2018-2019学年北师大版初中数学八年级下册期末试题(河南省开封市
- 格式:doc
- 大小:371.50 KB
- 文档页数:22
八年级数学教学质量监测第1页(共5页)2018-2019学年八年级数学下册期末测试卷数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。
2.答卷前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B 铅笔填涂相应的信息点。
3.答Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,答在本试卷上无效。
4.答第Ⅱ卷时,请用直径0.5毫米黑色字迹签字笔在答题卡上各题的答题区域内作答。
答在本试卷上无效。
第Ⅰ卷选择题一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上................)1. 下列图案中,不是中心对称图形的是A .B .C .D .2. 不等式212x x 的解集是 A.1x B.1x C.1x D.1x 3. 多项式2222y x 分解因式的结果是 A. 2)(2y x B. 2)(2y xC. ))((2y x y xD. ))((2x y x y 4. 如图,△ABC 中,AB 的垂直平分线DE 交AC 于D ,如果AC=5cm ,BC=4cm ,那么△DBC 的周长是A. 6 cmB. 7 cmC. 8 cmD. 9 cm 5.要使分式9632x x x有意义,那么x 的取值范围是A .x ≠3B .x ≠3且x ≠-3C .x ≠0且x ≠-3 D.x ≠-3。
2018-2019学年八年级(下)期末数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共12小题,共36.0分) 1. 若a >b ,则下列不等式正确的是( )A. a −b <0B. a +8<b −8C. −5a <−5bD. a 4<b42. 下列从左到右的变形,是因式分解的是( )A. (3−x)(3+x)=9−x 2B. (y +1)(y −3)=(3−y)(y +1)C. 4yz −2y 2z +z =2y(2z −zy)+zD. −8x 2+8x −2=−2(2x −1)2 3. 式子3x2,4x−y ,x +y ,x 2+1π,5b3a 中是分式的有( )A. 1个B. 2个C. 3个D. 4个4. 已知一个多边形的内角和是外角和的4倍,则这个多边形是( )A. 八边形B. 九边形C. 十边形D. 十二边形5. 四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,需要添加的条件是( )A. AB =CDB. AC =BDC. AB =BCD. AC ⊥BD 6. 下列分解因式正确的是( )A. a 2−9=(a −3)2B. −4a +a 2=−a(4+a)C. a 2+6a +9=(a +3)2D. a 2−2a +1=a(a −2)+17. 如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD的周长是( )A. 12B. 16C. 20D. 248. 如果不等式组{x >m x<5有解,那么m 的取值范围是( )A. m >5B. m ≥5C. m <5D. m ≤89. 如图,在Rt △ABC 中,∠BAC =90∘,将Rt △ABC 绕点C按逆时针方向旋转48∘得到Rt △A′B′C′,点A 在边B′C 上,则∠B′的大小为( )A. 42∘B. 48∘C. 52∘D. 58∘10. 若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是()A. 矩形B. 菱形C. 对角线互相垂直的四边形D. 对角线相等的四边形11.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A. 小青B. 小何C. 小夏D. 小雨12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A. ①②B. ②③C. ①③D. ①④二、填空题(本大题共6小题,共18.0分)13.分解因式−a2+4b2=______.14.化简:a2a−1−1a−1=______.15.如图,平行四边形ABCD中,∠B=30∘,AB=4,BC=5,则平行四边形ABCD的面积为______.16.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快______s后,四边形ABPQ成为矩形.17.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是______.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…记正方形ABCD的边为a1=1,按上述方法所作的正方形的边长依次为a2、a3、a4、…a n,根据以上规律写出a n2的表达式______.三、计算题(本大题共2小题,共12.0分)19.a2(x−y)+b2(y−x).20.解方程:x−8x−7−17−x=8.四、解答题(本大题共7小题,共56.0分)21.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,求CF的长.22.解不等式组{2x−7<3(x−1) 43x+3>1−23x23.化简分式:(x2−2xx2−4x+4−3x−2)÷x−3x2−4,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.24.暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社.经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费.请你帮他们选择一下,选哪家旅行社比较合算.25.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.26.在校园手工制作活动中,现有甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同,求乙每小时制作多少朵纸花?27.感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图③,在▱ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50∘,∠AFB=32∘,求∠ADE的度数.答案和解析【答案】1. C2. D3. B4. C5. B6. C7. D8. C9. A10. C11. B12. D13. (2b+a)(2b−a)14. a+115. 1016. 417. x>318. 2n−119. 解:−a2(x−y)+b2(y−x),=a2(x−y)−b2(x−y),=(x−y)(a2−b2),=(x−y)(a+b)(a−b).20. 解:去分母得:x−8+1=8(x−7),整理得:7x=49,解得:x=7,经检验:x=7为增根,原方程无解.21. 解:∵四边形ABCD是平行四边形,∴AD//BC,AD=BC=3,∴∠DAE=∠F,∵AE平分∠DAB,∴∠DAE=∠BAF,∴∠BAF=∠F,∴AB=BF=5,∴CF=BF−BC=5−3=2.22. 解:{2x−7<3(x−1)①43x+3>1−23x②,由①得,x>−4,由②得,x>−1,故不等式组的解集为:x>−1.23. 解:(x2−2xx2−4x+4−3x−2)÷x−3x2−4=[x(x−2)(x−2)2−3x−2)÷x−3x2−4=(xx−2−3x−2)÷x−3x2−4=x−3x−2×(x+2)(x−2)x−3=x+2,∵x2−4≠0,x−3≠0,∴x≠2且x≠−2且x≠3,∴可取x=1代入,原式=3.24. 解:设x名学生,则在甲旅行社花费:2×500+500x×0.7=350x+1000,在乙旅行社的花费:(x+2)×500×0.8=400x+800,当在乙旅行社的花费少时:350x+1000>400x+800,解得x<4;在两家花费相同时:350x+1000=400x+1800,解得x=4;当在甲旅行社的花费少时:350x+1000<400x+800,解得x>4.