curr-Antimicrobial activity and biodiversity
- 格式:pdf
- 大小:268.96 KB
- 文档页数:7
306中国医学文摘耳鼻咽喉科学NEWS AND REVIEWS/November 2009, Vol.24, No.6专题论坛抗生素的合理应用EATURE1 生物膜的概念细菌生物膜是指在多聚糖、蛋白质和核酸等组成的基质内相互粘连粘附于物体表面的细菌群体[1]。
生物膜可以由一种或几种细菌混合生长而成。
乳酸乳球菌与萤光假单胞菌混合形成的生物膜就是一个典型的例子。
乳酸乳球菌自身不易形成生物膜,但可以提供给萤光假单胞菌乳酸作为养料,而萤光假单胞菌帮助乳酸乳球菌固定在物体表面,并且消耗氧气为乳酸乳球菌这一厌氧菌提供更合适的生长环境[2]。
生物膜的生命周期分为附着、生长和分离3部分。
附着阶段,物体表面的血清蛋白和其他物质作为连接物介导细菌的附着;生长阶段,细菌通过分裂并在物体表面定植,生成聚合物基质,使得生物膜形成三维结构,并形成隧道,这些隧道帮助营养物质的交换以及废物的排出,并调节生物膜内的pH 值。
生物膜中的细菌对氧气和营养的需要有所减少,废物通过其内的管道得以排出。
生物膜内细菌间的紧密接触为携带耐药基因的质粒的交换和对密度感应分子的交流提供了良好环境。
生物膜内的细菌间更利于质粒、酶和其他分子的交换,通过化学信号进行交流。
生物膜的形成需要细菌间的化学信号进行协调。
使得细菌能感知到周围细菌的存在并对环境变化作出相应的反应。
这一过程称为密度感应(quorum-sensing )。
虽然不同细菌的生物膜有其特异性,但均具有一些普遍的结构特征。
生物膜中细菌形成的微菌落间具有间隙空位(interstitial voids ),液体可在这些间隙中流动,使得营养物质、气体和抗菌药物得以扩散。
生物膜的结构随着外部和内部的改变而持续变化。
2 生物膜与临床99%的细菌以生物膜的形式生活,美国疾病控制与预防中心估计至少65%的人类细菌感染与生物膜有关[3]。
生物膜已经被证实与慢性中耳炎、中耳胆脂瘤、慢性腺样体炎[1]等疾病相关。
人工打洞沉香中1个新的倍半萜运用多种色谱技术,对人工打洞沉香乙醇提取物的正丁醇相进行化学成分分离,并根据波谱数据结合理化性质共鉴定了7个单体化合物的结构,分别为selina-3,11-dien-9,15-diol (1)、aquilarone D (2)、5α,6β,7α,8β-tetrahydroxy- 2-[2-(2-hydroxyphenyl)ethyl]-5,6,7,8-tetrahydrochromone (3)、6,7-dimethoxy-2- [2-(4-methoxyphenyl)ethyl]chromone (4)、syringin (5)、顺式对羟基肉桂酸甲酯(6)和4′-甲氧基肉桂酸(7),其中化合物1为新的倍半萜类化合物,化合物5~7为首次从沉香中分离得到。
生物活性测试结果表明化合物6,7对全齿复活线虫具有较好的致死活性,化合物4,6,7对人肝癌细胞株BEL-7402、人胃癌细胞株SGC-7901和人肺癌细胞株A549的生长有不同程度的抑制作用。
标签:沉香;正丁醇相;倍半萜;生物活性[Abstract] In order to study the chemical constituents of n-butanol fraction of ethanol extract from Chinese agarwood induced by artificial holing,various chromatographic techniques were carried out to isolate compounds,and the structures of compounds were determined through a combined analysis of physicochemical properties and spectroscopic evidence. Seven compounds were obtained and identified as selina-3,11-dien-9,15-diol (1),aquilarone D (2),5α,6β,7α,8β-tetrahydroxy-2-[2-(2-hydroxyphenyl)ethyl]-5,6,7,8-tetrahydrochromone (3),6,7-dimethoxy-2-[2-(4-methoxyphenyl)ethyl]chromone (4),syringin (5),methyl (Z)-p-coumarate (6),and 4′-methoxycinnamic acid (7),among which compound 1 was a new compound and compounds 5-7 were isolated from agarwood for the first time. The bioactivity assay results concluded that compounds 6 and 7 showed certain nematicidal activity against Panagrellus redivivus,and compounds 4,6 and 7 exhibited cytotoxicity against BEL-7402,SGC-7901 and A549 carcinoma cell lines.[Key words] agarwood;n-butanol extract;sesquiterpene;biological activity沉香为瑞香科Thymelaeceae沉香属Aquilaria或拟沉香属Gyrinops植物受伤后产生的含树脂的干燥芯材[1]。
海液胜肽內部研究資料,僅供內部訓練用無毒龙胆石斑養殖水胜肽萃取液(海液胜肽):源自於「GS養殖系統」,以不含重金屬及放射性物質的人工配置海水,進行石斑魚養殖,養殖過程僅供給檢驗合格的飼料,未加入任何化學葯劑、抗生素及殺菌劑、而且養殖水以具有國際發明專利的圓板超濾膜百分之百循環過濾,再回到養殖槽。
活石斑表皮、鰓、鼻腔及腸道的黏液,在循環過濾的過程被濃縮收集,除了表皮黏液中的抗菌胜肽,腸道的黏液具有免疫球蛋白、補體(Complement)及c-reaction protein(Biology2015,4,525-539) 。
此石斑胜肽液提供東海大學生化教授進行大腸桿菌及黃金葡萄球菌培養測試可完全殺菌,並進行白老鼠60倍劑量餵食,證實無毒性,重金屬分析以通過SGS檢驗合格。
石斑活性肽特性:生產出來的小分子活性肽無腥味、苦味、肽分子量小、不需經過胃腸消化,可直接吸收,具有動能、載體、運輸、傳遞和營養功能,特別是它具有極強的活性和多樣性及重要的生物學功能。
內涵25種以上胺基酸、多種胜肽、成長因子石斑魚黏液含有小分子抗菌胜肽:(EPINECIDIN-1)利用正電原理瞬間崩解細菌、真菌、原蟲、病毒、癌細胞的細胞壁(帶負電荷) ,正常細胞膜屬中性,不受影響。
可取代抗生素,殺滅病菌,並可望成為抗癌新藥,亦可作為預防癌病的健康食品。
這些開發不像新藥的開發一般冗長。
●帶正電的抗菌胜肽附著於帶負電的細胞膜。
●抗菌胜肽穿入細菌的細胞膜。
●細菌細胞形成孔洞,快速被破壞。
對革蘭氏陽性菌及革蘭氏陰性菌有殺滅的功能。
抗菌胜肽取代抗生素原因:1.抗生素抗菌效性較窄,僅對細菌有殺滅作用。
2.抗生素副作用明顯。
3.生物體無法將抗生素徹底分解。
4.抗菌胜肽在生物體可分解為胺基酸而被吸收。
5.抗菌胜肽不易產生耐藥性。
石斑魚黏液產生的抗菌胜肽可同時抑制:【HMGR】及【HDAC】等二種酵素的STATIN類抑制劑(如阿斯匹靈的作用) ,可降低肥胖、血脂異常血壓及血糖偏高等代謝症候群患者,因體內長期發炎造成的大腸癌及大腸息肉復發風險。
牙龈卟啉单胞菌牙龈素研究进展毛骁俊(综述);唐子圣(审校)【摘要】牙龈卟啉单胞菌( Porphyromonas gingivalis,P.gingivalis)与口腔常见疾病的发生发展显著相关。
近年来研究证实,牙龈素、菌毛和脂多糖是牙龈卟啉单胞菌最重要的毒力因子,在牙龈卟啉单胞菌致病过程中占据了重要地位,其中牙龈素在介导细菌与宿主相互作用中起关键作用。
本文结合近年来的相关研究进展,就牙龈素的分子结构、基因多态性、毒力作用及其抑制剂等作一综述。
%Porphyromonas gingivalis is closely related to occurrence and development of common oral disea-ses.Recent studies indicate that gingipains, pili and lipopolysaccharide are the most important virulence factors of Por-phyromonas gingivalis.Gingipains play a key role in the interaction of bacterial and host.This article is committed to review on the research progress on molecular structure, gene polymorphism, toxicity and inhibitors of gingipains in re-cent years.【期刊名称】《牙体牙髓牙周病学杂志》【年(卷),期】2014(000)012【总页数】4页(P745-747,700)【关键词】牙龈卟啉单胞菌;牙龈素;基因多态性;抑制剂【作者】毛骁俊(综述);唐子圣(审校)【作者单位】上海200011 上海交通大学医学院附属第九人民医院口腔医学院;上海交通大学医学院附属第九人民医院牙体牙髓科,上海市口腔医学重点实验室【正文语种】中文【中图分类】R780.2牙龈素是牙龈卟啉单胞菌最重要的毒力因子之一,在介导细菌与宿主相互作用中起着重要的作用[1-2]。
鼠李糖脂生物表面活性剂及其纯化方法研究进展田静;王靖;冀光;李明【摘要】鼠李糖脂生物表面活性剂是由微生物在一定的培养条件下分泌的次级代谢产物,具有良好的环境相容性,生产成本是制约其工业化应用的主要因素.综述了鼠李糖脂的常用纯化方法,并对其研究方向进行了展望.【期刊名称】《化学与生物工程》【年(卷),期】2010(027)006【总页数】4页(P13-16)【关键词】鼠李糖脂;生物表面活性剂;纯化;展望【作者】田静;王靖;冀光;李明【作者单位】中国石油大学(北京)化学科学与工程学院,北京,102249;中国石油大学(北京)化学科学与工程学院,北京,102249;中国石油大学(北京)化学科学与工程学院,北京,102249;中国石油大学(北京)化学科学与工程学院,北京,102249【正文语种】中文【中图分类】TQ423生物表面活性剂是天然表面活性剂的一种,是微生物在特定条件培养时分泌的具有表面活性的一类代谢产物[1~3]。
