适用于总体.即独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释. (3)独立性检验的具体做法:①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α, 然后查下表确定临界值0k ; ②利用公式()()()()()22n ad bc K a c b d a b c d -=++++,计算随机变量2K 的观测值k ;③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”.说明:通常认为 2.706k ≤时,样本数据就没有充分的证据显示“X 与Y 有关系”.7.D解析:D 【解析】由条形图知,30名学生的得分情况依次为2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分,中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现的次数最多,故众数为m 0=5,平均数为x =130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97,故m 0<m e <x . 故答案为D.点睛:这个题目考查的是条型分布直方表的应用,以及基本量:均值,平均数的考查;一般在这类图中平均数就是将数据加到一起除以数据的个数即可,在频率分布直方表中是取每个长方条的中点乘以相应的频率并相加即可.8.C解析:C【解析】∵P (k >5.024)=0.025,故在犯错误的概率不超过0.025的条件下,认为“X 和Y 有关系”. 考点:独立性检验.9.B解析:B∵直线0x y a ++=与圆()()22122x y -+=+有公共点,∴≤13a -≤≤,∴在区间[55]-,内任取一个实数a ,使直线0x y a ++=与圆()()22122x y -+=+有公共点的概率为312555+=+,故选B. 点睛:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题;利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a ,最后根据几何概型的概率公式可求出所求.10.C解析:C 【解析】由22⨯列联表数据计算得随机变量2K 的观测值是 6.879 6.635k =>,通过对照表中数据得,在犯错误的概率不超过1.0%的前提下,认为这两个变量间有关系,故选C.11.D解析:D 【解析】由表格得 5x =, 0.9y =,∵回归直线方程为7ˆ9ˆ.y bx=+,过样本中心, ∴57.90.9b +=,即75b =-,则方程为77.95ˆyx =-+,则x 每增加1个单位,y 的预测值就减少1.4个单位,故选D.12.D解析:D 【解析】逐一分析所给的各个选项:A. 由样本数据得到的回归方程ˆˆˆy bx a =+必过样本中心(),x yB. 残差平方和越小的模型,拟合的效果越好C. 若变量y 和x 之间的相关系数为0.9362r =-,则变量y 和x 之间具有线性相关关系D. 用相关指数2R 来刻画回归效果,2R 越大,说明模型的拟合效果越好,该说法错误. 本题选择D 选项.二、填空题13.【分析】根据残差的定义直接计算即可【详解】由题当x=4时故所以回归方程在样本处的残差为故答案为:【点睛】本题主要考查了残差的概念考查了运算能力属于容易题 解析:9-根据残差的定义直接计算即可. 【详解】由题当x =4时,4ˆ 2.50.210.2y=+=⨯, 故1.210.29-=-所以回归方程ˆˆ 2.50.2x y=+在样本(4,1.2)处的残差为9-. 故答案为:9- 【点睛】本题主要考查了残差的概念,考查了运算能力,属于容易题.14.2【解析】试题分析:从匀速传递的产品生产流水线上质检员每10分钟从中抽取一件产品进行某项指标检测这样的抽样是系统抽样①错;两个随机变量的线性相关性越强相关系数的绝对值越接近于1②正确;某项测量结果服解析:2 【解析】试题分析:从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,①错;两个随机变量的线性相关性越强,相关系数的绝对值越接近于1,②正确;某项测量结果服从正太态布,则,③正确;对于两个分类变量和的随机变量的观测值来说,越大,判断“与有关系”的把握程度越大,④错.故只有2个正确.考点:抽样方法(系统抽样),线性相关关系,正态分布,独立性检验.15.②③④【解析】试题分析:由题可知•所以则点落在线段上的概率为故 不正确;‚根据线性回归方程为知回归系数为085即身高增加则其体重约增加故 正确;ƒ由于是定义在上的奇函数则于是即函数的图像关于对称故解析:②③④ 【解析】试题分析:由题可知,•,,所以,则点落在线段上的概率为,故 不正确;‚根据线性回归方程为,知回归系数为0.85,即身高增加,则其体重约增加,故 正确;ƒ由于()f x 是定义在上的奇函数,则,于是,即函数()f x 的图像关于对称,故ƒ正确;④随机变量ξ服从正态分布,图像关于对称,由于,故,故④正确;综上所述,正确的为②③④;考点:•两个变量的线性相关 正态曲线分布的特点及曲线所表示的意义16.100【解析】点睛:函数关系是一种确定的关系相关关系是一种非确定的关系事实上函数关系是两个非随机变量的关系而相关关系是非随机变量与随机变量的关系如果线性相关则直接根据用公式求写出回归方程回归直线方程解析:100 【解析】2296,44c dx y ++== 962260,1002,2100ˆ4ˆ2d c ay bx d c c d ++=-=+==-+= 点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求ˆˆ,ab ,写出回归方程,回归直线方程恒过点(),x y . 17.5【解析】试题分析:考点:回归方程【方法点睛】求回归直线中的参数ba 需要先求得b 再求a 因为所以要根据列表中的数据求得公式中相关的量将这些数据代入公式中即可求得参数b 对于参数a 需要将b 代入回归直线求得解析:5【解析】试题分析:3125344646i ii x y==⨯+⨯+⨯=∑, 32222123429i i x ==++=∑,3x =, 5y =, ∴ 31322130.53ˆi i i i i x y xyb x x==-==-∑∑. 考点:回归方程.【方法点睛】求回归直线中的参数b ,a ,需要先求得b ,再求a ,因为,所以要根据列表中的数据求得公式中相关的量,将这些数据代入公式中,即可求得参数b .对于参数a ,需要将b ,代入回归直线求得.18.①③④【解析】①是独立性检验的应用①对②中由于所以显然是半个圆②错③中由极坐标中两点距离公式=③对④中所有边长相等的凸多边形都是正多边形为大前提是错误的因为只需要正多边形挤压变形使之仍为凸多边形即可解析:①③④ 【解析】①是独立性检验的应用,①对.②中由于[]0,θπ∈,所以01y ≤≤,显然是半个圆,②错.③中,由极坐标中两点距离公式2221212212cos()AB ρρρρθθ=+--=14912()19,2+-⨯-=19AB ③对.④中“所有边长相等的凸多边形都是正多边形”为大前提,是错误的,因为只需要正多边形挤压变形,使之仍为凸多边形即可.④对.所以填①③④.19.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.20.①③【分析】根据轨迹方程的求解以及双曲线的定义相关系数的性质结合选项进行逐一分析即可【详解】①:设动点由故可得整理得:且故该方程表示圆则①正确;②:根据双曲线的定义则动点的轨迹只表示双曲线的左支故②解析:①③ 【分析】根据轨迹方程的求解,以及双曲线的定义,相关系数的性质,结合选项进行逐一分析即可. 【详解】①:设动点(),P x y ,由||2||PA PB =,故可得()()2222343x y x y ⎡⎤++=-+⎣⎦,整理得:221090x y x +-+=,且210490-⨯>,故该方程表示圆,则①正确; ②:根据双曲线的定义,(2,0),(2,0),||||3M N PM PN --=, 则动点P 的轨迹只表示双曲线的左支,故②错误;③:根据相关系数的性质,相关性越强,则相关系数的绝对值就越接近于1,故③正确; ④:因为点()1,1在直线23x y +=上,故满足题意的点的轨迹为过点()1,1且垂直于直线23x y +=的直线,故④错误. 故答案为:①③. 【点睛】本题考查轨迹方程的求解,以及相关系数的性质,属综合中档题.三、解答题21.(1)2791;(2)没有95%的把握认为消费者是否满意与城市用户还是农村用户有关,理由见解析. 【分析】(1)由题意可知,15个机型中,“华为”或“荣耀”的机型个数为6,利用组合计数原理以及古典概型的概率公式可求得所求事件的概率;(2)根据列联表中的数据可求得2χ的观测值,利用题中的参考数据可得出结论. 【详解】(1)由题意可知,15个机型中,“华为”或“荣耀”的机型个数为6,所以,从上表中15个机型中任取3个,这3个机型恰好有2个是“华为”或“荣耀”的概率为。
【课堂新坐标】2016-2017学年高中数学 第3章 统计案例 3.3 学业分层测评 北师大版选修2-3(建议用时:45分钟)学业达标]一、选择题1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56 B.910 C.215D.115【解析】 由P (B |A )=P AB P A 得P (AB )=P (B |A )·P (A )=13×25=215.【答案】 C2.下列说法正确的是( ) A .P (B |A )<P (AB ) B .P (B |A )=P BP A是可能的C .0<P (B |A )<1D .P (A |A )=0【解析】 由条件概率公式P (B |A )=P ABP A及0≤P (A )≤1知P (B |A )≥P (AB ),故A选项错误;当事件A 包含事件B 时,有P (AB )=P (B ),此时P (B |A )=P BP A,故B 选项正确,由于0≤P (B |A )≤1,P (A |A )=1,故C ,D 选项错误.故选B.【答案】 B3.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45【解析】 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.【答案】 A4.(2016·泉州期末)从1,2,3,4,5中任取两个不同的数,事件A 为“取到的两个数之和为偶数”,事件B 为“取到的两个数均为偶数”,则P (B |A )等于( )A.18B.14C.25D.12【解析】 法一:P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110,P (B |A )=P AB P A =14.法二:事件A 包含的基本事件数为C 23+C 22=4,在A 发生的条件下事件B 包含的基本事件为C 22=1,因此P (B |A )=14.【答案】 B5.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是( )A.13B.118C.16D.19【解析】 设“至少有一枚出现6点”为事件A ,“两枚骰子的点数不同”为事件B ,则n (B )=6×5=30,n (AB )=10,所以P (A |B )=n AB n B =1030=13.【答案】 A 二、填空题6.已知P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )=________,P (B |A )=________. 【导学号:62690035】【解析】 P (A |B )=P AB P B =0.120.18=23;P (B |A )=P AB P A =0.120.2=35.【答案】 23 357.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.【解析】 由题意知,P (AB )=310,P (B |A )=12.由P (B |A )=P AB P A ,得P (A )=P AB P B |A =35.【答案】 358.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.【解析】 设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D =B ∪C ,且B 与C 互斥, 又P (A )=C 12C 13+C 22C 25=710, P (AB )=C 12·C 11C 25=15,P (AC )=C 12C 12C 25=25,故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =P AB P A +P AC P A =67.【答案】 67三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n 个.从一个袋子中任取两个球,取到的标号都是2的概率是110.(1)求n 的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.