综上,可得①当两名家长带领的学生少于4人时,应该选择乙旅行社;②当两名家长带领的学生为4人时,选择甲、乙两家旅行社都一样;③当两名家长带领的学生多于4人时,应该选择甲旅行社.25. (1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180∘,∴∠ABC=∠ADC=90∘,∴四边形ABCD是矩形;(2)解:∵∠ADC=90∘,∠ADF:∠FDC=3:2,∴∠FDC=36∘,∵DF⊥AC,∴∠DCO=90∘−36∘=54∘,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54∘,∴∠BDF=∠ODC−∠FDC=18∘.26. 解:设乙每小时制作x朵纸花,依题意得:120x−20=160x解得:x=80,经检验,x=80是原方程的解,且符合题意.答:乙每小时制作80朵纸花.27. 解:探究:△ADE和△DBF全等.∵四边形ABCD是菱形,∴AB=AD.∵AB=BD,∴AB=AD=BD.∴△ABD为等边三角形.∴∠DAB=∠ADB=60∘.∴∠EAD=∠FDB=120∘.∵AE=DF,∴△ADE≌△DBF;拓展:∵点O在AD的垂直平分线上,∴OA=OD.∴∠DAO =∠ADB =50∘. ∴∠EAD =∠FDB .∵AE =DF ,AD =DB ,∴△ADE ≌△DBF.∴∠DEA =∠AFB =32∘. ∴∠EDA =18∘. 【解析】1. 解:A 、不等式两边同时减去b ,不等号的方向不变,故本选项错误;B 、不等式的两边应该加(或减去)同一个数8,不等号是方向才会不改变;故本选项错误;C 、不等式两边都乘以−5,不等号的方向不变,故本选项正确;D 、不等式两边都除以4,不等号的方向不变,故本选项错误; 故选:C .不等式加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变. 本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变; (2)不等式两边乘(或除以)同一个正数,不等号的方向不变; (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2. 解:A 、(3−x)(3+x)=9−x 2,是整式的乘法运算,故此选项错误;B 、(y +1)(y −3)≠(3−y)(y +1),不符合因式分解的定义,故此选项错误;C 、4yz −2y 2z +z =2y(2z −zy)+z ,不符合因式分解的定义,故此选项错误;D 、−8x 2+8x −2=−2(2x −1)2,正确. 故选:D .分别利用因式分解的定义分析得出答案.此题主要考查了因式分解的定义,正确把握定义是解题关键.3. 解:4x−y ,5b3a 是分式,故选:B .判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题主要考查分式的定义,含有字母则是分式,如果不含有字母则不是分式,注意π不是字母,是常数.4. 解:设这个多边形的边数为n ,则该多边形的内角和为(n −2)×180∘, 依题意得(n −2)×180∘=360∘×4, 解得n =10,∴这个多边形的边数是10. 故选:C .先设这个多边形的边数为n ,得出该多边形的内角和为(n −2)×180∘,根据多边形的内角和是外角和的4倍,列方程求解.本题主要考查了多边形内角和定理与外角和定理,多边形内角和=(n −2)⋅180(n ≥3且n 为整数),而多边形的外角和指每个顶点处取一个外角,则n 边形取n 个外角,无论边数是几,其外角和始终为360∘.5. 解:需要添加的条件是AC =BD ;理由如下: ∵四边形ABCD 的对角线AC 、BD 互相平分, ∴四边形ABCD 是平行四边形, ∵AC =BD ,∴四边形ABCD 是矩形(对角线相等的平行四边形是矩形);故选:B.由平行四边形的判定方法得出四边形ABCD是平行四边形,再由矩形的判定方法即可得出结论.本题考查了矩形的判定、平行四边形的判定;熟练掌握平行四边形和矩形的判定方法,并能进行推理论证是解决问题的关键.6. 解:A、原式=(a+3)(a−3),错误;B、原式=−a(4−a),错误;C、原式=(a+3)2,正确;D、原式=(a−1)2,错误,故选:C.原式各式分解因式后,即可作出判断.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7. 解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.x<5有解,8. 解:∵不等式组{x>m∴m<5.故选:C.依据小大大小中间找,可确定出m的取值范围.本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.9. 解:∵在Rt△ABC中,∠BAC=90∘,将Rt△ABC绕点C按逆时针方向旋转48∘得到Rt△A′B′C′,∴∠A′=∠BAC=90∘,∠ACA′=48∘,∴∠B′=90∘−∠ACA′=42∘.故选:A.先根据旋转的性质得出∠A′=∠BAC=90∘,∠ACA′=48∘,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90∘−∠ACA′=42∘.本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.10. 解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH//FG//BD,EF//AC//HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.11. 解:∵四边形ABCD是平行四边形,∴OA=OC,CD//AB,∴∠ECO=∠FAO,(故小雨的结论正确),在△EOC和△FOA中,{∠EOC=∠AOF ∠ECO=∠OAF OC=OA,∴△EOC≌△FOA,∴OE=OF(故小青的结论正确),∴S△EOC=S△AOF,∴S四边形AFED =S△ADC=12S平行四边形ABCD,∴S四边形AFED =S四边形FBCE故小夏的结论正确,∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE//FB,∴四边形DFBE是平行四边形,∵OD=OB,EO⊥DB,∴ED=EB,∴四边形DFBE是菱形,无法判断是正方形,故小何的结论错误,故选:B.利用平行四边形的性质、全等三角形的判定和性质,一一判断即可.本题考查平行四边形的性质、全等三角形的判定和性质、线段的垂直平分线的性质正方形的判定、菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12. 解:∵AE=13AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30∘,∴∠AEP=90∘−30∘=60∘,∴∠BEF=12(180∘−∠AEP)=12(180∘−60∘)=60∘,∴∠EFB=90∘−60∘=30∘,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30∘,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30∘,∴∠BFP=30∘+30∘=60∘,∵∠PBF=90∘−∠EBQ=90∘−30∘=60∘,∴∠PBF=∠PFB=60∘,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选:D.求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30∘角所对的直角边等于斜边的一半求出∠APE=30∘,然后求出∠AEP=60∘,再根据翻折的性质求出∠BEF=60∘,根据直角三角形两锐角互余求出∠EFB=30∘,然后根据直角三角形30∘角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30∘角的正切值求出PF=√3PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60∘,然后得到△PBF是等边三角形,判断出④正确.本题考查了翻折变换的性质,直角三角形30∘角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.13. 解:−a2+4b2=4b2−a2=(2b+a)(2b−a).故答案为:(2b+a)(2b−a).直接利用平方差公式分解因式得出答案.此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14. 解:原式=a2−1=a+1.a−1故答案为:a+1.