其中研究较多的是鼠李糖脂生物表面活性剂。
与化学表面活性剂相比,鼠李糖脂生物表面活性剂除了具有类似的分子结构、一定的表/界面活性外,还表现出良好的环境和生物兼容性,即具有无毒、无害、易降解的特性。
因此,近年来广泛用于环境治理、石油开采、生物医药、造纸及化妆品等领域[4~8],并逐步拓展其它领域的研究应用。
由于化学表面活性剂合成步骤复杂、生产成本固定,而鼠李糖脂生物表面活性剂可以通过选择经济实用的分离方法、优化操作工序来降低成本。
因此,寻找经济、实用、高效的分离纯化生物表面活性剂的方法已经成为科研工作者急需解决的问题。
作者在此综述了鼠李糖脂常用的纯化方法,拟为相关研究提供理论及技术基础。
鼠李糖脂主要有4种结构[9,10],如图1所示。
鼠李糖脂公认的生物合成途径由Burger等[11]和Ochsner等[12]通过放射性同位素标记前体物质的方法研究并提出(图2)。
在此合成途径中,鼠李糖脂的合成是由一系列连续的糖基转移反应完成的,每个反应过程均由特定的鼠李糖脂转移酶进行催化,其中腺苷二磷酸鼠李糖(d TDP2L-鼠李糖)作为糖基的供体,L-鼠李糖苷-β-羟基癸酰-β-羟基癸酸和β-羟基癸酰-β-羟基癸酸分别作为糖基的受体。
佟建明,萨仁娜,张琪,朱锡明,谷春涛,彭爱铭. 微生物饲料添加剂技术通则,NYT1444-2007. Boirivant M, Strober W. The mechanism of action of probiotics. Curr Opin Gastroenterol, 2007, 23:679-692.Azevedo MS, Zhang W, Wen K, Gonzalez AM, Saif LJ, Yousef AE, Yuan L. Lactobacillus acidophilus and Lactobacillus reuteri modulate cytokine responses in gnotobiotic pigs infected with human rotavirus. Benef Microbes. 2012, 3(1):33-42.张林维. 发酵食品中的功能性寡糖. 中国酿造,1999,1:5-6.Yuan X, Wang J, Yao H. Feruloyl oligosaccharides stimulate the growth of Bifidobacterium bifidum. Anaerobe, 2005, 11:225-229.Sabater-Molina M, Larqué E, Torrella F, Zamora S. Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem. 2009, 65(3):315-328.Kelly-Quagliana KA, Nelson PD, Buddington RX. Dietaryoligofrnctose and inulinmodulate immune functions in mice. Nutr Res, 2003, 23(2):257-267.冯东岳. 功能性寡糖在水产养殖中的应用. 中国水产,2009,7:63-65.李鹏,齐广海. 饲料酸化剂的作用机理及其应用前景. 饲料工业,2006, 27(10):6-9.祖元刚,罗猛, 牟璠松.植物生态提取业的现状与发展趋势. 现代化工,2007,27( 7) :1- 4.徐东翔. 植物资源化学[ M] . 长沙: 湖南科学技术出版社,2004:1- 13.García CC, Talarico L, Almeida N, Colombres S, Duschatzky C, Damonte EB. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother Res. 2003 Nov;17(9):1073-5Si W, Gong J, Tsao R, Zhou T, Yu H, Poppe C, Johnson R, Du Z. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J Appl Microbiol. 2006 Feb;100(2):296-305.Ichrak G, Rim B, Loubna AS, Khalid O, Abderrahmane R, Said el M. Chemical composition, antibacterial and antioxidant activities of the essential oils from Thymus satureioides and Thymus pallidus. Nat Prod Commun. 2011 Oct;6(10):1507-10.Wei A, Shibamoto T. Antioxidant activities and volatile constituents of various essential oils. J Agric Food Chem. 2007, 55(5):1737-1742.李德发. 生物饲料与生猪无抗养殖研究进展. 今日畜牧兽医,2009,11:1-5.Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol. 2012, DOI 10.1007/s00253-012-4241-7.Santos F, Teusink B, Molenaar D, van Heck M, Wels M, Sieuwerts S, de V os WM, Hugenholtz J.Effect of amino acid availability on vitamin B12 production in Lactobacillus reuteri. Appl Environ Microbiol. 2009, 75(12):3930-3936.Rodríguez-Lecompte JC, Yitbarek A, Brady J, Sharif S, Cavanagh MD, Crow G, Guenter W, House JD, Camelo-Jaimes G. The effect of microbial-nutrient interaction on the immune system of young chicks after early probiotic and organic acid administration. J Anim Sci.2012, 90(7):2246-2254.戴嘉. 绿色木霉与黑曲霉固态混菌发酵生产纤维素酶、木聚糖酶和纤维二糖酶复合酶方法的研究. 轻工科技,2012,5:5-7.熊智辉. 单细胞蛋白在饲料业中的研究进展. 养殖与饲料. 2006,7:11-15.李斌. 发酵豆粕工艺的研究与开发. [M]. 济南:山东大学硕士学位论文,2010.张吉鹍,李龙瑞. 功能大豆寡肽蛋白饲料的研制及其固态发酵工艺参数的优化研究. 中国奶牛. 2010,10:8-14.张玲华,丘银清,田兴山,等. 微生物发酵大豆蛋白在养殖业中的应用前景. 兽药与饲料添加剂,2005, 10( 3) : 17-19.金红春,兰时乐,胡毅,毛小伟,肖调义. 棉粕发酵前后营养成分变化研究. 饲料工业,2011,32(13):19-23.刘俊. 发酵改良棉粕蛋白品质生产优质小肽饲料的研究. [M]. 无锡:江南大学硕士学位论文.2011.高冬余,李吕木,许发芝,张邦辉,吴胜华. 微生物固态厌氧发酵菜籽粕的研究. 食品与发酵工业,2010,36(3):75-79.王刚,蔡国林,陆健. 微生物发酵改善菜籽粕品质的研究. 中国油脂,2011,36(7):24-28. 杨旭,薛永亮,李浪. 微生物混合发酵提高麸皮营养价值的研究. 中国酿造,2011(3):113-115. 赵欣. 干酪乳杆菌WT-8发酵小麦麸皮生产乳酸的研究及应用. [M]. 天津:天津科技大学硕士学位论文. 2007。
益生菌对阿尔茨海默病作用的研究进展发布时间:2021-12-14T06:08:15.523Z 来源:《中国结合医学杂志》2021年12期作者:宋鑫萍1,2,李盛钰2,金清1[导读] 阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。
近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。
宋鑫萍1,2,李盛钰2,金清11.延边大学农学院,吉林延吉 1330022.吉林省农业科学院农产品加工研究所,吉林长春 130033摘要:阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。
近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。
本文综述了近几年来国内外益生菌对阿尔茨海默病的作用进展,以及其预防和治疗阿尔茨海默病的潜在作用机制。
关键词:益生菌;阿尔茨海默病;肠道菌群;机制Recent Progress in Research on Probiotics Effect on Alzheimer’s DiseaseSONG Xinping1,2,LI Shengyu2,JI Qing1*(1.College of Agricultural, Yanbian University, Yanji 133002,China)(2.Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Chanchun 130033, China)Abstract:Alzheimer’s disease has become one of the major diseases threatening the life and health of the global elderly. The number of patients is increasing year by year, and the economic cost of nursing is high, which poses a major challenge to the global economy. In recent years, studies have shown that probiotics, as microorganisms beneficial to the health of the host, have a positive impact on the prevention and treatment of Alzheimer’s disease. Its mechanism may be through regulating intestinal flora, affecting the nervous immune system, regulating the neuroactive substances and metabolites, and affecting the occurrence and development of the disease through thegut- brain axis. This paper reviews the progress of probiotics on Alzheimer’s disease at home and abroad in recent years, as well as its potential mechanism of prevention and treatment.Key words:probiotics; Alzheimer’s disease; gut microbiota; mechanism阿尔茨海默病(Alzheimer’s disease, AD),系中枢神经系统退行性疾病,属于老年期痴呆常见类型,临床特征主要包括:记忆力减退、认知功能障碍、行为改变、焦虑和抑郁等。
檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸抗菌药物[8]。
八、结语通过上述对VAP病原菌种类、耐药性及治疗的分析,加深了我们对不同种VAP如何处理的理解。
由于当前细菌的耐药性不断增强,VAP病原菌种类也日趋复杂,尤其是一些多重耐药病原菌或泛耐药病原菌引起的感染给临床抗感染治疗带来了巨大的挑战。
因此,临床医生除了遵循一定的预防和治疗原则外,还应与微生物检验室加强联系、密切合作,通过及时准确的了解引起VAP的病原菌种类,并根据相应的药敏结果合理选用抗菌药物以达到理想的治疗效果,同时还可减少耐药菌株的产生。
参考文献[1]Palmer LB.Ventilator-associated infection[J].Curr Opin Pulm Med,2009,15(3):230-235.[2]Canadian Critical Care Trials Group.A randomized trial of diagnostic techniques for ventilator-associated pneumonia[J].N Engl J Med,2006,355(25):2619-2630.[3]Depuydt P,Benoit D,Vogelaers D,et al.Systematic surveillance cul-tures as a tool to predict involvement of multidrug antibiotic resist-ant bacteria in ventilator-assoiated pneumonia[J].Intensive CareMed,2008,34(4):675-682.[4]蔡金莲,郭韶梅.老年患者呼吸机相关肺炎病原菌分布及耐药性分析[J].江西医学检验,2006,24(6):533-534.[5]郭秀东,严文康,赵萍.儿童呼吸机相关性肺炎的病原菌和耐药性研究[J].中国基层医药,2008,15(5):770-772.[6]李鸣,陈壮桂,张常然等.呼吸机相关性肺部真菌感染的危险因素及预后分析[J].南方医科大学学报,2008,28(3):463-466.[7]方智野,王健,张敏等.呼吸机相关肺炎病毒感染的研究[J].河北医学,2007,13(5):512-515.[8]Niederman MS.De-escalation therapy in ventilator-associated pneu-monia[J].Curr Opin Crit Care,2006,12(5):452-457.[收稿日期:2010-06-08]喹诺酮类药物的研究进展赵汝霞虞亦鸣综述邓在春审校自上世纪60年代Lesher等发现1-乙基-1.4-二氢-7-氯-4-氧代喹啉-3-羧酸(萘啶酸)有抗菌作用后,迄今为止,通过对萘啶酸进行化学结构的修饰,目前应用于临床的喹诺酮类药物已有几十种。
鸭白细胞抗菌肽对小鼠免疫功能的影响耿娟;王永才;陈丽颖【摘要】Crude extractions of antimicrobial peptides from Yingtaogu duck blood was administrated in Kunming strain mice for two weeks through gavage at a daily dose of 0.2 mL with the concentrations of 1.5 g/L, 7.5 g/L or 15 g/L, respectively. For negative controls, 0.2 mL of 0.01 %acetic acid or 10 g/L BSA was separately used. The serum phagocytic rate, phagocytic index, and weight of the immune organs (spleen and thymus) were measured, whilst the total number and subgroups of tlymphocytes were counted through flow cytometry (FCM). The results showed that the extract improved the E-rosette ratio and the total number of CD3+ T cells. Compared to other groups,the extract used at a dosage of 15mg/L significantly improved the immune organ weight index (P<0.05), serum phagocytic index (P<0.01), and the percentages of both CD4+and CD8+ T cells (P<0. 01). This indicates that the immunity of mice was significantly improved by antimicrobial peptides extracted from duck leukocytes.%从樱桃谷鸭血液中提取出白细胞并制备粗提抗菌肽,分别以低、中、高3种剂量(质量浓度分别为1.5 g/L、7.5 g/L、15 g/L)灌胃清洁级昆明系小鼠,0.2 mL/(d·只),同时设0.0l%醋酸溶液对照组和蛋白对照组(10 g/L牛血清白蛋白).连续灌胃14 d后,测定小鼠的免疫器官指数、E玫瑰花环形成率、碳粒廓清指数;同时采用流式细胞术测定小鼠外周血T细胞亚群的水平.结果表明,各剂量的白细胞抗菌肽均能显著提高小鼠的E玫瑰花环形成率和CD3+水平;同时15 g/L的白细胞抗菌肽能明显提高小鼠的免疫器官指数、巨噬细胞吞噬指数、CD4+、CD4+/CD8+水平.初步说明鸭白细胞粗提抗菌肽能明显增强小鼠的免疫功能.【期刊名称】《河南农业科学》【年(卷),期】2011(040)004【总页数】4页(P142-145)【关键词】鸭;白细胞抗菌肽;免疫;流式细胞术【作者】耿娟;王永才;陈丽颖【作者单位】河南农业大学牧医工程学院,河南郑州450002;河南农业大学牧医工程学院,河南郑州450002;河南农业大学牧医工程学院,河南郑州450002【正文语种】中文【中图分类】S834研究发现,禽类血液白细胞中可分离出天然抗菌肽类物质[1]。
Antimicrobial Activity and Biodiversity of Endophytic Fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from VietmanYong-Mei Xing •Juan Chen •Jin-Long Cui •Xiao-Mei Chen •Shun-Xing GuoReceived:23June 2010/Accepted:3December 2010/Published online:22December 2010ÓSpringer Science+Business Media,LLC 2010Abstract Endophytic fungi are rich in orchids and have great impacts on their host plants.53endophytes (30iso-lates from Dendrobium devonianum and 23endophytic fungi from D.thyrsiflorum )were isolated,respectively,from roots and stems of Dendrobium species.All the fungi were identified by way of morphological and/or molecular biological methods.30endophytic fungi in D .devonianum were categorized into 11taxa and 23fungal endophytes in D.thyrsiflorum were grouped into 11genera,respectively.Fusarium was the dominant species of the two Dendrobium species in common.Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test.10endophytic fungi in D.devo-nianum and 11in D.thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6pathogenic microbes (Escherichia coli ,Bacillus subtilis ,Staphylococcus aureus ,Candida albicans ,Cryp-tococcus neoformans ,and Aspergillus fumigatus ).Out of the fungal endophytes isolated from D.devonianum and D.thyrsiflorum ,Phoma displayed strong inhibitory activity (inhibition zones in diameter [20mm)against pathogens.Epicoccum nigrum from D.thyrsiflorum exhibited anti-bacterial activity even stronger than ampicillin sodium.Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens.The study reinforced the assumption that endo-phytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.IntroductionDrug resistance in microorganisms and overuse of antibi-otics are becoming a serious concern around the world [1].Therefore,there is an urgent need to search for effective new antibacterial or antifungal agents in treatment of infectious diseases at present.Recently,actinomycetes,cyanobacteria,and uncultured bacteria have received con-siderable attention as new sources for new antibiotics dis-covery [11].Meanwhile,promising approaches of mining unexplored microbial niches for use as antibiotics have also been emerging [16].Endophytic fungi were defined as fungi residing the living plant tissue without causing any apparent diseases or injuries to the host plant [10].To date,many studies have elucidated the ubiquity of the endophytic fungi in plants and the mutualistic relationship between the fungal endo-phytes and the host plant [13].It was also documented that fungal endophytes could exert beneficial activities on host plants such as favorable,growth-promoting effects,increasing host fitness and contributing to effective host defense against pathogens,herbivores,or abiotic stress [2,12,19].Nowadays,fungal endophytes have been recog-nized as relatively unexplored and potential sources of bioactive secondary metabolites for exploitation in medi-cine,agriculture,and industry [9,17,22,34].Furthermore,antimicrobial substances that could be produced by endo-phytic fungi have drawn even greater attention [7,18,21,28].This gives rise to people’s interest in screening endophytic fungi for discovery of novel metabolites.Traditional medicines (mostly derived from plants)have profound health promoting benefits.However,the wild sources of most medicinal plants have been seriously depleted due to over-harvesting and inefficient protection.It was reported that endopytic fungi could produce similarY.-M.Xing ÁJ.Chen ÁJ.-L.Cui ÁX.-M.Chen ÁS.-X.Guo (&)Institute of Medicinal Plant Development,Chinese Academy of Medical Sciences &Peking Union Medical College,No.151,Malianwa North Road,Haidian District,Beijing 100193,People’s Republic of Chinae-mail:sxguo2006@Curr Microbiol (2011)62:1218–1224DOI 10.1007/s00284-010-9848-2or the same bioactive metabolites as its host plant[20,30]. To the best of our knowledge,since fungal endophytes that reside in their host plants might produce unique metabo-lites with multifold functions,it is necessary to perform studies of plant-associated endophytic fungi.In China, Dendrobium genus,one of the large groups of Orchidaceae family plants,was widely used in traditional Chinese medicine bearing high medicinal value for curing cataracts, throat inflammation,and digestive system disorders [14,27].Thus,the present study was conducted to inves-tigate endophytic fungi associated with medicinal plants of D.devonianum and D.thyrsiflorum isolated from Longling of Vietman and to evaluate antimicrobial activity of the fungal endophytes against six human pathogens.Screening of endophytic fungi with inhibitory activities against pathogenic bacteria or fungi and systematic investigations of endophytic fungi related to Dendrobium species might provide us with new knowledge for interpreting interrela-tionship of fungal endophytes with Dendrobium under natural stress biotope and discover,if possible,novel nat-ural products with higher antimicrobial activity,as well. Materials and MethodsDendrobium devonianum and D.thyrsiflorum were col-lected from Longling,Vietnam.Stems and roots of each sample were rinsed with water and surface-disinfected by immersion in75%ethanol for1min,5min in5%sodium hypochlorite solution,and1min in sterile de-ionized water for three times.The samples were then surface-dried with sterilefilter paper[9].Roots and stems were cut into 0.5cm90.5cm pieces and placed in petri dishes(9cm in diameter)with potato dextrose agar(PDA)medium(g/l; dextrose-20,agar-15,potato infusion-200)and cultured at 25°C under dark[4].Identification of Endophytic Fungi with Antibacterial and Antifungal ActivitiesMycelia of fungi were soaked in10%KOH and observed with ZEISS Axio Imager A1microscope for morphological examination.Endophytic fungi failing to sporulate were identified by means of molecular biological analysis of the internal transcribed region(ITS)of ribosomal DNA.Uni-versal primers of ITS1(50-TCCGTAGGTGAACCTGC GG-30)and ITS4(50-TCCTCCGCTTATTGATATGC-30) were used[29]to amplify ribosomal internal transcribed spacer(ITS).DNA