【解】 (1)由题意得:C 2nC 2n +3=n n -n +n +=110,解得n =2. (2)记“其中一个标号是1”为事件A ,“另一个标号是1”为事件B ,所以P (B |A )=n AB n A =C 22C 25-C 23=17.10.任意向x 轴上(0,1)这一区间内掷一个点,问:(1)该点落在区间⎝ ⎛⎭⎪⎫0,13内的概率是多少?(2)在(1)的条件下,求该点落在⎝ ⎛⎭⎪⎫15,1内的概率. 【解】 由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A =⎩⎨⎧⎭⎬⎫x |0<x <13,由几何概率的计算公式可知.(1)P (A )=131=13.(2)令B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪15<x <1,则AB =⎩⎨⎧⎭⎬⎫x |15<x <13,P (AB )=13-151=215.故在A 的条件下B 发生的概率为 P (B |A )=P ABP A =21513=25.能力提升]1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A.14B.23C.12D.13【解析】 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知P (A )=34,P (AB )=14.问题是求在事件A 发生的情况下,事件B 发生的概率,即求P (B |A ),由条件概率公式,得P (B |A )=1434=13.【答案】 D2.(2016·开封高二检测)将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率P (A |B )等于( )A.91216B.518C.6091 D.12【解析】 事件B 发生的基本事件个数是n (B )=6×6×6-5×5×5=91,事件A ,B 同时发生的基本事件个数为n (AB )=3×5×4=60.所以P (A |B )=n AB n B =6091.【答案】 C3.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________. 【导学号:62690036】【解析】 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B ,“第二次才取到黄球”为事件C ,所以P (C )=P (AB )=P (A )P (B |A )=410×69=415.【答案】4154.如图232,三行三列的方阵有9个数a ij (i =1,2,3,j =1,2,3),从中任取三个数,已知取到a 22的条件下,求至少有两个数位于同行或同列的概率.⎝ ⎛⎭⎪⎫a 11 a 12 a 13a 21 a 22 a 23a31a 32 a 33图232【解】 事件A ={任取的三个数中有a 22},事件B ={三个数至少有两个数位于同行或同列},则B ={三个数互不同行且不同列},依题意得n (A )=C 28=28,n (A B )=2,故P (B |A )=n ABn A=228=114,则 P (B |A )=1-P (B |A )=1-114=1314.即已知取到a 22的条件下,至少有两个数位于同行或同列的概率为1314.。
一、选择题1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( ) 表1表2表3表4A .成绩B .视力C .智商D .阅读量2.下列说法中错误的是( )A .先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这种抽样方法是系统抽样法.B .一组数据的方差为2s ,平均数为x ,将这组数据的每一个数都乘以2,所得的一组新数据的方差和平均数为24s ,2x .C .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1.D .若一组数据1,a ,3的平均数是2,则该组数据的方差是23. 3.下列关于回归分析与独立性检验的说法正确的是() A .回归分析和独立性检验没有什么区别;B .回归分析是对两个变量准确关系的分析,而独立性检验是分析两个变量之间的不确定性关系;C .独立性检验可以100%确定两个变量之间是否具有某种关系.D .回归分析研究两个变量之间的相关关系,独立性检验是对两个变量是否具有某种关系的一种检验;4.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==5.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是A .10200ˆyx =-+ B .10200ˆyx =+ C .10200ˆyx =-- D .10200ˆyx =- 6.经过对K 2的统计量的研究,得到了若干个观测值,当K 2≈6.706时,我们认为两分类变量A 、B ( )A .有67.06%的把握认为A 与B 有关系 B .有99%的把握认为A 与B 有关系C .有0.010的把握认为A 与B 有关系D .没有充分理由说明A 与B 有关系7.有如下几个结论: ①相关指数R 2越大,说明残差平方和越小,模型的拟合效果越好; ②回归直线方程:y bx a =+,一定过样本点的中心:(,)x y ③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适; ④在独立性检验中,若公式()()()()()22n ad bc K a b c d a c b d -=++++,中的|ad-bc|的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有( )个. A .1B .2C .3D .48.下列命题正确的个数是:( )①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大;②在相关关系中,若用211c x y c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为23; ④“0,0a b >>”是“2b aa b+≥”的充分不必要条件 A .1B .2C .3D .49.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归直线y bx a =+必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得K 2=13.079.则其两个变量间有关系的可能性是90%. 其中错误的个数是( ) A .1 B .2 C .3D .410.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归方程^^^y b x a =+必过(),x y ;④在一个22⨯列联表中,由计算得213.079K =,则有99%以上的把握认为这两个变量间有关系.其中错误..的个数是( ) A .0 B .1C .2D .311.已知样本789x y 、、、、的平均数是8xy 值为 A .8B .32C .60D .8012.如表为某公司员工工作年限x (年)与平均月薪y (千元)对照表.已知y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )A .回归直线一定过点(4.5,3.5)B .工作年限与平均月薪呈正相关C .t 的取值是3.5D .工作年限每增加1年,工资平均提高700元二、填空题13.回归方程ˆˆ 2.50.2x y=+在样本(4,1.2)处的残差为________.14.针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的13,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数的23.若有95%的把握认为是否喜欢韩剧和性别有关,求男生至少有______人. ()20P K k ≥0.050 0.010 0.001 0k 3.8416.63510.82815.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表: 专业 性别非统计专业统计专业男生1310女生720为了检验主修统计专业是否与性别有关系,根据表中的数据得到随机变量K 2的观测值为.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________. 16.已知方程是根据女大学生的身高预报她的体重的回归方程,其中的单位是,的单位是,那么针对某个体的残差是______.17.给出下列命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;②由变量x 和y 的数据得到其回归直线方程:l ˆybx a =+,则l 一定经过点(),x y P ; ③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤在回归直线方程0.110ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 增加0.1个单位,其中真命题的序号是___________.18.已知方程ˆ0.8582.71yx =-是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm ,ˆy的单位是kg ,那么针对某个体(160,53)的残差是______________. 19.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是_____________. ①若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 20.下列命题中:①已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,则点P 的轨迹是一个圆; ②已知(2,0),(2,0),||||3M N PM PN --=,则动点P 的轨迹是双曲线; ③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;④在平面直角坐标系内,到点(1,1)和直线23x y +=的距离相等的点的轨迹是抛物线; 正确的命题是_________.三、解答题21.奥运会期间,为调查某高校学生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了60人,结果如下:(2)你能否在犯错误的概率不超过0.01的前提下认为该高校学生是否愿意提供志愿者服务与性别有关? 下面的临界值表供参考:独立性检验统计量()()()()()2n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.22.某工厂新购置甲、乙两种设备,分别生产A ,B 两种产品,为了解这两种产品的质量,随机抽取了200件进行质量检测,得到质量指标值的频数统计表如下:产品质量22⨯列联表(1)求a,b,n的值,并估计A产品质量指标值的平均数;(2)若质量指标值大于50,则说明该产品质量高,否则说明该产品质量一般.请根据频数表完成22⨯列联表,并判断是否有99%的把握认为质量高低与引入甲、乙设备有关.附:()()()()()22n ad bcKa b c d a c b d-=++++.23.司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.(1)完成下面的22⨯列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X 的分布列和数学期望()E X . 参考公式与数据: 参考数据:参考公式()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.24.“微粒贷”是腾讯旗下2015年9月开发上市的微众银行网货产品.腾讯公司为了了解“微粒贷”上市以来在C 市的使用情况,统计了C 市2015年至2019年使用了“微粒货”贷款的累计人数,统计数据如表所示:(1)已知变量x ,y 具有线性相关关系,求累计人数y (万人)关于年份代号x 的线性回归方程y bx a =+;并预测2020年使用“微粒贷“贷款的累计人数;(2)“微粒贷”用户拥有的贷款额度是根据用户的账户信用资质判定的,额度范围在500元至30万元不等,腾讯公司在统计使用人数的同时,对他们所拥有的贷款额度也作了相应的统计.我们把拥有货款额度在500元至5万元(不包括5万元)的人群称为“低额度贷款人群”,简称“A 类人群”;把拥有贷款额度在5万元及以上的人群称为“高额度贷款人群”,简称“B 类人群”.根据统计结果,随机抽取6人,其中A 类人群4人,B 类人群2人.现从这6人中任取3人,记随机变量ξ为A 类人群的人数,求ξ的分布列及其期望.参考公式:1122211()()()()nni iiii i nniii i x y nx y x x y y b xn x x x ====---==--∑∑∑∑, a y bx =-参考数据:5162i ii x y=≈∑25.