直接把分子相加减即可.本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.15. 解:作AE⊥BC于E,如图所示:∵在▱ABCD中,AB=4,AD=BC=5,∵∠B=30∘,AB=2,∴AE=12∴▱ABCD的面积为:2×5=10,故答案为10.直接利用直角三角形的性质得出平行四边形的高,再根据平行四边形的面积等于它的底和这个底上的高的积进而求出其面积.此题主要考查了平行四边形的性质、直角三角形的性质,正确得出平行四边形的高是解题关键.16. 解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20−2x.解得x=4,故答案为:4.根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,根据解题元一次方程,可得答案.本题考查了矩形的判定与性质,有一个角是直角的平行四边形是矩形.17. 解:当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.故答案为:x>3.观察函数图象得到当x>3时,函数y=x+b的图象都在y=kx+6的图象上方,所以关于x的不等式x+b>kx+6的解集为x>3.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18. 解:∵a2=AC,且在直角△ABC中,AB2+BC2=AC2,∴a2=√2a1=√2,同理a3=√2a2=2,a4=√2a3=2√2,…由此可知:a n=(√2)n−1,则a n2=2n−1.故答案为:2n−1.求a2的长即AC的长,根据直角△ABC中AB2+BC2=AC2可以计算,同理计算a3、a4.由求出的a2=√2a1,a3=√2a2…,a n=√2,a n−1=(√2)n−1,可以找出规律,得到第n个正方形边长的表达式.本题考查了正方形的性质,以及勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.19. 首先把(y−x)变成−(x−y),然后提取公因式(x−y),再利用平方差公式继续进行因式分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20. 首先把分式方程,去分母后化为整式方程,即可求得x的值,再代入方程的分母进行检验即可.本题主要考查解分式方程,解分式方程的基本思想是转化为整式方程,解方程时一定要注意检验.21. 由平行四边形ABCD中,AE平分∠DAB,可证得△ABF是等腰三角形,继而利用CF=BF−BC,求得答案.此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△ABF是等腰三角形是解此题的关键.22. 根据不等式组的解集的表示规律:同大取大,可得答案.本题考查了解一元一次不等式组,利用不等式组的解集的表示方法同大取大是解题关键.23. 利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.24. 设x名学生,根据题意得:甲旅行社的总费用为2×500+500x×0.7元,乙旅行社的总费用为(x+2)×500×0.8元,再分类讨论,求出对应的x的取值范围,判断出选哪家旅行社即可.此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.25. (1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90∘,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD= OC,求出∠CDO,即可求出答案.本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.26. 设乙每小时制作x朵纸花,根据题意列出方程解答即可.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:时间=路程÷速度,需注意分式应用题需验根.27. 探究:△ADE和△DBF全等,利用菱形的性质首先证明三角形ABD为等边三角形,再利用全等三角形的判定方法即可证明△ADE≌△DBF;拓展:因为点O在AD的垂直平分线上,所以OA=OD,再通过证明△ADE≌△DBF,利用全等三角形的性质即可求出∠ADE的度数.本题考查了菱形的性质、等边三角形的判定和性质以及全等三角形的判定和性质,题目综合性很强,但难度不大.。
2018-2019学年八年级(下)期末数学试卷一、选择题(本题10小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目的要求.)1.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.(3分)若将多项式x2﹣ax+b因式分解为(x﹣2)(x+5),则(3a﹣b)2019的值为()A.0 B.1 C.﹣1 D.1或﹣13.(3分)如图,要测量的A、C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得E、F两点间的距离等于25米,则A、C两点间的距离是()A.25米B.50米C.12.5米D.100米4.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)甲做180个机器零件比乙做240个机器零件所用的时间少h,已知两人每小时共做70个零件,求:甲、乙每小时各做多少个零件?若设甲每小时做x个零件,则下面所列方程正确的是()A. +=B.=+C. +=D.=+6.(3分)有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°7.(3分)如图,在△ABC中,∠B=90°,∠C=30°,点D在边BC上,DE⊥AC于点E,BD=DE,AB=1,下列结论:①AD平分∠BAC;②DE垂直平分AC;③点E到AD,CD的距离不相等;④CD=,其中正确的有()A.①②④B.①②③C.②③④D.①③④8.(3分)若x为整数,使分式值为整数,则满足条件的整数有()A.5个 B.6个 C.8个 D.7个9.(3分)如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形,……如此操作下去,那么第5个三角形直角顶点的坐标为()A.(﹣,)B.(﹣)C.(﹣)D.(﹣)10.(3分)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE二、填空题(本题6小题,每小题3分,共18分)把最后答案直接填在题中的横线上11.(3分)因式分解:3x3﹣6xy+3xy2=.12.(3分)计算:﹣=.13.(3分)已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.则阴影部分的面积是.14.(3分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是.15.(3分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM 的长为.16.(3分)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.三、解答题(共72分)解答时应写出必要的文字说明、证明过程或演算步骤17.(6分)(1)解不等式组:(2)解分式方程:18.(6分)先化简代数式:,然后再从﹣2<x≤2的范围内选取一个你喜欢的整数作为x值代入求值.19.(7分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.20.(7分)如图,网格中已知△ABC三个顶点的坐标分别为(﹣4,3)(﹣3,1)(﹣1,3),按要求解决下列问题:(1)将△ABC向右平移1个单位长度,再向下平移4个单位长度,得到△A1B1C1,作出△A1B1C1;(2)将△A1B1C1绕点O逆时针旋转90°,得到△A2B2C2,作出△A2B2C2.(3)在(2)的条件下,求点B1到B2经过的路径长.21.(7分)如图,在△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC(1)上述四个条件中,由哪两个条件可以判定△ABC是等腰三角形?写出所有的情形.(2)选择(1)中的一种情形,写出证明过程.22.(8分)阅读下面的材料,然后解决问题:苏菲•热门,19世纪法国数学家,他在数学研究上造诣颇深.