was extracted from21-day-old culture in PDA medium using E.Z.N.A.TM Fungal DNA Mini Kit (Omegabiotek,Norcross,USA).PCR was carried out as previously described[5].The PCR reaction mixture in a total volume of25l l contained1U(0.75l l)Taq DNA polymerase(Sangon Biological Engineering Technology& Services Co.Ltd,Shanghai,China)and2.5l l109buffer (with MgCl2),10mM(2l l)each dNTP,5l M(2l l)of each primer,13.75l l H2O and2l l undiluted DNA tem-plate.An initial reaction of3min at95°C was followed by 35cycles of94°C for1min,53°C for50s,and72°C for 1min,with afinal cycle at72°C for7min.PCR products were analyzed in1%agarose gels by electrophoresis and observed under UV light,after purified and then sequenced at Shanghai Sangon Biological Engineering Technology& Services Co.Ltd,the NCBI BLAST search program was used to search similar sequences from the GenBank sequence database for the5.8S-ITS sequence for fungi. Fungal Cultivation and Crude Extract Preparationof Fermentation Broth53endophytic fungi were cultured in500mlflasks,each containing200ml potato dextrose liquid medium(g/l; dextrose-20,potato infusion-200).Then three plugs(8mm in diameter)of each fungus were inoculated and cultured with shaking(120rpm)at25°C under dark conditions for1 week.After that,the cultures werefiltered to obtain the fermentation broth.Then the broth was extracted with four times the volume of ethanol for24h and further concen-trated in vacuum to remove organic solvent[26].The concentrate was volatilized later on60°C water bath to obtain dried residues prior to antimicrobial assays.EtOH extract was diluted with sterile distilled water at the con-centration of10mg/ml and was sterilized byfiltration through a0.22-l m Milliporefilter.Antibacterial and Antifungal activityAll the endophytic fungi of the two Dendrobium species were fermented and the crude EtOH extract was tested for the antimicrobial activity.Antimicrobial activity of the EtOH extract of the fungal fermentation broth at a con-centration of100l g/disk was conducted by way of agar diffusion method[31]against a panel of target pathogenic microorganisms,including Gram-positive,Gram-negative bacteria,and three fungi:S.aureus,E.coli,B.subtilis, C.albicans,C.neoformans,and A.fumigatus.Distilled water was used as negative control,while ampicillin sodium(100l g/disk)andfluconazole(25l g/disk)as positive control,were used as standard antibacterial and antifungal agents,respectively.Inhibition zones in diame-ter were measured to assess antimicrobial activity.Each inhibitory experiment was replicated three times.Calculation and Statistical AnalysisColonization rate(CR),expressed in percentage,which was calculated as the total number of plant tissue segments infected by fungi divided by the total number of segments incubated,was used to indicate comparison of degrees of different tissues infected by endophytic fungi.Isolation rate (IR)was used to demonstrate the fungal richness in a given sample of plant tissue which was counted as the number of isolates obtained from plant segments divided by the total number of segments incubated[8].The statistic analysis was analyzed with SPSS11.0(SPSS Inc.,Chicago,IL,USA). ResultsTotally,30endophytic fungi were isolated from100tissue segments(50segments from stem and root each)of D.devonianum,while23isolates were gained from D.thyrsiflorum.The total isolation rates were30and23%, respectively.The colonization and isolation rates of endophytic fungi from roots were higher than that of stem in D.devonianum,but in D.thyrsiflorum,it was the opposite.30endophytic fungi in D.devonianum belonged to11taxa and11genera of23isolates in D.thyrsiflorum were identified.For D.devonianum,Fusarium and Phoma was the dominant genera,and for D.thyrsiflorum,Fusar-ium,and Epicocuum was preponderant(Table1).Both in the two Dendrobium species,Phoma and Rhizopus were isolated from Dendrobium species for thefirst time.In addition,‘‘host-specificity’’was also observed,for Epi-cocuum and Arthrobotray might particularly resided in D.thyrsiflorum while Trichoderma preferred colonizing in D.devonianum.Based on morphological characteristics,Fusarium, Rhizopus,Acremonium were identified(Fig.1).None of the crude ethanol extract of the isolates showed inhibitory effects against C.neoformans.The proportion of endophytic fungi with antimicrobial activity to the total isolated fungi in D.devonianum was23%in percentage (10/23),and43.5%(11/23)in D.thyrsiflorum.Overall,4 isolates in D.devonianum and7endophytes from D.thyrsiflorum exhibited antagonistic effects against more than one pathogenic microorganism.Out of the53endo-phytic fungi,Epicoccum nigrum from root of D.thyrsi-florum