“海水稻”就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区,具有耐盐碱的水稻,它比其它普通的水稻均有更强的生存竞争能力,具有抗涝,抗病虫害,抗倒伏等特点,还具有预防和治疗多种疾病的功效,防癌效果尤为显著.海水稻的灌溉是将海水稀释后进行灌溉.某试验基地为了研究海水浓度x (‰)对亩产量y (吨)的影响,通过在试验田的种植实验,测得了某种海水稻的亩产量与海水浓度的数据如表.绘制散点图发现,可用线性回归模型拟合亩产量y 与海水浓度x 之间的相关关系,用最小二乘法计算得y 与x 之间的线性回归方程为.88ˆ0ˆy bx=+.(2)①完成上述残差表:②统计学中,常用相关指数2R 来刻画回归效果,2R 越大,模型拟合效果越好,并用它来说明预报变量与解释变量的相关性.你能否利用以上表格中的数据,利用统计学的相关知识,说明浇灌海水浓度对亩产量的贡献率?(计算中数据精确到0.01)(附:残差公式ˆˆi i i ey y =-,相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑)26.新冠状病毒严重威胁着人们的身体健康,我国某医疗机构为了调查新冠状病毒对我国公民的感染程度,选了某小区的100位居民调查结果统计如下:(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过5%的前提下认为感染新冠状病与不同年龄有关? (3)已知在被调查的年龄大于50岁的感染者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】计算得到22322214χχχχ>>>,得到答案. 【详解】计算得到:222152(6221410)5281636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯; 222252(4201612)521121636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯ ; 222352(824128)52961636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯ ; 222452(143062)524081636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯;故22322214χχχχ>>>. 故选:D . 【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.2.C解析:C 【分析】根据题意,对选项中的命题进行分析,判断真假性即可. 【详解】对于A ,根据抽样方法特征是数据多,抽样间隔相等,是系统抽样,所以A 正确; 对于B ,一组数据的方差为2s ,平均数为x ,将这组数据的每一个数都乘以2,所得的一组新数据的方差和平均数为24s ,2x ,所以B 正确;对于C ,两个随机变量的线性相关性越强,则相关系数||r 的值越接近于1,所以C 错误;对于D ,一组数据1、a 、3的平均数是2,所以2a =;所以该组数据的方差是222212[(12)(22)(32)]33s =⨯-+-+-=,所以D 正确.故选:C . 【点睛】本题主要考查抽样和统计,考查方差和平均数的计算,考查两个随机变量的相关性,意在考查学生对这些知识的理解掌握水平3.D解析:D 【分析】根据题意可知,利用回归分析和独立性检验的定义,排除错误选项,即可求解出答案. 【详解】回归分析是指将具有相关关系的两个变量之间的数量关系进行测定,通过建立数学表达式进行统计估计和预测的统计研究方法.独立性检验是对两个变量之间是否具有某种关系的分析,并且可以分析这两个变量在多大程度上具有这种关系,但不能100%肯定这种关系.根据以上定义,可知A 、B 、C 均错误,故答案选D . 【点睛】本题主要考查了回归分析与独立性检验的定义的区别.4.D解析:D 【解析】 【分析】 根据公式()()()()()22n ad bc K a b c d a c b d -=++++,分别利用4个选项中所给数据求出2K 的值,比较所求值的大小即可得结果. 【详解】选项A :22160(535155)3204010502K ⨯⨯-⨯==⨯⨯⨯,选项B :22260(5251515)152040204016K ⨯⨯-⨯==⨯⨯⨯,选项C :22360(5201520)24204025357K ⨯⨯-⨯==⨯⨯⨯,选项D :22460(5101530)96204035257K ⨯⨯-⨯==⨯⨯⨯,可得222431K K K >>22K >,所以由选项D 中的数据得到的2K 值最大,说明X 与Y 有关系的可能性最大,故选D . 【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2 K 越大两个变量有关的可能性越大这一性质.5.A解析:A 【解析】试题分析:因为商品销售量x 与销售价格ˆy负相关,所以排除B ,D 选项, 将0x =代入10200ˆyx =--可得2000ˆy =-<,不符合实际.故A 正确. 考点:线性回归方程.【方法点睛】本题主要考查线性回归方程,属容易题.线性回归方程ˆˆˆy bx a =+当ˆ0b<时ˆ,x y 负相关;当ˆ0b >时ˆ,x y 正相关. 6.B解析:B 【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P (K 2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A 与B 有关系. 【详解】 依据下表:2 6.635K > ,2 6.6350.01P K =(>)∴我们在错误的概率不超过0.01的前提下有99%的把握认为A 与B 有关系, 故选B . 【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.7.D解析:D 【分析】根据相关指数定义、残差平方和含义可得①为真,根据回归直线方程特征可得②为真,根据残差点含义可得③为真,根据卡方含义可得④为真. 【详解】相关指数R 2越大,则残差平方和越小,模型的拟合效果越好;回归直线方程:ˆy bx a =+,一定过点() ,x y ;若残差点比较均匀地落在水平的带状区域中,则选用的模型比较合适; 在独立性检验中,若公式()()()()()22n ad bc K a b c d a c b d -=++++,中的|ad-bc|的值越大,则2K 越大, “两个分类变量有关系”的可能性越强.选D.【点睛】相关指数R 2越大,残差平方和越小,残差点比较均匀地落在水平的带状区域,则模型的拟合效果越好;在独立性检验中,若2 K 越大,则两个变量有关系越强;回归直线方程:ˆy bx a =+,一定过点() ,x y .8.C解析:C 【解析】分析:根据独立性检验的性质可判断①;根据回归分析的基本原理可判断②;根据几何概型概率公式可判断③; 根据不等式的性质可判断④.详解:①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越小,①错误;②在相关关系中,若用211c x y c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好,②正确;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为1123103-=-,正确; ④“0,0a b >>”可得到“2b a a b +≥”, “2b aa b+≥”时“0,0a b >>”不一定成立,所以“0,0a b >>”是“2b aa b+≥”的充分不必要条件,正确,即正确命题的个数是3,故选C. 点睛:本题主要通过对多个命题真假的判断,主要综合独立性检验、回归分析、几何概型概率公式、不等式的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.9.C解析:C 【解析】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,故正确;对于②,一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均减小5个单位,故不正确;对于③,线性回归直线ˆˆˆy bx a =+必过样本中心点(),x y ,故正确;对于④,曲线上的点与该点的坐标之间具有一一对应关系,故不正确;对于⑤,有一个2×2列联表中,由计算得213.079K =,则其两个变量间有关系的可能性是99.9%,故不正确. 故选C.10.B解析:B 【解析】一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y 35x =-,当x 增加一个单位时,y 平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y = b x +a 必过点(),x y ,③正确;因为213.079 6.635K =>,故有0099以上的把握认为这两个变量间有关系,④正确,即错误的个数为1,故选B.11.C解析:C 【解析】由78982x y++++⎧=⎪⎪=得=60xy ,故选C. 12.C解析:C 【解析】由已知中的数据可得:3456 4.54x +++== , 2.54 4.51144t ty ++++==,∵数据中心点(),x y 一定在回归直线上,∴110.7 4.50.354t+=⨯+解得3t =,故C 错误;故11 3.54t+=, 回归直线一定过点(4.53.5,),ABD 正确;故选C . 二、填空题13.【分析】根据残差的定义直接计算即可【详解】由题当x=4时故所以回归方程在样本处的残差为故答案为:【点睛】本题主要考查了残差的概念考查了运算能力属于容易题 解析:9-【分析】根据残差的定义直接计算即可. 【详解】由题当x =4时,4ˆ 2.50.210.2y=+=⨯, 故1.210.29-=-所以回归方程ˆˆ 2.50.2x y=+在样本(4,1.2)处的残差为9-. 故答案为:9- 【点睛】本题主要考查了残差的概念,考查了运算能力,属于容易题.14.【分析】设男生人数为依题意填写列联表计算观测值列出不等式求出的取值范围再根据题意求出男生的人数【详解】设男生人数为由题意可得列联表如下:喜欢韩剧不喜欢韩剧总计男生女生总解析:18【分析】设男生人数为x,依题意填写列联表,计算观测值,列出不等式求出x的取值范围,再根据题意求出男生的人数.【详解】设男生人数为x,由题意可得列联表如下:则 3.841k>,即2452()3636969 3.84171711931818x x x x xxkx x xx⋅-⋅==>⋅⋅⋅,解得12.697x>.因为各部分人数均为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有18人.故答案为:18.【点睛】本题考查独立性检验的应用,解题关键是列出列联表,然后进行计算,属于常考题. 15.5【解析】因为随机变量K2的观测值k>3841所以在犯错误的概率不超过005的前提下认为主修统计专业与性别有关系故这种判断出现错误的可能性为5考点:独立性检验思想解析:5%【解析】因为随机变量K2的观测值k>3.841,所以在犯错误的概率不超过0.05的前提下认为“主修统计专业与性别有关系”.故这种判断出现错误的可能性为5%.考点:独立性检验思想.16.【解析】试题分析:由回归直线方程可知当时所以针对个体的残差是考点:线性回归方程 解析:0.29-【解析】试题分析:由回归直线方程可知当160x =时,53.29y =,所以针对个体的残差是5353.290.29-=-.考点:线性回归方程.17.②④⑤【解析】试题分析:线性相关系数越大两个变量的线性相关性越强;反之线性相关性越弱故①错;回归直线方程一定经过样本中心点所以②正确;③的抽样方式为系统抽样故③错;由在含有一个解释变量的线性模型中R解析:②④⑤ 【解析】试题分析:线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱,故①错;回归直线方程一定经过样本中心点(),x y P ,所以②正确;③的抽样方式为系统抽样,故③错;由在含有一个解释变量的线性模型中,R 2恰好等于相关系数r 的平方.显然,R 2取值越大,意味着残差平方和越小,也就是模型的拟合效果越好,故④正确;由回归直线方程可知,当解释变量x 每增加一个单位时,预报变量ˆy增加0.1个单位的解释是正确的,故⑤正确;所以正确的序号为②④⑤. 考点:回归分析的基本思想及其应用初步.18.【解析】将代入得所以残差 解析:0.29-【解析】将160x =代入0.85 2.1ˆ87yx =-,得0.8516082.71ˆ53.29y =⨯-=,所以残差5353.ˆ290ˆ.29ey y =-=-=-. 19.③【解析】推断在100个吸烟的人中必有99人患有肺病说法错误排除①有99的把握认为吸烟与患病有关系时与99的可能患有肺病是两个不同概念排除②故填③解析:③ 【解析】推断在100个吸烟的人中必有99人患有肺病,说法错误,排除①,有99%的把握认为吸烟与患病有关系时,与99%的可能患有肺病是两个不同概念,排除②,故填③.20.①③【分析】根据轨迹方程的求解以及双曲线的定义相关系数的性质结合选项进行逐一分析即可【详解】①:设动点由故可得整理得:且故该方程表示圆则①正确;②:根据双曲线的定义则动点的轨迹只表示双曲线的左支故②解析:①③【分析】根据轨迹方程的求解,以及双曲线的定义,相关系数的性质,结合选项进行逐一分析即可. 