下面是他写的数学著作中的一个问题:因式分解x4+4时,因为该式只有两项,而且都属于平方和的形式,即(x2)2+22,所以要使用公式就必须添加一项4x2,同时减去4x2,即x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2).人们为了纪念苏菲•热门给出的这一解法,就把它叫做“热门定理”.请你依照苏菲•热门的做法,将下列各式因式分解:(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.23.(8分)大泽山是我国著名的葡萄产地,被命名为“中国葡萄之乡”,“西有吐鲁番,东有大泽山”.大泽山葡萄以其皮薄、肉嫩,味香饮誉海内外,在“全国农业标准化示范区”建设中,新推广甲、乙两种葡萄苗,已知乙种葡萄苗比甲种葡萄苗每株贵3元,且用100元钱购买甲种葡萄苗的株数与用160元钱购买乙种葡萄苗的株数刚好相同(1)求甲、乙两种葡萄苗每株的价格(2)小颖家计划购买甲、乙两种葡萄苗共1000株,调查统计发观,甲、乙两种葡萄苗的成活率分别为90%,95%,要使这批葡萄苗的成活率不低于92%,且使购买葡萄苗的费用最低,应如何选购葡萄苗?最低费用是多少?24.(11分)如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E 为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(1)△BCD的形状为;(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.25.(12分)综合与实践:问题情境在综合实践课上,杨老师让同学们对一张长AB为12,宽BC为9的长方形纸片ABCD进行剪拼操作,如图(1),某数学兴趣小组将其沿对角线AC剪开,得到两张三角形纸片分别是△ABC和△A′DC′.操作发现(1)若将这两张三角形纸片按图(2)摆放,连接BD,他们发现AC⊥BD,请你证明这个结论.操作探究(2)在图(2)中,将△A′C′D纸片沿射线AC的方向平移,连接BC′,BA',在平移的过程中:①如图(3),当BA′与C′D平行时,四边形A′BC′D是平行四边形吗?请说明理由,并求出此时△A′C′D平移的距离;②当BD经过点C时,画出图形,并求出△A′C′D平移的距离.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目的要求.)1.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项正确;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,也是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项错误;故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)若将多项式x2﹣ax+b因式分解为(x﹣2)(x+5),则(3a﹣b)2019的值为()A.0 B.1 C.﹣1 D.1或﹣1【分析】根据十字相乘法即可求出a与b的值,然后代入原式即可求出答案.【解答】解:由题意可知:x2﹣ax+b=(x﹣2)(x+5),∴a=﹣3,b=﹣10,∴3a﹣b=﹣9+10=1∴原式=1故选:B.【点评】本题考查因式分解,解题的关键是根据题意求出a与b的值,本题属于基础题型.3.(3分)如图,要测量的A、C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得E、F两点间的距离等于25米,则A、C两点间的距离是()A.25米B.50米C.12.5米D.100米【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2EF.【解答】解:∵BA和BC的中点分别为E、F,∴EF是△ABC的中点,∴AC=2EF=2×5=50米.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.4.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组的解集,再在数轴上表示出来即可.【解答】解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.5.(3分)甲做180个机器零件比乙做240个机器零件所用的时间少h,已知两人每小时共做70个零件,求:甲、乙每小时各做多少个零件?若设甲每小时做x个零件,则下面所列方程正确的是()A. +=B.=+C. +=D.=+【分析】设甲每小时做x个零件,则乙每小时做(70﹣x)个零件,根据甲做180个机器零件比乙做240个机器零件所用的时间少h,列方程即可.【解答】解:设甲每小时做x个零件,则乙每小时做(70﹣x)个零件,由题意得, +=.故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6.(3分)有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°【分析】根据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.【解答】解:正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°﹣120°﹣120°﹣36°=84°,故选:B.【点评】本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.7.(3分)如图,在△ABC中,∠B=90°,∠C=30°,点D在边BC上,DE⊥AC于点E,BD=DE,AB=1,下列结论:①AD平分∠BAC;②DE垂直平分AC;③点E到AD,CD的距离不相等;④CD=,其中正确的有()A.①②④B.①②③C.②③④D.①③④【分析】由DB⊥BA,DE⊥AE,DB=DE,推出DA平分∠BAC,故①正确.再证明∠C=∠DAC=30°,推出DA=DC,可得②正确,③错误,解直角三角形求出AD 即可判断④正确;【解答】解:∵∠B=90°,∴DB⊥BA,∵DE⊥AE,DB=DE,∴DA平分∠BAC,故①正确.∵∠C=60°,∴∠BAC=60°,∠DAC=∠DAB=30°,∴∠DAC=∠C=30°,∴DA=DC,∵DE⊥AC,∴AE=EC,∴DE垂直平分线段AC,故②正确,∴DE平分∠ADC,∴点E到AD,CD的距离相等,故③错误,∵AB=1,∴AD=CD==,故④正确,故选:A.【点评】本题考查角平分线的判定定理、等腰三角形的性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(3分)若x为整数,使分式值为整数,则满足条件的整数有()A.5个 B.6个 C.8个 D.7个【分析】代数式变形为2+后,根据值为整数确定出整数x的值即可.【解答】解:∵==2+,∴x+3=±1、±2、±3、±6,则x=﹣4、﹣2、﹣1、﹣5、0、﹣6、3、﹣9时分式的值为整数,故选:C.【点评】此题考查了分式的值,将原式计算适当的变形是解本题的关键.9.(3分)如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形,……如此操作下去,那么第5个三角形直角顶点的坐标为()A .(﹣,)B .(﹣)C .(﹣)D .(﹣)【分析】根据直角三角形的性质、三角形中位线定理计算即可. 【解答】解:由题意:第1个三角形的直角顶点坐标:(﹣2,2); 第2个三角形的直角顶点坐标:(﹣1,1);第3个三角形的第1个三角形的直角顶点坐标:(﹣,);第4个三角形的直角顶点坐标:(﹣,);第5个三角形的直角顶点坐标:(﹣,);故选:B .【点评】本题考查三角形的中位线定理、等腰直角三角形的性质、中点三角形等知识,解题的关键是理解题意,灵活运用三角形中位线定理.10.(3分)如图,在▱ABCD 中,∠DAB 的平分线交CD 于点E ,交BC 的延长线于点G ,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE ,下列结论错误的是( )A .BO=OHB .DF=CEC .DH=CGD .AB=AE【分析】根据平行四边形的性质、等腰三角形的判定和性质一一判断即可. 