displayed strongest antagonistic effect on S.aureus; Phoma from stem of D.devonianum showed greatest inhibitory activity against E.coli,while Phoma from root of D.thyrsiflorum exhibited strongest activity against B.subtilis and slightly inhibited S.aureus as well;Fusar-ium tricinctum from D.devonianum could inhibit both bacterial and fungal pathogens,while the same fungus from D.thyrsiflorum showed antagonistic actions against E.coli and B.subtilis.In addition,Epicoccum from root of D.thyrsiflorum exhibited slightly inhibitory activity against S.aureus,E.coli,and B.subtilis(Table2).DiscussionIn this study,endophytic fungi in D.devonianum and D.thyrsiflorum were diverse.Different endophytic fungi preferred in different Dendrobium species had performed ‘‘host-specificity’’.The remarkably diverse fungal species in association with the host plant may play an important role in ecological patterns and processes[24].Crude eth-anol extract of a large number of endophytes possessed antimicrobial activities againstfive human pathogenic microorganisms.Furthermore,active isolates from stem were more than fungal endophytes from root in D.devo-nianum and D.thyrsiflorum(Table2).However,some of the isolates from D.loddigesii which had been obtained from roots,showed antimicrobial activity against patho-genic microbes[6].Possible reasons for this incompati-bility are different orchid inhabitation,different environment which influence the distributions and coloni-zation of fungal endophytes.The difference of colonization and isolation rates of endophytic fungi in different tissues of Dendrobium spe-cies probably lied in different composition and distribution of endophytic fungi in survival of various environmental conditions and host plant.Fusarium as the dominant genera and the predominant genus in antimicrobial isolates in D.loddigesii had met with great attention[6].In our study,we also found that Fusarium was dominant in both D.devonianum and D.thyrsiflorum.Otherwise,Cladosporium were reported to be dominant in Azadirachta indica[25].This might be due to the fact that the fungal endophytes were isolated from different host plants.Fusarium could inhibit both bacteria and fungi in this study,which was compatible with the fact in our previous study that Fusarium isolated from Saussurea involucrata Kar.et Kir.,also performed broad antimicrobial spectrum [15].It has been reported that the compounds epicorazine A and B isolated from Epicoccum nigrum presented selective antibacterial activity against S.aureus[3].In our work, ethanol crude extract of Epicoccum nigrum showed stron-ger antagonistic activity against S.aureus even superior to Ampicillin.This would be of great importance as antibi-otics especially penicillin resistance has become an esca-lating problem worldwide.Bioactive substances of Epicocuum nigrum against S.aureus are now still under study.Zhang et al.[32]found that epicoccins A derived from Epicoccum nigrum displayed activity againstTable1Identification of endophytic fungi in D.devonianum and D.thyrsiflorumPlant species Strain no.Taxa GenBank accession numberD.devonianum CB-S a-1Fusarium sp1.–cCB-S-2Phoma HM486935CB-S-3Fusarium tricinctum HM486932CB-S-4Leptosphaerulina chartarum HM486931CB-S-5Arthrinium sp.HM486947CB-S-6Glomerella cingulata HM486938CB-S-7Phoma HM486941CB-S-8Pestlotiopsis microspora HM486934CB-S-9Xylaria sp1.HM486948CB-S-10Cladosporium cladosporioides HM486946CB-S-11Xylaria sp2.–CB-S-12Acremonium sp.–CB-S-13Fusarium sp2.–CB-R b-1Pestalotiopsis photiniae HM486945CB-R-2Fusarium sp3.–CB-R-3Acremonium sp.–CB-R-4Phoma HM486943CB-R-5Rhizopus sp.–CB-R-6Phoma sp.–CB-R-7Xylaria sp3.–CB-R-8Fusarium sp4.–CB-R-9Phoma sp.–CB-R-10Leptosphaerulina sp.–CB-R-11Fusarium sp5.–CB-R-12Acremonium sp.–CB-R-13Fusarium sp6.–CB-R-14Trichoderma sp.HM486933CB-R-15Fusarium sp7.–CB-R-16Trichoderma koningiopsis HM486944CB-R-17Fusarium sp8.–D.thyrsiflorum SC-S a-1Fusarium sp1.HM486951SC-S-2Leptosphaerulina chartarum HM486940SC-S-3Alternaria sp.–SC-S-4Colletotrichum sp.HM486939SC-S-5Fusarium sp2.–SC-S-6Colletotrichum gloeosporioides HM486936SC-S-7Pestlotiopsis sp.–SC-S-8Epicoccum nigrum HM486952SC-S-9Phoma sp.–SC-S-10Epicoccum sp1.–SC-S-11Alternaria sp.–D.thyrsiflorum SC-S-12Epicoccum sp2.–SC-S-13Glomerella acutata HM486937SC-R b-1Rhizopus sp.–SC-R-2Fusarium sp3.–SC-R-3Alternaria sp.–SC-R-4Fusarium sp4.–SC-R-5Xylaria sp.