【详解】①:设动点(),P x y ,由||2||PA PB =,故可得()()2222343x y x y ⎡⎤++=-+⎣⎦,整理得:221090x y x +-+=,且210490-⨯>,故该方程表示圆,则①正确; ②:根据双曲线的定义,(2,0),(2,0),||||3M N PM PN --=, 则动点P 的轨迹只表示双曲线的左支,故②错误;③:根据相关系数的性质,相关性越强,则相关系数的绝对值就越接近于1,故③正确; ④:因为点()1,1在直线23x y +=上,故满足题意的点的轨迹为过点()1,1且垂直于直线23x y +=的直线,故④错误. 故答案为:①③. 【点睛】本题考查轨迹方程的求解,以及相关系数的性质,属综合中档题.三、解答题21.(1)4人;(2)是否愿意提供志愿者服务与性别有关. 【分析】(1)根据题意,确定愿意提供志愿者服务的男女生人数,进而可求出抽取的男生人数;(2)根据题中数据,由()()()()()22n ad bc a b c d a c b d χ-=++++求出2χ,结合临界值表,即可得出结果. 【详解】(1)由题意,可知男生抽取20642010⨯=+(人).(2)2260(20201010) 6.66730303030χ⨯⨯-⨯=≈⨯⨯⨯,由于6.667 6.635>,所以能在犯错误的概率不超过0.01的前提下认为该高校学生是否愿意提供志愿者服务与性别有关. 【点睛】本题主要考查分层抽样,考查独立性检验的思想,属于常考题型. 22.(1)10a =,120n =,36b =,53.25;(2)答案见解析,有. 【分析】(1)由已知求得a 、n 、b 的值,即可计算平均数A x ; (2)根据题意填写列联表,计算2K ,对照附表得出结论. 【详解】(1)由表格中的数据,可得802632201010a =-----=,20080120n =-=,12012242715636b =-----=,所以可估计A 产品质量指标值的平均数为:()137.5242.5647.51052.53257.52062.51053.2580A x =⨯⨯+⨯+⨯+⨯+⨯+⨯=; (2)根据题意,可得22⨯的列联表如下:计算22006272184827.273 6.6358012011090K ⨯⨯-⨯=≈>⨯⨯⨯, 所以有99%的把握认为质量高低与引入甲、乙设备有关.【点睛】本题主要考查了统计的基础知识,卡方的计算,以及独立性检验的应用,其中解答中根据表格中的数据,得出22⨯的列联表,求得2K 的值是解答的关键,着重考查推理与计算能力.23.(1)列联表见解析,有;(2)分布列见解析,1.2. 【分析】(1)根据已知数据即可得到列联表;计算出28.2497.879χ≈>,对比临界值表可得到结果;(2)由样本估计总体思想,可得到随机抽检1辆,司机为男性且开车使用手机的概率为25,可知235X B ⎛⎫⎪⎝⎭,,由二项分布概率公式可计算得到每个取值所对应的概率,从而得到分布列;由二项分布数学期望计算公式可得()E X . 【详解】(1)由已知数据可得22⨯列联表如下:()2100402515208.2497.87960405545χ⨯⨯-⨯=≈⨯⨯⨯>∴有99.5%的把握认为开车时使用手机与司机的性别有关(2)随机抽检1辆,司机为男性且开车时使用手机的概率4021005p ==有题意可知:X 可取值是0,1,2,3,且235XB ⎛⎫ ⎪⎝⎭, ()03032327055125P X C ⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭;()12132354155125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭; ()21232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭;()333238355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则X 的分布列为:数学期望()3 1.25E X =⨯= 【点睛】本题考查独立性检验的应用、二项分布的分布列及数学期望的求解等知识,对学生的计算和求解能力有一定要求,属于常考题型.24.(1)0.5 2.3y x =+;在2020年使用“微粒贷”贷款的累计人数大约为5.3万人; (2)分布列见解析;期望为2. 【分析】(1)根据表格中的数据结合公式,求得0.5, 2.3b a ==,求得回归直线的方程,令6x =,即可得到结论;(2)随机变量ξ的可能值为1,2,3,求得相应的概率,得出分布列,结合期望的公式,求得期望. 【详解】(1)由题意,根据表格中的数据,可得:11(12345)3,(2.9 3.3 3.6 4.4 4.8) 3.855x y =++++==++++=,21155,62nnii i i i xx y ====∑∑,可得122216253 3.810.555532()ni ii nii x y nx yb xn x ==--⨯⨯====-⨯-∑∑,所以 3.80.53 2.3a y bx =-=-⨯=, 故x 的线性回归方程0.5 2.3y x =+, 令6x =,得0.56 2.3 5.3y =⨯+=,故在2020年使用“微粒贷”贷款的累计人数大约为5.3万人. (2)随机变量ξ的可能值为1,2,3,可得1221342424333666131(1),(2),(3)555C C C C C P P P C C C ξξξ=========, 所以ξ的分布列为:所以期望为:()1232555E ξ=⨯+⨯+⨯=. 【点睛】本题主要考查了离散型随机变量的分布列及期望的计算,以及回归直线方程的求解及应用,注重考查了分析问题和解答问题的能力,以及运算与求解能力.25.(1)当海水浓度为8‰时,该品种的亩产量为0.24吨(2)①填表见解析;②所以浇灌海水浓度对亩产量的贡献率是98%,详解见解析. 【分析】(1)根据题意,算出,x y ,将样本中心点(),x y 代入线性回归方程为.88ˆ0ˆy bx =+,求出ˆb,从而可估计当浇灌海水浓度为8‰时,该品种的亩产量. (2)根据线性回归方程0.080.8ˆ8yx =-+和残差公式ˆˆi i i e y y =-,即可求出个海水浓度时对应的残差,即可完成残差表;根据相关指数2R 的公式,求出2R ,根据2R 的意义,即可得出浇灌海水浓度对亩产量的贡献率. 【详解】(1)根据题意,可得3456755x ++++==,0.620.580.490.40.310.485y ++++==,而y 与x 之间的线性回归方程为.88ˆ0ˆy bx=+, 则ˆ0.4850.88b=+,解得:ˆ0.08b =-, 当8x =时,0.0880..24ˆ880y=-⨯+=, 所以当海水浓度为8‰时,该品种的亩产量为0.24吨.(2)①由(1)知0.080.8ˆ8yx =-+, 根据残差公式ˆˆi i i ey y =-,得残差表如下:。
一、选择题1.下列说法中错误的是( )A .先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这种抽样方法是系统抽样法.B .一组数据的方差为2s ,平均数为x ,将这组数据的每一个数都乘以2,所得的一组新数据的方差和平均数为24s ,2x .C .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1.D .若一组数据1,a ,3的平均数是2,则该组数据的方差是23. 2.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==3.某科研机构为了研究中年人秃发与患心脏病是否有关,随机调查了一些中年人的情况,具体数据如表,根据表中数据则可判定秃发与患心脏病有关,那么这种判定出错的可能性为( ) 患心脏病情况秃发情况 患心脏病无心脏病 秃发 20 300 不秃发5450A .0.1B .0.05C .0.01D .0.994.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是A .10200ˆyx =-+ B .10200ˆyx =+ C .10200ˆyx =-- D .10200ˆyx =- 5.经过对K 2的统计量的研究,得到了若干个观测值,当K 2≈6.706时,我们认为两分类变量A 、B ( )A .有67.06%的把握认为A 与B 有关系 B .有99%的把握认为A 与B 有关系C .有0.010的把握认为A 与B 有关系D .没有充分理由说明A 与B 有关系6.对两个分类变量A ,B 的下列说法中正确的个数为( )①A 与B 无关,即A 与B 互不影响; ②A 与B 关系越密切,则K 2的值就越大;③K 2的大小是判定A 与B 是否相关的唯一依据 A .0 B .1 C .2 D .37.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0018.某商场为了解毛衣的月销售量y (件)与月平均气温()x C 之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: )C(件)由表中数据算出线性回归方程ˆybx a =+中的2b =-,气象部门預测下个月的平均气温约为6C ,据此估计该商场下个月毛衣销售量约为( )件. A .46B .40C .38D .589.已知变量x ,y 的一组观测数据如表所示:据此得到的回归方程为y bx a =+,若a =7.9,则x 每增加1个单位,y 的预测值就( ) A .增加1.4个单位 B .减少1.2个单位C .增加1.2个单位D .减少1.4个单位10.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,2,1,3b x y ===,则1a =.④如果两个变量x 与y 之间不存在着线性关系,那么根据它们的一组数据()(,1,2,,)i i x y i n =不能写出一个线性方程正确的个数是( )A .1B .2C .3D .411.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,统计数据如下表附:经计算2 4.514K ≈,现判断数学成绩与物理成绩有关系,则判断出错的概率不会超过 A .0.5%B .1%C .2%D .5%12.已知回归方程0.8585.7y x ∧=-,则该方程在样本()165,57 处的残差为( ) A .111.55B .54.5C .3.45D .2.45二、填空题13.在一次独立试验中,有200人按性别和是否色弱分类如下表(单位:人)你能在犯错误的概率不超过_____的前提下认为“是否色弱与性别有关”?14.某中学为了调研学生的数学成绩和物理成绩是否有关系,随机抽取了189名学生进行调查,调查结果如下:在数学成绩较好的94名学生中,有54名学生的物理成绩较好,有40名学生的物理成绩较差;在成绩较差的95名学生中,有32名学生的物理成绩较好,有63名学生的物理成绩较差.根据以上的调查结果,利用独立性检验的方法可知,约有________的把握认为“学生的数学成绩和物理成绩有关系”. 15.某班主任对全班50名学生作了一次调查,所得数据如表:由表中数据计算得到K 2的观测值k≈5.059,于是________(填“能”或“不能”)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.16.某汽车销售公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:百辆)的影响,对近8年的年宣传费i x 和年销售量i y (1,2,...,8)i =数据作了初步处理,得到年销售量y 与年宣传费具有近似关系:ˆya =以及一些统计量的值如下:81i i x ==∑372.8,81i i y ==∑450.4,8i ==54.4,8i ==76.2 .已经求得近似关系中的系数68b =,请你根据相关回归分析方法预测当年宣传费100x =(千元)时,年销售量y =__________(百辆). 17.已知方程是根据女大学生的身高预报她的体重的回归方程,其中的单位是,的单位是,那么针对某个体的残差是______.18.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则= . 月 份x 1 2 3 4 用水量y4.5432.519.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到22⨯列联表:喜欢 不喜欢 总计 男 15 10 25 女520 25 总计 203050(参考公式22()()()()()n ad bc k a b c d a c b d -=++++,()n a b c d =+++)20()P K k ≥ 0.010 0.005 0.0010k 6.635 7.879 10.828则有___________以上的把握认为“喜欢足球与性别有关”. 20.已知下列说法: ①分类变量A 与B 的随机变量越大,说明“A 与B 有关系”的可信度越大;②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为,若,,,则.