【解答】解:∵四边形ABCD 是平行四边形, ∴AH ∥BG ,AD=BC , ∴∠H=∠HBG , ∵∠HBG=∠HBA , ∴∠H=∠HBA ,∴AH=AB ,同理可证BG=AB , ∴AH=BG ,∵AD=BC ,∴DH=CG,故C正确,∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确,∵DF∥AB,∴∠DFH=∠ABH,∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH,同理可证EC=CG,∵DH=CG,∴DF=CE,故B正确,无法证明AE=AB,故选:D.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本题6小题,每小题3分,共18分)把最后答案直接填在题中的横线上11.(3分)因式分解:3x3﹣6xy+3xy2=3x(x﹣y)2.【分析】首先提取公因式3x,再利用公式法分解因式即可.【解答】解:3x3﹣6xy+3xy2=3x(x2﹣2xy+y2)=3x(x﹣y)2.故答案为:3x(x﹣y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.12.(3分)计算:﹣=.【分析】为同分母,通分,再将分子因式分解,约分.【解答】解: =﹣==,故答案为:.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.13.(3分)已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.则阴影部分的面积是 π﹣2 .【分析】连接AB ,阴影部分面积=S 扇形AOB ﹣S △ABO ,依此计算即可求解.【解答】解:连接AB ,阴影部分面积=S 扇形AOB ﹣S △ABO =﹣×2×2=π﹣2.故答案为:π﹣2.【点评】此题主要考查了扇形的面积公式,应用与设计作图,关键是需要同学们熟练掌握基础知识.14.(3分)如图,直线y=﹣x +m 与y=nx +4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x +m >nx +4n >0的整数解是 ﹣3 .【分析】满足关于x的不等式﹣x+m>nx+4n>0就是在y轴的右侧直线y=nx+4n 位于直线y=﹣x+m的下方的图象,据此求得自变量的取值范围,进而求解即可.【解答】解:∵直线y=﹣x+m与y=nx+4n的交点的横坐标为﹣2,∴关于x的不等式﹣x+m>nx+4n>0的解集为﹣4<x<﹣2,∴整数解可能是﹣3.故答案为:﹣3.【点评】本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握一次函数的图象和性质以及与一元一次不等式的关系是解题关键.15.(3分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.【分析】由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM 求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM 的长.【解答】解:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,∴FM=.故答案为:.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理.此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.16.(3分)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.【分析】根据平移和翻折的性质得到△MPN是等腰直角三角形,于是得到当PM 最小时,对角线MN最小,即AE取最小值,当AE⊥BD时,AE取最小值,过D 作DF⊥AB于F,根据平行四边形的面积得到DF=2,根据等腰直角三角形的性质得到AF=DF=2,由勾股定理得到BD==,根据三角形的面积得到AE===,即可得到结论.【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.【点评】本题考查了平移的性质,翻折的性质,勾股定理,平行四边形的性质,正确的识别图形是解题的关键.三、解答题(共72分)解答时应写出必要的文字说明、证明过程或演算步骤17.(6分)(1)解不等式组:(2)解分式方程:【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),由①得:x≥﹣1,由②得:x<1,则不等式组的解集为﹣1≤x<1;(2)去分母得:4x+12=8,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(6分)先化简代数式:,然后再从﹣2<x≤2的范围内选取一个你喜欢的整数作为x值代入求值.【分析】根据分式的减法和除法可以化简题目中式子,然后在﹣2<x≤2中选取一个使得原分式有意义的整数代入即可解答本题.【解答】解:===,当x=2时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(7分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根据SAS证两三角形全等即可解决问题;【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠EBA=∠FDC,∵DE=BF,∴BE=DF,∵在△ABE和△CDF中,∴△ABE≌△CDF(SAS).∴AE=CF,∠E=∠F,∴AE∥CF.【点评】本题考查了平行四边形的性质和全等三角形的判定的应用,解题的关键是准确寻找全等三角形解决问题.20.(7分)如图,网格中已知△ABC三个顶点的坐标分别为(﹣4,3)(﹣3,1)(﹣1,3),按要求解决下列问题:(1)将△ABC向右平移1个单位长度,再向下平移4个单位长度,得到△A1B1C1,作出△A1B1C1;(2)将△A1B1C1绕点O逆时针旋转90°,得到△A2B2C2,作出△A2B2C2.(3)在(2)的条件下,求点B1到B2经过的路径长.【分析】(1)分别作出点A、B、C分别向右平移1个单位长度,再向下平移4个单位长度得到的对应点,再顺次连接可得;(2)分别作出三顶点绕点O逆时针旋转90°得到对应点,再顺次连接可得;(3)根据弧长公式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求:(2)如图所示,△A2B2C2即为所求;(3)∵∠B1OB2=90°,且OB1==,∴点B1到B2经过的路径长为=π.【点评】本题主要考查作图﹣平移变换、旋转变换,解题的关键是根据平移变换和旋转变换的定义得到对应点.21.(7分)如图,在△ABC中,D,E分别是AC,AB上的点,BD与C E交于点O.给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC(1)上述四个条件中,由哪两个条件可以判定△ABC是等腰三角形?写出所有的情形.(2)选择(1)中的一种情形,写出证明过程.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC=∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】解:(1)①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;(2)选①③为条件证明△ABC是等腰三角形;理由:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.选②③为条件证明△ABC是等腰三角形;理由:∵∠BEO=∠CDO,BE=CD,∠EOB=∠DOC,∴△BEO≌△CDO,∴∠EBO=∠DCO,OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC.选①④为条件证明△ABC是等腰三角形;理由:∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,∴∠ABC=∠ACB,∴AB=AC.选②④为条件证明△ABC是等腰三角形;理由:∵∠BEO=∠CDO,∠EOB=∠DOC,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC.【点评】此题主要考查了等腰三角形的判定,关键是掌握判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.22.(8分)阅读下面的材料,然后解决问题:苏菲•热门,19世纪法国数学家,他在数学研究上造诣颇深.