–B.subtilis .Furthermore,a new indole derivative from endophytic fungus of Colletotrichum sp.showed moderate antibacterial activity against Gram-positive bacteria of B.subtilis ,S.aureus and Sarcina lutea and Gram-negative bacterium Pseudomonas [23].In our work,extract of Epicoccum sp.from root of D.thyrsiflorum could slightly inhibit three pathogens of S.aureus ,E.coli ,and B.subtilis ,which illustrated the broad antimicrobial spectrum of the metabolites of endophytic fungi.It was speculated that the possible mechanism of inhibitory bacteria was not by way of suppressing cell wall synthesis but through inhibiting bacterial protein synthesis.Compounds of pyrenophorol derivatives from Phoma sp.presented antagonistic activity against E.coli ,Bacillus megaterium ,and Microbotryum violaceum [33].In the present study,it indicated that Phoma from different Dendrobium species exhibited antibacterial activity against different bacteria.This probably lied in that different spe-cies of Phoma were isolated from the two Dendrobium species.Gong and Guo [8]also found that different species of Fusarium showed different antimicrobial activity.Fusarium tricinctum isolated from D.devonianum and D.thyrsiflorum displayed inhibitory effect on different pathogens.Possible reasons for this difference are different origins from different plant species or different survival environment that affect the antimicrobial activity of the fungus.Indeed,endophytic fungi inside the host plants are a versatile reservoir of the various bioactive metabolites and can be of potential use to modern medicine,industryandFig.1Light micrographs of endophytic fungi isolated from D.devonianum andD.thyrsiflorum.a Fusarium isolated from stem ofD.devonianum .b Acremonium isolated from stem ofD.devonianum .c Rhizopus isolated from root ofD.thyrsiflorum.d Fusarium isolated from stem of D.thyrsiflorumTable 1continued Plant speciesStrain no.Taxa GenBank accession number SC-R-6Phoma sp .–SC-R-7Epicoccum sp3.HM486950SC-R-8Fusarium sp5.–SC-R-9Arthrobotray sp .HM486942SC-R-10Fusarium tricinctumHM486949a Endophytes isolated from stem of the Dendrobium speciesb Endophytic fungi isolated from root of the Dendrobium species cIdentified based on morphological characteristicsagriculture.Current work of characterizing the bioactive metabolites of the potent fungal strains is underway. Acknowledgment We would like to thank Dr.Youxin Wang for carefully reviewing the manuscript.The research wasfinancially supported by the National Natural Sciences Foundation of China(No. 30830117,31070300,30900004)and the National High Technology Research and Development Program of China(No.2008AA09Z405), and New Drug Preparation Project-Ministry of Science and Tech-nology of China(2009ZX09502-025)and Research of Traditional Chinese Medicine Industry(200807042).References1.Aksoy DY,Unal S(2008)New antimicrobial agents for thetreatment of Gram-positive bacterial infections.Clin Microbiol Infect14:411–420.doi:10.1111/j.1469-0691.2007.01933.x2.Arnold AE,Mejı´a LC,Kyllo D,Rojas EI,Maynard Z,Robbins N,Herre EA(2003)Fungal endophytes limit pathogen damage in a tropical tree.Proc Natl Acad Sci USA100:15649–156543.Baute MA,Deffieux G,Baute R,Neveu A(1978)New antibioticsfrom the fungus Epicoccum nigrum.I.Fermentation,isolation and antibacterial properties.J Antibiot(Tokyo)31(11):1099–1101 4.Bills GF(1996)Isolation and analysis of endophytic fungalcommunities from woody plants.In:Redlin SC,Carris LM(eds) Endophytic fungi in grasses and woody plants.Systematics ecology and evolution.APS Press,St.Paul,MN,pp31–655.Chen J,Hu KX,Hou XQ,Guo SX(2010)Endophytic fungiassemblages from10Dendrobium medicinal plants(Orchidaceae).World J Microbiol Biotechnol.doi:10.1007/s11274-010-0544-y 6.Chen XM,Dong HL,Hu KX,Sun ZR,Chen J,Guo SX(2010)Diversity and antimicrobial and plant-growth-promoting activi-ties of endophytic fungi in Dendrobium loddigesii Rolfe.J Plant Growth Regul3:328–337.doi:10.1007/s00344-010-9139-y7.Christina E,Maddox,Lisa ML,Li T(2010)Antibacterial activityof phenolic compounds against the phytopathogen Xylella fasti-diosa.Curr Microbiol60:53–588.Gong LJ,Guo SX(2009)Endophytic fungi from Dracaenacambodiana and Aquilaria sinensis and their antimicrobial activity.Afr J Biotechnol8(5):731–7369.Hormazabal E,Piontelli E(2009)Endophytic fungi from Chileannative gymnosperms:antimicrobial activity against human andTable2The antibacterial and antifungal activities of endophytes againstfive pathogensPlant species.Strain no.Taxa Inhibition zone in diameter on peri plates(mm)S.aureus E.coli B.subtilis Can.albicans A.fumigatusD.devonianum CB-S a-2Phoma–20.8±0.7–––CB-S-3Fusarium tricinctum7.2±0.3––15.5±0.5–CB-S-5Arthrinium sp.––15.3±0.9––CB-S-6Glomerella cingulata–8.0±0.2–––CB-S-9Xylaria sp1.––8.5±0.5––CB-S-10Cladosporium cladosporioides9.8±0.7–7.3±0.3––CB-R b-1Pestalotiopsis photiniae––––7.1±0.3CB-R-5Rhizopus sp.–7.5±0.47.0±0.5––CB-R-15Fusarium sp7.