其中说法正确的为_____________.(填序号)三、解答题21.共享单车进驻城市,绿色出行引领时尚.某市2017年对共享单车的使用情况进行了调查,数据显示,该市共享单车用户年龄分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用共享单车用户”,使用次数为5次或不足5次的称为“不常使用共享单车用户”.已知在“经常使用共享单车用户”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的分析,采用随机抽样的方法,抽取了一个容量为200的样本.请你根据题目中的数据,补全下列2×2列联表:年轻人非年轻人 合计 经常使用共享单车用户 120 不常使用共享单车用户80 合计16040200根据列联表独立性检验,判断有多大把握认为经常使用共享单车与年龄有关? 参考数据:20()P K k ≥ 0.150 0.100 0.050 0.025 0.0100k2.072 2.7063.841 5.024 6.635其中,22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)以频率为概率,用分层抽样的方法在(1)的200户用户中抽取一个容量为5的样本,从中任选3户,记经常使用共享单车的用户数为随机变量X ,求X 的分布列和数学期望.22.我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在2020年2月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如表频数分布表:(1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值; (2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如表列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.参考公式和数据:()()()()()22n ad bc K a b c d a c b d -=++++.(其中n a b c d =+++为样本容量)23.根据教育部《中小学生艺术素质测评办法》,为提高学生审美素养,提升学生的综合素质,江苏省中考将增加艺术素质测评的评价制度,将初中学生的艺术素养列入学业水平测试范围.为初步了解学生家长对艺术素质测评的了解程度,某校随机抽取100名学生家长参与问卷测试,并将问卷得分绘制频数分布表如下: 得分 [)30,40 [)40,50 [)50,60 [)60,70 [)70,80 [)80,90 []90,100男性人数4912 13 11 6 3了解”(得分低于60分)两类,完成22⨯列联表,并判断是否有99%的把握认为“学生家长对艺术素质评价的了解程度”与“性别”有关?(2)以这100名学生家长中“比较了解”的频率代替该校学生家长“比较了解”的概率.现在再随机抽取3名学生家长,设这3名家长中“比较了解”的人数为X ,求X 的概率分布列和数学期望.附:()()()()()2n ad bc a b c d a c b d χ-=++++,()n a b c d =+++.临界值表:24.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下: (1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.25.共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列22⨯列联表,并根据列联表的独立性检验,判断是否有85%的把握认为经常使用共享单车与年龄有关?年轻人 非年轻人 合计 经常使用单车用户 120 不常使用单车用户80 合计16040200使用共享单车情况与年龄列联表(2)将(1)中频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X ,求X 的分布列与期望. 参考数据:独立性检验界值表()20P K k ≥ 0.150.10 0.050 0.025 0.0100k 2.072 2.706 3.841 5.024 6.635其中,22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++26.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)如图是按该20名学生的评分绘制的频率分布直方图,求a的值并估计这20名学生评分的平均值(同一组中的数据用该组区间中点值作为代表);(3)求该20名学生评分的中位数m,并将评分超过m和不超过m的学生数填入下面的列联表:超过m不超过m男生女生根据列联表,能否有85%的把握认为男生和女生的评分有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,()2P K k0.500.400.250.150.100.050.025 0k0.4550.708 1.323 2.072 2.706 3.841 5.024【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意,对选项中的命题进行分析,判断真假性即可. 【详解】对于A ,根据抽样方法特征是数据多,抽样间隔相等,是系统抽样,所以A 正确; 对于B ,一组数据的方差为2s ,平均数为x ,将这组数据的每一个数都乘以2,所得的一组新数据的方差和平均数为24s ,2x ,所以B 正确;对于C ,两个随机变量的线性相关性越强,则相关系数||r 的值越接近于1,所以C 错误;对于D ,一组数据1、a 、3的平均数是2,所以2a =;所以该组数据的方差是222212[(12)(22)(32)]33s =⨯-+-+-=,所以D 正确.故选:C . 【点睛】本题主要考查抽样和统计,考查方差和平均数的计算,考查两个随机变量的相关性,意在考查学生对这些知识的理解掌握水平2.D解析:D 【解析】 【分析】 根据公式()()()()()22n ad bc K a b c d a c b d -=++++,分别利用4个选项中所给数据求出2K 的值,比较所求值的大小即可得结果. 【详解】选项A :22160(535155)3204010502K ⨯⨯-⨯==⨯⨯⨯,选项B :22260(5251515)152040204016K ⨯⨯-⨯==⨯⨯⨯,选项C :22360(5201520)24204025357K ⨯⨯-⨯==⨯⨯⨯,选项D :22460(5101530)96204035257K ⨯⨯-⨯==⨯⨯⨯,可得222431K K K >>22K >,所以由选项D 中的数据得到的2K 值最大,说明X 与Y 有关系的可能性最大,故选D . 【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2 K 越大两个变量有关的可能性越大这一性质.3.C解析:C 【分析】首先列出22⨯联表,通过计算出2K 的值,然后作统计推断,得出正确的结论. 【详解】列出22⨯联表如下图所示:()277520450530015.96825750455320K ⨯⨯-⨯=≈⨯⨯⨯ 6.635>,故判断错误的概率不超过0.01,故选C .【点睛】本小题主要考查补全22⨯联表,考查2K 的计算以及独立性检验的概念,属于基础题. 独立性检验的步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22n ad bc K a b c d a c b d -=++++()()()()(),计算2K 的观测值;(3)比较2K 与临界值的大小关系作统计推断. 4.A解析:A 【解析】试题分析:因为商品销售量x 与销售价格ˆy负相关,所以排除B ,D 选项, 将0x =代入10200ˆyx =--可得2000ˆy =-<,不符合实际.故A 正确. 考点:线性回归方程.【方法点睛】本题主要考查线性回归方程,属容易题.线性回归方程ˆˆˆy bx a =+当ˆ0b<时ˆ,x y 负相关;当ˆ0b >时ˆ,x y 正相关. 5.B解析:B 【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P (K 2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A 与B 有关系. 【详解】依据下表:2 6.635K>,2 6.6350.01P K=(>)∴我们在错误的概率不超过0.01的前提下有99%的把握认为A与B有关系,故选B.【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.6.B解析:B【解析】【分析】根据独立性检验的思想,对题目中的命题进行分析、判断正误即可.【详解】对于①,对事件A与B无关时,说明两事件的影响较小,不是两个互不影响,①错误;对于②,事件A与B关系密切,说明事件A与B的相关性就越强,K2就越大,②正确;对于③,K2的大小不是判定事件A与B是否相关的唯一根据,判定两事件是否相关除了公式外;还可以用三维柱形图和二维条形图等方法来判定,③错误;故选:B.【点睛】本题考查了独立性检验思想的应用问题,属于基础题.K2值是用来判断两个变量相关的把握度的,不是用来判断两个变量是否相关的.7.D解析:D【解析】10.828,10.0010.99999.90k≥∴-==,则有099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bcKa b a d a c b d-=++++计算2K的值;(3) 查表比较2K与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)8.A解析:A 【解析】试题分析:根据题意,样本中心点的坐标为()10,38,所以38210,58a a =-⨯+∴=,因此回归直线方程为2ˆ58yx =-+,所以当6x =时,估计该商场下个月毛衣销售量约为26ˆ5846y=-⨯+=,故选A. 考点:回归直线方程.9.D解析:D 【解析】由表格得 5x =, 0.9y =,∵回归直线方程为7ˆ9ˆ.y bx=+,过样本中心, ∴57.90.9b +=,即75b =-,则方程为77.95ˆyx =-+,则x 每增加1个单位,y 的预测值就减少1.4个单位,故选D.10.C解析:C 【解析】①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大,正确; ②∵kx y ce =,∴两边取对数,可得lny ln =(kx ce )kx lnc lnce lnc kx =+=+, 令z lny =,可得z lnc kx =+, ∵0.34z x =+, ∴40.3lnc k ==, ∴4c e =.即②正确;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y =a +bx 中,2,1,3b x y ===,则a =1,正确。
高中数学第三章统计案例单元测评北师大版选修2-3(6页)文档来源为:从网络收集整理文档来源为:从网络收集整理.word版本可编辑?欢迎下载支持.PAGEPAGE #文档收集于互联网.已整理.word版本可编辑.文档来源为:从网络收集整理文档来源为:从网络收集整理.word版本可编辑?欢迎下载支持.22文档收集于互联网,已整理,word版本可编借.《统计案例》测评(时间90分钟,满分100分)一、选择题(本大题共12小题,每小题4分,共48分)下面变量之间的关系是函数关系的是扎已知二次函数y二a€+bx+c,其中a、c是已知常数,取b为自变量,因变量是这个函数的判别式A=bs-4ac光照时间和果树亩产量降雪疑和交通事故发生率每亩施用肥料呈:和粮食亩产量答案:A解析:B、C、D是相关关系,A是确雄性关系,即函数关系.设有一个回归方程为y二3-5x,变量x增加一个单位时扎y平均增加3个单位 B. y平均减少5个单位C. y平均增加5个单位D. y平均减少3个单位答案:B解析:斜率b二-5的意义是:变量x增加1个单位时,y平均增加-5个单位,即y 平均减少5个单位.若回归直线方程中的回归系数b二0时,则相关系数为扎 r=l B.r二-1 C. r=0 D.无法确定答案:C4?在一个2X2列联表中,由其数据计算得x ±13.097,则其两个变量间有关系的可能性为D.无关系99% B. 95% C.D.无关系答案:A解析:当x=>6. 635时,有99%的把握认为两个变量之间有关系.5.线性回归方程y=bx+a必过A. (0, 0)C. (0,A. (0, 0)答案:D解析:Va=y-bxt 即 y 二b X +a.回归方程y=bx+a 一定过(x , y ).6.下面是一个2X2列联表Yi先总计X1A2173X:22527总计B16则表中冬b处的值分别为A.94、96B.52、50C.52、54D. 54. 52答案:C 解析:a+21 二73=>a二52,b二52+2二54.设两个变量x和y之间具有线性相关关系,它们的样本相关系数是r, y关于x的回归直线的斜率是b,截距是a,那么必有扎b与r的符号相同 B. a与r的符号相同C. b与r的符号相反D. a与I?