下面是他写的数学著作中的一个问题:因式分解x4+4时,因为该式只有两项,而且都属于平方和的形式,即(x2)2+22,所以要使用公式就必须添加一项4x2,同时减去4x2,即x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2).人们为了纪念苏菲•热门给出的这一解法,就把它叫做“热门定理”.请你依照苏菲•热门的做法,将下列各式因式分解:(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.【分析】(1)原式变形为x4+4x2y2+4y4﹣4x2y2,再利用完全平方公式和平方差公式分解可得;(2)原式变形为x2﹣2ax+a2﹣a2﹣b2﹣2ab,再利用完全平方公式和平方差公式分解可得.【解答】解:(1)x4+4y4=x4+4x2y2+4y4﹣4x2y2=(x2+2y2)2﹣(2xy)2=(x2+2y2+2xy)(x2+2y2﹣2xy);(2)原式=x2﹣2ax+a2﹣a2﹣b2﹣2ab=(x﹣a)2﹣(a+b)2=(x﹣a+a+b)(x﹣a﹣a﹣b)=(x+b)(x﹣2a﹣b).【点评】本题主要考查因式分解,解题的关键是理解题意,灵活运用完全平方公式和平方差公式.23.(8分)大泽山是我国著名的葡萄产地,被命名为“中国葡萄之乡”,“西有吐鲁番,东有大泽山”.大泽山葡萄以其皮薄、肉嫩,味香饮誉海内外,在“全国农业标准化示范区”建设中,新推广甲、乙两种葡萄苗,已知乙种葡萄苗比甲种葡萄苗每株贵3元,且用100元钱购买甲种葡萄苗的株数与用160元钱购买乙种葡萄苗的株数刚好相同(1)求甲、乙两种葡萄苗每株的价格(2)小颖家计划购买甲、乙两种葡萄苗共1000株,调查统计发观,甲、乙两种葡萄苗的成活率分别为90%,95%,要使这批葡萄苗的成活率不低于92%,且使购买葡萄苗的费用最低,应如何选购葡萄苗?最低费用是多少?【分析】(1)设甲、乙两种葡萄苗每株的价格分别为x元,(x+3)元,根据条件中葡萄苗的数量与单价之间的关系建立分式方程求出其解即可;(2)设甲种葡萄苗购买b株,则乙种葡萄苗购买(1000﹣b)株,购买的总费用为W元,根据条件建立不等式和W与b的函数关系式,由一次函数的性质就可以得出结论.【解答】解:(1)设甲种葡萄苗每株的价格为x元,乙种葡萄苗每株的价格为(x+3)元,由题意得=,解得:x=5,经检验x=5是原方程组的解.答:甲种葡萄苗每株的价格为5元,乙种葡萄苗每株的价格为8元;还(2)设甲种葡萄苗购买b株,则乙种葡萄苗购买(1000﹣b)株,购买的总费用为W元,由题意得90%b+95%(1000﹣b)≥1000×92%,∴b≤600.W=5b+8(1000﹣b)=﹣3b+8000,∴k=﹣3<0,∴W随b的增大而减小,∴b=600时,W最低=6200元.答:购买甲种葡萄苗600株,乙种葡萄苗400株费用最低,最低费用是6200元.【点评】本题考查了列二元一次方程组解实际问题的运用,一元一次不等式解实际问题的运用,一次函数的解析式的运用,解答时由方程组求出两种树苗的单价是关键.24.(11分)如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E 为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(1)△BCD的形状为等边三角形;(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.【分析】(1)由∠C=90°、∠A=30°,可得出AB=2BC、∠CBD=60°,结合点D是AB中点,可得出BD=BC,进而即可得出△BCD为等边三角形;(2)由(1)可得出∠ECD=30°,根据∠BDF+∠FDC=∠EDC+∠FDC=60°可得出∠BDF=∠CDE,再结合BD=CD、DF=DE即可得出△BDF≌△CDE(SAS),根据全等三角形的性质即可得出∠DBF=∠DCE=30°,即∠DBF的度数不变;(3)通过解含30度角的直角三角形可得出AB的长度,由等边三角形的性质结合三角形的外角可得出DE=AE,再根据等腰三角形的性质结合解含30度角的直角三角形可求出AE的长度,此题得解.【解答】解:(1)∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC,∠CBD=60°.∵点D是AB中点,∴BD=BC,∴△BCD为等边三角形.故答案为:等边三角形.(2)∠DBF的度数不变,理由如下:∵∠ACB=90°,点D是AB中点,∴CD=AB=AD,∴∠ECD=30°.∵△BDC为等边三角形,∴BD=DC,∠BDC=60°.又∵△DEF为等边三角形,∴DF=DE,∠FDE=60°,∴∠BDF+∠FDC=∠EDC+∠FDC=60°,∴∠BDF=∠CDE.在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),∴∠DBF=∠DCE=30°,即∠DBF的度数不变.(3)过点E作EM⊥AB于点M,如图所示.在Rt△ABC中,∠A=30°,AC=6,∴AB=2BC,AC==BC=6,∴BC=2,AB=4.∵△DEF为等边三角形,∴∠DEF=60°,∵∠A=30°,∴∠ADE=30°,∴DE=AE,∴AM=AD=×AB=.在Rt△AME中,∠A=30°,AM=,∴AE=2EM,AM==EM,∴EM=1,AE=2,∴DE=2.【点评】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、含30度角的直角三角形.勾股定理以及等腰三角形的性质,解题的关键是:(1)找出∠CBD=60°、BD=BC;(2)利用全等三角形的判定定理SAS找出△BDF≌△CDE;(3)通过解含30度角的直角三角形求出AE.25.(12分)综合与实践:问题情境在综合实践课上,杨老师让同学们对一张长AB为12,宽BC为9的长方形纸片ABCD进行剪拼操作,如图(1),某数学兴趣小组将其沿对角线AC剪开,得到两张三角形纸片分别是△ABC和△A′DC′.操作发现(1)若将这两张三角形纸片按图(2)摆放,连接BD,他们发现AC⊥BD,请你证明这个结论.操作探究(2)在图(2)中,将△A′C′D纸片沿射线AC的方向平移,连接BC′,BA',在平移的过程中:①如图(3),当BA′与C′D平行时,四边形A′BC′D是平行四边形吗?请说明理由,并求出此时△A′C′D平移的距离;②当BD经过点C时,画出图形,并求出△A′C′D平移的距离.【分析】(1)证明A、C两点到B、D距离分别相等,则A、C在BD垂直平分线上;(2)①由A′B=C′D,A′B∥C′D四边形A′BC′D是平行四边形,求AC′求△A′C′D平移的距离;②根据图形由面积法求A′G,进而求△A′CD′平移距离.【解答】(1)证明:∵四边形ABCD时长方形∴AB=CD,BC=AD∴点A、C都在线段BD的垂直平分线上∴AC垂直平分BD,即AC⊥BD(2)①解:四边形A′BC′D是平行四边形。
2018-2019学年度第二学期期末八年级质量检测数学试题本试卷分第1卷(选择题)和第1I 卷(非选择题)两部分,第1卷1至2页,第II 卷3至5页,满分100分;考试时间120分钟. 注意事项: 1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考 生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色签字笔描黑,第1卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.下列图形中,既是轴对称图形又是中心对称图形的是( )2.下列多项式中,不能..分解因式的是( ) A .ab 十a B .a 2 -9 C.a 2 -2a-l D .4x 2+4x+1 3.已知一个多边形的每一个内角都等于144°,则这个多边形的边数是( )A .6B .8 C.10 D.12 4.下列分式变形中,正确的是( )A .b a b a 221= B .b a b a 33= C .b a b a -=-- D .b a b a -=-- 5.如图,在Rt △ABC 中,∠A=90°,BD 是△ABC 的角平分线,若AC=10,CD=6,则点D 到BC 的距离是( )A .10B .8 C.6 D.46.如图所示的图案,其外轮廓是一个正五边形,绕它的中心旋转一定的角度后能够与自身重合,则这个旋转角可能是()A .90°B .72°C .60°D .36°7.己知ab=4,b-a=7,则a 2b-ab 2的值是( )A. 11B. 28C.-11D.-288.