––10.6±0.7––CB-R-16Trichoderma koningiopsis10.5±0.3–10.0±0.5––D.thyrsiflorum SC-S a-2Leptosphaerulina chartarum7.1±0.4––––SC-S-5Fusarium sp2.––7.0±0.27.2±0.2–SC-S-6Colletotrichum gloeosporioides7.2±0.3–11.0±0.9––SC-S-8Epicoccum nigrum20.2±0.3––––SC-S-9Phoma sp.7.6±0.1–8.0±0.5––SC-S-13Glomerella acutata––––7.0±0.5SC-R b-1Rhizopus sp.––8.2±0.2––SC-R-6Phoma sp.7.2±0.2–21.6±0.7––SC-R-7Epicoccum sp3.7.2±0.37.0±0.58.3±0.3––SC-R-8Fusarium sp5.7.5±0.58.6±0.5–––SC-R-10Fusarium tricinctum–7.6±0.38.6±0.3––Positive control Ampicillin18.5±0.319.3±0.220.1±0.5––Fluconazole–––18.6±0.425.1±0.7 Negative control Distilled water–––––Values are mean±SE of three replicationsNone of the endophytic fungi showed inhibitory effects against C.neoformansa Endophytes isolated from stem of the Dendrobium speciesb Endophytic fungi isolated from root of the Dendrobium speciesphytopathogenic fungi.World J Microbiol Biotechnol25: 813–81910.Hyde KD,Soytong K(2008)The fungal endophyte dilemma.Fungal Divers33:163–17311.Jon C,Michael AF,Christopher TW(2006)New antibiotics frombacterial natural products.Nat Biotechnol24(12):1541–1550 12.Khan SA,Hamayun M,Yoon H,Kim HY,Suh SJ,Hwang SK,Kim JM,Lee IJ,Choo YS,Yoon UH,Kong WS,Lee BM,Kim JG(2008)Plant growth promotion and Penicillium citrinum.BMC Microbiol8:23113.Li WC,Zhou J,Guo SY,Guo LD(2007)Endophytic fungiassociated with lichens in Baihua mountain of Beijing,China.Fungal Divers25:69–8014.Luo AX,He XJ,Zhou SD,Fan YJ,Luo AS,Chun Z(2010)Purification,composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl.Carbohydr Polym79:1014–101915.Lv YL,Zhang FS,Chen J,Cui JL,Xing YM,Li XD,Guo SX(2010)Diversity and antimicrobial activity of endophytic fungi associated with the alpine plant Saussurea involucrate Karet Kir.Biol Pharm Bull33(8):1300–130616.Michael AF,Christopher TW(2009)Antibiotics for emergingpathogens.Science325:1089–109317.Mohanta J,Tayung K,Mohapatra UB(2008)Antimicrobial poten-tials of endophytic fungi inhabiting three ethno-medicinal plants of Similipal Biosphere Reserve,India.Internet J Microbiol5(2)18.Qin JC,Zhang YM,Gao JM,Bai MS,Yang SX,Laatsch H,Zhang AL(2009)Bioactive metabolites produced by Chaetomi-um globosum,an endophytic fungus isolated from Ginkgo biloba.Bioorg Med Chem Lett19:1572–157419.Redman RS,Sheehan KB,Stout R,Rodriguez RJ,Henson JM(2002)Thermotolerance generated by plant/fungal symbiosis.Science298:158120.Stierle A,Strobel G,Stierle D(1993)Taxol and taxane produc-tion by Taxomyces andreanae,an endophytic fungus of Pacific yew.Science5105:214–21621.Stinson M,Ezra D,Hess WM,Sears J,Strobel G(2003)Anendophytic Gliocladium sp.of Eucryphia cordifolia producing selective volatile antimicrobial compounds.Plant Sci165:913–922 22.Stobel GA,Daisy B(2003)Bioprospecting for microbial endophytesand their natural products.Microbiol Mol Biol Rev67:491–50223.Tan RX,Zou WX(2001)Endophytes:a rich source of functionalmetabolites.Nat Prod Rep18:448–45924.Tiwari R,Kalra A,Darokar MP,Chandra M,Aggarwal N,SinghAK,Khanuja SPS(2010)Endophytic bacteria from Ocimum sanctum and their yield enhancing capabilities.Curr Microbiol 60:167–17125.Verma VC,Gond SK,Kumar A,Kharwar RN,Strobel G(2007)The endophytic mycoflora of bark,leaf,and stem tissues of Azadirachta indica A.Juss(neem)from Varanasi(India).Microb Ecol54:119–12526.Wang FW,Jiao RH,Cheng AB,Tan SH,Song YC(2006)Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp.World J Microbiol Biotechnol235:79–8327.Wang Q,Gong Q,Wu Q,Shi J(2010)Neuroprotective effects ofDendrobium alkaloids on rat cortical neurons injured by oxygen-glucose deprivation and reperfusion.Phytomedicine17:108–115 28.Weber RWS,Kappe R,Paululat T,Mo¨sker E,Anke H(2007)Anti-Candida metabolites from endophytic fungi.Phytochemistry 68:886–89229.White TJ,Bruns TD,Lee S,Taylor JW(1990)Amplification anddirect sequencing of fungal ribosomal RNA genes for phyloge-netics.In:Innis MA,Gelfand DH,Sninsky JS,White TJ(eds) PCR protocols:a guide to methods and applications.Academic Press,New York,USA,pp315–32230.Xu LL,Han L,Wu JZ,Zhang QY,Zhang H,Huang BK,RahmanK,Qin LP(2009)Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panx ginseng and its endophytic fungus.Phytomedicine16:609–616 31.Zampini IC,Vattuone MA,Isla MI(2005)Antibacterial activityof Zuccagnia punctata Cav.ethanolic extracts.J Ethnopharmacol 102:450–45632.Zhang Y,Liu S,Che Y,Liu X(2007)Epicoccins A-D,epipo-lythiodioxopiperazines from a Cordyceps-colonizing isolate of Epicoccum nigrum.J Nat Prod70(9):1522–152533.Zhang W,Krohn K,Egold H(2008)Diversity of antimicrobialpyrenophorol derivatives from an endophytic fungus,Phoma sp.Eur J Org Chem25:4320–432834.Zhang P,Zhou PP,Yu LJ(2009)An Endophytic taxol-producingfungus from taxus media,Cladosporium cladosporioides MD2.Curr Microbiol59:227–232。