的符号相反答案:A工(旺―0(儿一亍)解析:由公式:b二——丈(兀一 02乞(兀-x)(yr -刃与r二[- _ 「可知分子相同,分母都大于0,故b与r同号.相关系数r的取值范围是A. -oo6. 635,、J520 x (237 x 522 -83 x 678 )=32. 52>6. 635,' 915x605x320x1200所以有99$的把握认为“父母吸烟影响子女”?(本小题满分9分)两所学校的计算机算法语言学习小组统一测验成绩如下: 甲校:16, 12, 20, 15, 23, 8, 16, 19.乙校:22, 17, 26, 24, 8, 7, 25, 28.(1)求共同的中位数:16(3x3 — 5x5)2x ?—8x8x8x816(3x3 — 5x5)2x ?—8x8x8x8校别中位数以上中位数以下合计甲合计(3)两所学校的计算机算法语言学习小组的成绩有无差异?答案:解:(1)将两组数据合在一起,从小到大的排列,寻找共同的中位数,由于n:+n:=8+8=16, 则第8与第9个位置上的数据之平均数即为共同的中位数,共同中位数为18.(2)校别中位数以上中位数以下合计甲358乙538合计SS16(3)二 1W2. 706,两所学校的汁算机算法语言成绩无显著差异.20.(本小题满分10分)如下表所示,某地区一段时间内观察到的大于或等于某震级x的地農次数N.试建立回归方程表述二者之间的关系.箴级3.23.43.63. 84地震数 28 381 20 380 11 795 10 695 7 641 5 502箴级4.24.41.64.85.05.2地震数 3 812 2 698 1 919 1 356 973746箴级5.45.666.26.4地箴数60443527420614898箴级6.66.87地震数571125答案:解:散点图如图可以发现,散点图分布在一条指数函数y=menx |B|线周【亂令z=lny,则表格中的数据变为震级X33.23.43.63.8z=lny10. 25359. 602 0 9. 277 5 8. 941 3震级X44.24.44.64.8z=lny8.612 9 8. 253 7 1.997 2 7. 559 6 7.212 3震级X55.25.45.65.8z 二 lny 6. 880 4 6. 611 7 6. 403 6 6. 075 3 5.613 1震级X66.26.46. 66.8z 二 lny5. 327 94. 997 24. 585 04. 043 13.713 6震级X7z 二 lny3. 218 9作散点图利用信息技术得:z=-1.705 lx+15. 43. y=e。
【课堂新坐标】2013-2014学年高中数学 第三章 统计案例课时作业3 北师大版选修2-3一、选择题 1.倒指数曲线y =的图像为( )【解析】 y =a e bx,当a >0,b >0时,图像为A. 【答案】 A 2.有下列说法:①线性回归分析就是由样本点去寻找一条直线贴近这些样本点的数学方法; ②利用样本点的散点图可以直观地判断两个变量之间的关系是否是线性相关关系; ③通过回归方程y =bx +a 及其回归系数b ,可以估计和观测变量的取值和变化趋势; ④因为由任何一组观测值都可以求得一个回归直线方程,所以没有必要进行相关性检验.其中正确命题的个数是( ) A .1个 B .2个 C .3个D .4个【解析】 由线性回归分析的意义知①、②、③正确,④错误. 【答案】 C3.幂函数曲线y =x b,当b >1时的图像为( )【解析】 当b >1时,图像为选项A ,当0<b <1时为选项B ,当b <0时为选项C ,当b =1时为选项D.【答案】 A4.对于回归分析,下列说法错误的是( )A .在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定B .线性相关系数可以是正的或负的C .回归分析中,如果r 2=1或r =±1,说明x 与y 之间完全线性相关 D .样本相关系数r ∈(-∞,+∞)【解析】 由相关系数性质知,B 、C 正确.A 正确,因为拟合函数不是唯一的.D 错,因为相关系数|r |≤1.【答案】 D5.可以对下列数据x 、y 之间的关系进行拟合的函数( )A.y =2+3xB .y =2e xC .y =2e 1xD .y =2+ln x【解析】 ∵y =2e 1x为减函数,∴选项C 错.又∵y =2e x的增长速度极快,∴选项B 错误.由增长速度可知A 错,D 正确. 【答案】 D 二、填空题6.x ,y 的取值如下表:则x ,y 【解析】 由x 与y 值的对应关系可知:该函数应为指数函数,由其近似值可知y =2x较合适.【答案】 y =2x7.在研究硝酸钠的可溶性程度时,观察它在不同温度的水中的溶解度,得观测结果如下:【解析】 将表中数据代入公式,可得b =∑5i =1x i y i -5x y∑5i =1x 2i -5x2≈0.880 9.【答案】 0.880 9 8.下列说法①当变量之间的相关关系不是线性相关关系时,也能直接用线性回归方程描述它们之间的相关关系;②把非线性回归化为线性回归为我们解决问题提供一种方法;③当变量之间的相关关系不是线性相关关系时,也能描述变量之间的相关关系; ④当变量之间的相关关系不是线性相关关系时,可以通过适当的变换使其转换为线性关系,将问题化为线性回归分析问题来解决.其中正确的序号为________.【解析】 此题考查解决线性相关问题的基本思路,当变量之间的相关关系不是线性相关关系时,也能描述变量之间的相关关系,只是要通过适当的变换使其转化为线性相关问题,用线性回归分析问题来解决.因此②③④正确,①错误.【答案】 ②③④ 三、解答题9.某种书每册的成本费y 元与印刷册数x (千册)有关,经统计得到数据如下:检验每册书的成本费y 与印刷册数的倒数x之间是否具有线性相关关系?如有,求出y对x 的回归方程.【解】 把1x 置换成z ,则有z =1x,从而z 与y 的数据为:∴有z =10(1+0.5+0.333+0.2+0.1+0.05+0.033+0.02+0.01+0.005)=0.2251y =110(10.15+5.52+4.08+2.85+2.11+1.62+1.41+1.30+1.21+1.15)=3.14,∑10i =1z 2i =12+0.52+0.3332+0.22+0.12+0.052+0.0332+0.022+0.012+0.0052≈1.415,∑10i =1y 2i =10.152+5.522+4.082+2.852+2.112+1.622+1.412+1.302+1.212+1.152=171.803,∑10i =1z i y i =1×10.15+0.5×5.52+0.333×4.08+0.2×2.85+0.1×2.11+0.05×1.62+0.033×1.41+0.02×1.30+0.01×1.21+0.005×1.15≈15.221,∴r ≈0.999 8.∵|r |≈0.999 8接近于1, ∴z 对y 具有很强的线性相关关系. ∴b ≈8.976,a ≈1.12.∴所求的z 与y 的回归方程为y =8.976z +1.12. 又∵z =1x ,∴y =8.976x+1.12.10.在一次抽样调查中测得样本的5个样本点,数值如下表:试建立y 与x 【解】 画出散点图如下图1所示,观察可知y 与x 近似是反比例函数关系.设y =k x(k ≠0),令t =1x,则y =kt .图1 图2可得到y 关于t 的数据如下表:画出散点图如图2所示,观察可知t 和y 有较强的线性相关性,因此可利用线性回归模型进行拟合,易得:b =∑5i =1t i y i -5t y∑5i =1t 2i -5t2≈4.134 4,a =y -b t ≈0.791 7,所以y =4.134 4t +0.791 7,所以y 与x 的回归方程是y =4.134 4xt +0.791 711.为了研究某种细菌随时间x 变化繁殖的个数y ,收集数据如下:(1)(2)试求回归方程.【解】 (1)根据数据得散点图,如图所示.(2)根据数的散点图可以发现样本点不是分布在某一条直线附近,而是分布在一条曲线附近.根据已学的函数知识,可以发现样本点分布在某一指数型函数y =c 1e c 2x (c 1>0,c 2>0)附近,则将函数两边取对数得ln y =c 2x +ln c 1 ,则令u =ln y ,得u =c 2x +ln c 1,根据数据可得x 和u 的数据表:由上面x 和从图中可以发现x和u之间有很强的线性相关关系,因此可以用线性回归模型来拟合它们之间的关系.根据公式得到线性回归方程为:u=1.112+0.690 9x,即ln y=1.112+0.690 9x,则得y=e0.690 9x+1.112.故我们可以利用y=e0.690 9x+1.112来描述天数x与繁殖个数y之间的关系.。
一、选择题1.给出下列说法:①回归直线ˆˆˆy bx a =+恒过样本点的中心(,)x y ,且至少过一个样本点;②两个变量相关性越强,则相关系数||r 就越接近1; ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy 平均减少0.5个单位.其中说法正确的是( ) A .①②④B .②③④C .①③④D .②④2.某商场为了了解不同厂家生产的散装面包的月销售量y (千克)与售价x (元/千克)之间的关系,随机统计了某几个月的月销售量与当月各散装面包的售价,相关数据如下表:由表中数据算出线性回归方程为 3.1ˆˆyx a =-+,则样本在()18180,处的残差为( ) A .0B .1.4C .2D .2.13.以下四个结论,正确的是( )①质检员从匀速传递的产品生产流水线上,每间隔15分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②在回归直线方程0.1.3ˆ1y x =+中,当变量ˆx 每增加一个单位时,变量ˆy增加0.13个单位;③在频率分布直方图中,所有小矩形的面积之和是1;④对于两个分类变量X 与Y ,求出其统计量2K 的观测值k ,观测值k 越大,我们认为“X 与Y 有关系”的把握程度就越大. A .②④B .②③C .①③D .③④4.下列关于回归分析与独立性检验的说法正确的是() A .回归分析和独立性检验没有什么区别;B .回归分析是对两个变量准确关系的分析,而独立性检验是分析两个变量之间的不确定性关系;C .独立性检验可以100%确定两个变量之间是否具有某种关系.D .回归分析研究两个变量之间的相关关系,独立性检验是对两个变量是否具有某种关系的一种检验;5.有如下几个结论: ①相关指数R 2越大,说明残差平方和越小,模型的拟合效果越好; ②回归直线方程:y bx a =+,一定过样本点的中心:(,)x y ③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适; ④在独立性检验中,若公式()()()()()22n ad bc K a b c d a c b d -=++++,中的|ad-bc|的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有( )个. A .1B .2C .3D .46.对两个分类变量A ,B 的下列说法中正确的个数为( ) ①A 与B 无关,即A 与B 互不影响; ②A 与B 关系越密切,则K 2的值就越大; ③K 2的大小是判定A 与B 是否相关的唯一依据 A .0 B .1 C .2 D .3 7.下列命题正确的个数是:( )①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大;②在相关关系中,若用211c x y c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为23; ④“0,0a b >>”是“2b aa b+≥”的充分不必要条件 A .1B .2C .3D .48.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距; ②在刻画回归模型的拟合效果时,R 2的值越大,说明拟合的效果越好; ③设随机变量ξ服从正态分布N (4,22),则P (ξ>4)=12; ④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则判断“X 与Y 有关系”的犯错误的概率越小. 其中正确的说法是( ) A .①④B .②③C .①③D .②④9.某商场为了解毛衣的月销售量y (件)与月平均气温()x C 之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: )C月销售量y (件)24 33 40 55由表中数据算出线性回归方程ˆybx a =+中的2b =-,气象部门預测下个月的平均气温约为6C ,据此估计该商场下个月毛衣销售量约为( )件. A .46B .40C .38D .5810.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由()()()()()22n ad bc k a b c d a c b d -=++++并参照附表,得到的正确结论是A .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C .有99.9%的把握认为“爱好游泳运动与性别有关”D .