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设( )A .直角三角形的每个锐角都小于45°B .直角三角形有一个锐角大于45°C .直角三角形的每个锐角都大于45°D .直角三角形有一个锐角小于45° 9.如图,己知Rt △ABC ,∠A=90°,D 是AC 边上一点,若用尺规在BC 边上确定一点E ,使得线段DE ⊥BC ,则下列作图错误的是( )A. B . C . D10.己知实数a>2,且a 是关于x 的不等式x+b ≥3的一个解,则b 不可能...是( ) A. 0 B. 1 C. 2 D.3第Ⅱ卷注意事项:1.用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效2.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色签字笔描黑, 二、填空题:本题共6小题,每小题2分,共12分.11.若分式5x x有意义,则实数x 的取值范围是 .12.如图,为估计池塘岸边A ,B ,两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得MN=40m ,则A ,B 两点间的距离是 m .13.x 的3倍与5的差不大于4,列不等式为 .14.如图,△ABC 是边长为6的等边三角形,点D 在BC 的延长线上,做DF ⊥AB ,垂足为F ,若CD=4,则AF 的长等于 .15.若一个平行四边形三条边的长分别是a+1,a+7,3a-1,则a 的值是 . 16.如图,已知△ABC ,D 是AB 上一点,E 是BC 延长线上一点,将△ABC 绕点C顺时针方向旋转,恰好能与△EDC 重合.若∠A=33°,则旋转角为 °.三、解答题:本题共9小题,共58分. 17.(本题满分6分)因式分解:(1) a 2b-4b: (2) (x-7)(x-5)+2x-1018.(本题满分5分)解不等式组⎪⎩⎪⎨⎧>+≤-x x x x 21232并把它的解集表示在数轴上.19.(本题满分5分)如图,已知点E ,F 在线段AB 上,AE=BF ,∠ADF=∠BCE=90°,AD=BC . 求证:DF=CE.20.(本题满分6分)八⑴班和八⑵班学生一起去春游,每班都需要费用2000元,已知⑴班的人数是⑵班人数的54,因此⑴班比⑵班的人均费用多10元.求⑴班和⑵班的人均费用分别是多少元. 21.(本题满分6分)如图,在5×13的正方形网格中,点A ,B ,C ,P 都在格点上.⑴将△ABC 沿BC 方向平移得到△A 1B 1C 1,且A 1C 1经过点P ,画出△A 1B 1C 1; ⑵将△ABC 沿BC 方向平移m 个单位得到△A 2B 2C 2,此时点P 落在△A 2B 2C 2的内部.直接写出m 的取值范围.22.(本题满分6,E 是AB 边上一点,请在CD 边上确定点F ,使得∠AFC=∠AEC .⑴小明同学用尺规作图如下:以点D 为圆心,以BE 长为半径作弧交DC 于点F ,连接AF ,则∠AFC 就是所求作的角(如图1).小明的做法正确吗?请说明理由: ⑵小颖同学说:我只需一把无刻度的直尺就能在CD 边上确定点F 的位置.请根据小颖同学的方法在图2中作出∠AFC.图1 图223.(本题满分7分)若分式A ,B 的和化简后是整式,则称A ,B 是一对整合分式.⑴判断44222---x x x 与22-x x 是否是一对整合分式,并说明理由;⑵己知分式M ,N 是一对整合分式,ba ba M +-=2,直接写出两个符合题意的分式N. 24.(本题满分8分)小明和小亮参加10000米健身活动,他俩同时从A 地出发,小明先跑步10000米到达B 地后徒步返回,小亮则徒步到达B 地后跑步返回.他们离A 地的距离y (米)与运动时间x (分)关系的部分图像如图所示. ⑴求小明徒步返回时的函数表达式;⑵两人第一次相遇1小时后,低头暴走的小明抬头发现,小亮已跑在他的前面.问小亮跑步返回的速度大于多少米/分?25.(本题满分9分)如图,在△ABC中,∠BAC=90°,AB=AC=4,D是BC边上一点,连接AD,以AD为直角边向右作等腰直角三角形ADE,其中∠DAE=90°.⑴连接CE,求证:△ABD≌△ACE;⑵当BD为何值时,△ADE的周长最小;⑶若DE交AC于点F,求BD为何值时,△ADF为等腰三角形.数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题3分,满分30分) 1.C 2.C 3.C 4.A 5.D 6.B 7.D 8.A 9.D 10.A 二、填空题:(本大题有6小题,每小题2分,满分12分)11.5x ≠ 12.80 13.35x -≤4 14.1 15.1或4 16.82 三、解答题(本大题共9小题,满分58分) 17.(本题满分6分)(1)解:原式=2(4)b a - ······················································································ 1分=(2)(2)b a a +- ·································································· 3分(2)解一:原式=(7)(5)2(5)x x x --+- ····························································· 4分=(5)(72)x x --+ ································································· 5分=2(5)x - ··············································································· 6分解二:原式=21235210x x x -++- ······························································· 4分 =21025x x -+ ······································································ 5分 =2(5)x - ··············································································· 6分18.(本题满分5分) 解:解不等式①,得 x ≤3.解不等式②,得 4x >-. ·············································································· 3分 把不等式①②的解集在同一数轴上表示为 ······················· 4分∴原不等式组的解集为x -4<≤3. ······························································· 5分 19.(本题满分5分)证明:∵AE =BF ,∴AF =BE . ······················································ 2分 又∵∠ADF =∠BCE =90°,AD =BC ,∴Rt △ADF ≌Rt △BCE . ·································· 4分 ∴DF =CE .······················································· 5分20.(本题满分6分)解:设(2)班的人均费用为x 元,则(1)班的人均费用为(x +10)元,根据题意得 200020004105x x =⨯+. ··························································································· 3分 解得 x =40. ·································································································· 4分BCDAEF经检验x =40是所列方程的解. ······································································· 5分 ∴x +10=50.答:(1)班的人均费用为50元,(2)班的人均费用为40元. ······················· 6分 21.