有99.9%的把握认为“爱好游泳运动与性别无关”11.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K =,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是( )2()P K k ≥ … 0.25 0.15 0.10 0.025 0.010 0.005 … k …1.3232.0722.7065.0246.6357.879…A .90%B .95%C .97.5%D .99.5%12.已知回归方程0.8585.7y x ∧=-,则该方程在样本()165,57 处的残差为( ) A .111.55B .54.5C .3.45D .2.45二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______. 14.已知下列命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在回归直线方程0.52y x ∧=-+中,当解释变量x 每增加一个单位时,预报变量y ∧平均减少0.5个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________.15.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表: 专业 性别非统计专业统计专业男生1310女生720为了检验主修统计专业是否与性别有关系,根据表中的数据得到随机变量K 2的观测值为.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________.16.某汽车销售公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:百辆)的影响,对近8年的年宣传费i x 和年销售量i y (1,2,...,8)i =数据作了初步处理,得到年销售量y 与年宣传费具有近似关系:ˆyb x a =以及一些统计量的值如下:81i i x ==∑372.8,81i i y ==∑450.4,8i i x ==∑54.4,8i i y ==∑76.2 .已经求得近似关系中的系数68b =,请你根据相关回归分析方法预测当年宣传费100x =(千元)时,年销售量y =__________(百辆).17.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温. 气温(℃)14 12 86用电量(度) 22 26 34 38由表中数据得线性方程x b a yˆˆˆ+=中2ˆ-=b ,据此预测当气温为5℃时,用电量的度数约为 .18.从某高校在校大学生中随机选取5名女大学生,由她们身高和体重的数据得到的回归直线方程为ˆ0.7973.56yx =-,数据列表是:则其中的数据a =__________. 19.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________. 20.已知下列命题:①在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好; ②两个变量相关性越强,则相关系数r 就越接近于1;③在回归直线方程0.52y x ∧=-+中,当解释变量x 每增加一个单位时,预报变量y ∧平均减少0.5个单位;④两个模型中残差平方和越小的模型拟合的效果越好.⑤回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;⑥若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________.三、解答题21.共享单车进驻城市,绿色出行引领时尚.某市2017年对共享单车的使用情况进行了调查,数据显示,该市共享单车用户年龄分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用共享单车用户”,使用次数为5次或不足5次的称为“不常使用共享单车用户”.已知在“经常使用共享单车用户”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的分析,采用随机抽样的方法,抽取了一个容量为200的样本.请你根据题目中的数据,补全下列2×2列联表:年轻人非年轻人 合计 经常使用共享单车用户 120 不常使用共享单车用户80 合计16040200根据列联表独立性检验,判断有多大把握认为经常使用共享单车与年龄有关? 参考数据:20()P K k ≥ 0.150 0.100 0.050 0.025 0.0100k2.072 2.7063.841 5.024 6.635其中,22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)以频率为概率,用分层抽样的方法在(1)的200户用户中抽取一个容量为5的样本,从中任选3户,记经常使用共享单车的用户数为随机变量X ,求X 的分布列和数学期望.22.某科研小组为了验证一种治疗新冠肺炎的新药的效果,选60名患者服药一段时间后,记录了这些患者的生理指标x 和y 的数据,并统计得到如下的22⨯列联表(不完整):在生理指标 1.8x >的人中,设A 组为生理指标65y ≤的人,B 组为生理指标65y >的人,将他们服用这种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16,17,19. B 组:12,13,14,15,16,17,20,21,25.(1)填写上表,并判断是否有95%95%的把握认为患者的两项生理指标x 和y 有关系; (2)从A ,B 两组人中随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,求乙的康复时间比甲的康复时间长的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)20k0.250 1.32323.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.P(K2≥k0)0.100.050.0250.0100.0050.001k0 2.706 3.841 5.024 6.6357.87910.82824.2020突如其来的疫情让我们经历了最漫长、最特殊的一个假期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后某校进行了摸底考试,某数学教师为了调查高二学生这次摸底考试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的等高条形图:(1)根据等高条形图填写下面22⨯列联表,并根据列联表判断能否在犯错误的概率不超过0.05的前提下认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分数学成绩超过120分总计每天在线学习数学不超过1小时25每天在线学习数学超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,再随机抽取3人,求抽取的3人中每天在线学习数学的时长超过1小时的人数ξ的分布列与数学期望. 附临界值表()20P K k ≥0.050 0.010 0.001 0k3.8416.63510.828参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.25.共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列22⨯列联表,并根据列联表的独立性检验,判断是否有85%的把握认为经常使用共享单车与年龄有关?年轻人 非年轻人 合计 经常使用单车用户 120 不常使用单车用户80 合计16040200使用共享单车情况与年龄列联表(2)将(1)中频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X ,求X 的分布列与期望. 参考数据:独立性检验界值表其中,22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++26.“海水稻”就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区,具有耐盐碱的水稻,它比其它普通的水稻均有更强的生存竞争能力,具有抗涝,抗病虫害,抗倒伏等特点,还具有预防和治疗多种疾病的功效,防癌效果尤为显著.海水稻的灌溉是将海水稀释后进行灌溉.某试验基地为了研究海水浓度x (‰)对亩产量y (吨)的影响,通过在试验田的种植实验,测得了某种海水稻的亩产量与海水浓度的数据如表.绘制散点图发现,可用线性回归模型拟合亩产量y 与海水浓度x 之间的相关关系,用最小二乘法计算得y 与x 之间的线性回归方程为.88ˆ0ˆy bx=+.(2)①完成上述残差表:②统计学中,常用相关指数2R 来刻画回归效果,2R 越大,模型拟合效果越好,并用它来说明预报变量与解释变量的相关性.你能否利用以上表格中的数据,利用统计学的相关知识,说明浇灌海水浓度对亩产量的贡献率?(计算中数据精确到0.01)(附:残差公式ˆˆi i i ey y =-,相关指数()()22121ˆ1niii nii y yR y y ==-=--∑∑)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①中,根据回归直线方程的特征,可判定是不正确;②中,根据相关系数的意义,可判定是是正确的;③中,根据方差的计算公式,可判定是正确的;④中,根据回归系数的含义,可判定是正确的. 【详解】对于①中,回归直线ˆˆˆy bx a =+恒过样本点的中心(,)x y ,但不一定过一个样本点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数||r 就越接近1,所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位,所以是正确的. 故选:B. 【点睛】本题主要考查了统计知识的相关概念及判定,其中解答中熟记回归直线方程的特征,回归系数的含义,相关系数的意义,以及方程的计算方法是解答的关键,属于基础题.2.B解析:B 【分析】根据表中的数据求出(),x y ,利用回归直线方程经过样本中心点(),x y 求出ˆa ,把18x = 代入回归直线方程求出ˆy,利用残差的定义ˆy y -即可求解. 【详解】由表格得(),x y 为()24,160 ,又回归直线方程 3.1ˆˆyx a =-+经过样本中心点(),x y , 所以160 3.124ˆa=-⨯+,解得ˆ234.4a =, 所以回归直线方程为 3.123.4ˆ4yx =-+, 把18x = 代入回归直线方程可得,ˆ178.6y=, 故样本在()18180, 处的残差为180178.6 1.4-=. 故选:B【点睛】本题考查回归直线方程经过样本中心点和利用回归直线方程求某点处的残差;考查运算求解能力;熟练掌握回归直线方程经过样本中心点和残差的定义是求解本题的关键;属于中档题.3.D解析:D【分析】利用系统抽样和分层抽样的知识判断①的正确性;利用回归直线方程的知识判断②的正确性;利用频率分布直方图的知识判断③的正确性;利用独立性检验的知识判断④的正确性.【详解】①,是系统抽样,不是分层抽样,所以①错误. ②,y增加0.1,所以②错误. ③,在频率分布直方图中,所有小矩形的面积之和是1,所以③正确. ④,对于两个分类变量X与Y,求出其统计量2K的观测值k,观测值k越大,我们认为“X与Y有关系”的把握程度就越大,所以④正确.综上所述,正确的序号为③④.故选:D【点睛】本小题主要考查抽样方法、回归直线方程、频率分布直方图和独立性检验等知识,属于基础题.4.D解析:D【分析】根据题意可知,利用回归分析和独立性检验的定义,排除错误选项,即可求解出答案.【详解】回归分析是指将具有相关关系的两个变量之间的数量关系进行测定,通过建立数学表达式进行统计估计和预测的统计研究方法.独立性检验是对两个变量之间是否具有某种关系的分析,并且可以分析这两个变量在多大程度上具有这种关系,但不能100%肯定这种关系.根据以上定义,可知A、B、C均错误,故答案选D.【点睛】本题主要考查了回归分析与独立性检验的定义的区别.5.D解析:D【分析】根据相关指数定义、残差平方和含义可得①为真,根据回归直线方程特征可得②为真,根据残差点含义可得③为真,根据卡方含义可得④为真.【详解】相关指数R2越大,则残差平方和越小,模型的拟合效果越好;回归直线方程:ˆy bx a =+,一定过点() ,x y ;若残差点比较均匀地落在水平的带状区域中,则选用的模型比较合适; 在独立性检验中,若公式()()()()()22n ad bc K a b c d a c b d -=++++,中的|ad-bc|的值越大,则2K 越大, “两个分类变量有关系”的可能性越强.选D.【点睛】相关指数R 2越大,残差平方和越小,残差点比较均匀地落在水平的带状区域,则模型的拟合效果越好;在独立性检验中,若2 K 越大,则两个变量有关系越强;回归直线方程:ˆy bx a =+,一定过点() ,x y .6.B解析:B 【解析】 【分析】根据独立性检验的思想,对题目中的命题进行分析、判断正误即可. 【详解】对于①,对事件A 与B 无关时,说明两事件的影响较小,不是两个互不影响,①错误; 对于②,事件A 与B 关系密切,说明事件A 与B 的相关性就越强,K 2就越大,②正确; 对于③,K 2的大小不是判定事件A 与B 是否相关的唯一根据,判定两事件是否相关除了公式外;还可以用三维柱形图和二维条形图等方法来判定,③错误; 故选:B . 【点睛】本题考查了独立性检验思想的应用问题,属于基础题.K 2值是用来判断两个变量相关的把握度的,不是用来判断两个变量是否相关的.7.C解析:C 【解析】分析:根据独立性检验的性质可判断①;根据回归分析的基本原理可判断②;根据几何概型概率公式可判断③; 根据不等式的性质可判断④.详解:①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越小,①错误;②在相关关系中,若用211c x y c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好,②正确;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为1123103-=-,正确;④“0,0a b >>”可得到“2b a a b +≥”, “2b aa b+≥”时“0,0a b >>”不一定成立,所以“0,0a b >>”是“2b aa b+≥”的充分不必要条件,正确,即正确命题的个数是3,故选C. 点睛:本题主要通过对多个命题真假的判断,主要综合独立性检验、回归分析、几何概型概率公式、不等式的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.8.B解析:B 【解析】①中各小长方形的面积等于相应各组的频率;②正确,相关指数R 2越大,拟合效果越好,R 2越小,拟合效果越差;③随机变量ξ服从正态分布N (4,22),正态曲线对称轴为x =4,所以P (ξ>4)=;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则说明“X 与Y 有关系”的犯错误的概率越大.故选B.9.A解析:A 【解析】试题分析:根据题意,样本中心点的坐标为()10,38,所以38210,58a a =-⨯+∴=,因此回归直线方程为2ˆ58yx =-+,所以当6x =时,估计该商场下个月毛衣销售量约为26ˆ5846y=-⨯+=,故选A. 考点:回归直线方程.10.A解析:A 【解析】()22110403020207.8 6.63560506050k ⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“爱好游泳运动与性别有关”,所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”11.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。
第三章统计案例(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中①若r>0,则x增大时,y也相应增大;②若r<0,则x增大时,y也相应增大;③若r=1,或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.正确的有( )A.①②B.②③C.①③D.①②③【解析】由相关系数的定义可知①③正确.【答案】 C2.下列变量关系是函数关系的是( )A.人的寿命与性别之间的关系B.等边三角形的边长与面积之间的关系C.施肥量与产量之间的关系D.学习时间与学习成绩之间的关系【解析】函数关系是一种确定性关系,相关关系是一种非确定性关系.【答案】 B3.如图所示,有5组数据(x,y),去掉哪组数据后,剩下的4组数据的线性相关系数最大( )图1A.A B.BC.C D.D【解析】去掉D点,其他四点大致分布在一条直线附近.【答案】 D4.已知x与y之间的一组数据:则y与x的线性回归方程y=bx+a必过点( )A.(2,2) B.(1.5,0)C.(1,2) D.(1.5,4)【解析】线性回归方程y=bx+a,必过点(x y),即(1.5,4).【答案】 D5.在一次抽样调查中,经过计算得到χ2=0.27,根据这一数据,我们有理由认为( ) A.两个分类变量关系较弱B.两个分类变量关系较强C.两个分类变量无关系D.以上说法都不正确【解析】根据临界值表判断.【答案】 C6.判断下列图形中具有相关关系的两个变量是哪一个( )A BC D【解析】A、B中显然任何一个x都有唯一确定的y和它对应,是一种函数关系;C 中从散点图中可看出所有点看上去都在一条直线附近波动,具有相关关系,而且是一种线性相关;D中所有的点在散点图中没有显示任何关系,因此变量间是不相关的.【答案】 C7.已知回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),则线性回归方程是( )A.y=1.23x+4 B.y=1.23x+5C.y=1.23x+0.08 D.y=0.08x+1.23【解析】由题知b=1.23,直线经过中心(4,5),则a=0.08,所以线性回归方程为y =1.23x+0.08.【答案】 C8.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有( )A .b 与r 的符号相同B .a 与r 的符号相同C .b 与r 的符号相反D .a 与r 的符号相反【解析】 根据b 与r 的计算公式可知,b 与r 的符号始终相同. 【答案】 A9.大学生和研究性毕业的一个随机样本给出了关于所获取学位类别与学生性别的分类数据如下表所示:A .获取学位类别与性别有关B .获取学位类别与性别无关C .性别决定获取学位的类别D .以上都是错误的 【解析】 χ2=-2189×151×305×35≈7.343>6.635.故有99%的把握认为获取学位类别与性别有关. 【答案】 A10.下面是两个变量的一组样本数据:根据以上数据可求y A .0.865 B .-0.896 C .0.979D .-0.979【解析】i =15x 2i =90,∑i =15y 2i =140.78, ∑i =15x i y i =112.3,x =4,y =5,代入公式得r ≈0.979. 【答案】 C二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横线上) 11.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,其线性回归直线方程是y =-0.7x +a ,则a =________.【解析】 x =2.5,y =3.5,∵回归直线方程过定(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25.【答案】 5.2512.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量之间的相关关系.现取了8对观测值,计算得∑8i =1x i =52,∑8i =1y i =228,∑8i =1x 2i =478,∑8i =1x i y i =1 849,则y 对x 的线性回归方程是________.【解析】 ∵b =∑bi =1x i y i -n x y∑ni =1x 2i -n x2≈2.62,a =y -b x =11.47,∴线性回归方程为y=11.47+2.62x .【答案】 y =11.47+2.62x13.从散点图上看,点散布在从左下角到右上角的区域内,则两个变量的这种相关关系称为________.【答案】 正相关14.对有关数据的分析可知,每立方米混凝土的水泥用量x (单位:kg)与28天后混凝土的抗压度y (单位:kg/cm 2)之间具有线性相关关系,其线性回归方程为y =0.30x +9.99.根据建议项目的需要,28天后混凝土的抗压度不得低于89.7 kg/cm 2,每立方米混凝土的水泥用量最少应为________kg.(精确到0.1 kg)【解析】由已知,0.30x+9.99≥89.7,解得x≥265.7.【答案】265.715.为了判断学生选修文科是否与性别有关,现随机抽取50名学生,得到如下2×2列联表:已知P(χ2据,得到χ2=-223×27×20×30≈4.844.则认为选修文科与性别有关联的把握度是________.【解析】∵χ2=4.844>3.841,∴至少有95%的把握认为是否选修文科与性别有关.【答案】95%三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)在500名患者身上试验某种血清治疗SARS的作用,与另外500名未用血清的患者进行比较研究,结果如下表:【解】由列联表给出的数据,χ2=-2500×500×477×523≈3.852 2.因为3.852 2>3.841,所以我们有95%以上的把握认为这种血清能起到治疗SARS的作用.17.(本小题满分12分)某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对比表如下表:【解】由表中数据画出散点图,如图所示.由表中数据得x =16(26+18+13+10+4-1)≈11.67,y =16(20+24+34+38+50+64)≈38.33,∑6i =1x i y i =26×20+18×24+13×34+10×38+4×50-1×64=1 910,∑6i =1x 2i =262+182+132+102+42+(-1)2=1 286,∑6i =1y 2i =202+242+342+382+502+642=10 172,计算r ≈-0.97接近于-1,所以热茶销售量与气温之间具有较强的线性相关关系.18.(本小题满分12分)保险公司统计的资料表明:居民住宅区到最近消防站的距离x (单位:千米)和火灾所造成的损失数额y (单位:千元)有如下的统计资料:(1)用计算器计算线性回归方程及相关系数r ;(2)若发生火灾的某居民区与最近的消防站相距7.8千米,评估一下火灾的损失.【解】 (1)b =∑6i =1x i -xy i -y∑6i =1x i -x 2=∑6i =1x i y i -6x y∑6i =1x 2i -6x2≈5.615 4,a =y -b x ≈7.333 3, ∴线性回归方程为y =5.615 4x +7.333 3. ∵r =0.9778接近于1, ∴y 与x 有很强的相关关系.(2)当x =7.8,代入回归方程有y =5.615 4×7.8+7.333 3≈51.133 4(千元). 19.(本小题满分13分)我们总是能够听到同学们说:“数学和物理是相通的,学好数学就可以学好物理”,有的也这样说:“数学和语文相差太远了,我数学成绩那么高,语文成绩却考成这样”.为了研究数学成绩与物理成绩的关系、数学成绩与语文成绩的关系,现调查了10名同学的数学、物理、语文成绩如下表:【解】 对于数学成绩与物理成绩的关系、数学成绩与语文成绩的关系,研究它们的关系主要是探讨它们的线性相关性,为此我们研究变量间的相关系数r .可求出物理成绩与数学成绩的相关系数r ≈0.87接近于1,从而认为物理成绩与数学成绩之间具有很强的线性相关关系;而由语文成绩与数学成绩的相关系数|r |≈0.092接近于0,说明语文成绩与数学成绩不具有线性相关关系.因此,数学成绩好的同学,一般来说物理成绩也较好,它们之间的联系较紧密,而数学成绩好的同学,语文成绩也可能好,也可能差,它们之间的关系不大.20.(本小题满分13分)有两个变量A 与B ,它们的可能取值分别为{A 1,A 2}和{B 1,B 2},其一组观测值如下2×2列联表所示:其中a,15-a 均大于A 与B 之间有关系”? 【解】 要使A 与B 之间有90%的把握认为有关系,则χ2>2.706, 又∵χ2=n ad -bc 2a +bc +d a +cb +d∴χ2=65×[a+a --a -a215×50×45×20=13×a -250×45×60=a -290×60,∵χ2>2.706 ∴a -290×60>2.706,即(13a -60)2>14 612.413≈1 124.∴13a -60>33.5或13a -60<-33.5. ∴a >7.2或a <2.又∵⎩⎪⎨⎪⎧a >5.15-a >5,∴5<a <10,∴7.2<a <10. 又因a ∈Z , 故a =8或a =9,即a =8或9时,有90%的把握认为A 与B 有关系.21.(本小题满分13分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.【解】 (1)由所给数据得出,年需求量与年份之间是近似直线上升的,下面求回归直线方程,为此对数据预处理如下:x =0,y =3.2, b =--+--+2×19+4×29-5×0×3.242+22+22+42-5×02=26040=6.5, a =y -b x =3.2.由上述计算结果,知所求回归直线方程为y -257=b (x -2006)+a =6.5(x -2 006)+3.2.①即y =6.5(x -2006)+260.2.(2)利用直线方程①,可预测2012年粮食需求量为6.5(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨)≈300(万吨).。