(本题满分6分)(1)······························ 3分(2)1462m << ···································································································· 6分(说明:若答案为1462m ≤≤得2分;若只有一边数值正确给1分)22.(本题满分6分)(1)小明的做法正确,理由如下: ∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD . ······················ 1分∵BE =DF ,∴AE =C F . ···································································································· 2分 ∴四边形AECF 是平行四边形.∴∠AFC =∠AEC ······························································································ 3分 (2)作图如下:··························· 5分∴图中∠AFC 就是所求作的角. ···································································· 6分23.(本题满分7分)(1)是一对整合分式,理由如下:∵2222442x x x x x --+-- 22224(2)4x x x x x --++=-················································································· 1分 3244x x x -=-x = ·············································································································· 2分AB CDEF AB CDEF满足一对整合分式的定义,∴22244x x x ---与22x x -是一对整合分式.························································· 3分(2) 答案不唯一,如12b a N a b -=+,24a b N a b+=+. ·············································· 7分(说明:若所写的1N ,2N 都正确,但化简后12N N =,如13b N a b =+,223ab N a ab=+则只给3分)24.(本题满分8分)解:(1)设小明徒步返回时的函数表达式为y kx b =+, 由图象可知y k x b=+过点(55,10000)和(180,0), ∴10000550=180k b k b =+⎧⎨+⎩,. ······················································································ 2分解得 =8014400.k b -⎧⎨=⎩,∴小明徒步返回时的函数表达式为8014400y x =-+. ································· 3分 (2)把x =80代入8014400y x =-+,得8000y =.∴小亮徒步前往B 地时的函数表达式为100y x =,把y =10000代入100y x =,得100x =. ························································ 4分 ∴小亮到达B 地时相应的坐标为(100,10000). 解法1:设小亮跑步返回时的函数表达式为y mx n =+,把(100,10000)代入y mx n =+得10000100n m =-,∴小亮跑步返回时的函数表达式为10000100y mx m =+-. ························· 6分 ∵当8060140x =+=时,小亮已跑在小明的前面, 此时,小亮离A 地的距离小于小明离A 地的距离.∴140100001008014014400m m ⨯+--⨯+<. ············································· 7分 解得 170m -<. ∴170m >.∴小亮跑步返回时的速度大于170米/分. ··················································· 8分 解法2:由(1)可得,小明徒步返回时的速度为80米/分. 设小亮跑步返回时的速度为v 米/分,则两人第一次相遇1小时后,小明的总路程为:1000080806055+⨯+-()16800=(米), 小亮的总路程为:100001401001000040v v +-=+()()(米). ··················· 6分 ∵第一次相遇1小时后小亮已跑在小明的前面,∴100004016800v +> ···················································································· 7分 解得 170v >∴小亮跑步返回时的速度大于170米/分. ··················································· 8分25.(本题满分9分)(1)证明:在等腰直角三角形ABC 和等腰直角三角形ADE 中,∵AB =AC ,∠BAC =∠DAE =90°,AD =AE . ∴∠BAD =∠CA E . ··························· 2分 ∴△ABD ≌△ACE . ························· 3分 (2)∵∠DAE =90°,AD =AE .∴由勾股定理可得DE.∴△ADE 周长等于AD +AE +DE=2AD=(2AD . ····················· 4分 ∴当AD 最小时△ADE 周长最小.由垂线段最短得,当AD ⊥BC 时AD 最小. ·················································· 5分 ∵AB =AC =4,∠BAC =90°,∴此时1122BD BC =⨯=∴当BD =时,△ADE 的周长最短. ····················································· 6分 (3)若△ADF 是等腰三角形,则有三种可能,分别为:①AD =AF ,②DF =AF ,③AD = DF .①当AD =AF 时, ∠AFD =∠ADF =45°,∴∠DAF =90°=∠DAE ,∴AE 与 AC 重合,AD 与AB 重合.∴BD =0. ··················································· 7分 ②当DF =AF 时,∴∠DAF =∠ADF =45°=12BAC ∠.∴12BD BC ==. ······························· 8分③当AD = DF 时,∵∠B +∠BAD +∠ADB =180°, ∠ADF +∠CDF +∠ADB =180°, ∴∠B +∠BAD =∠ADF +∠CDF . ∵∠B =∠ADF =∠DCF =45°, ∴∠BAD =∠CDF . ∴△ABD ≌△DCF . ∴CD =AB =4.∴4BD =.综上所述,当BD =0,4时,△ADF 是等腰三角形. ······················· 9分FABC EFABCE。
2018-2019学年八年级(下)期末数学试卷1一、选择题(本大题共12小题,共36.0分)1.下列图形中,中心对称图形有A. B. C. D.2.若,则下列不等式不一定成立的是A. B. C. D.3.下列分式中,最简分式是A. B. C. D.4.如图,沿直线边BC所在的直线向右平移得到,下列结论中不一定正确的是A. B.C. D. 四边形四边形5.如图,在中,,,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则的度数为A.B.C.D.6.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是A. B. C. D.7.如图,中,,AD平分,点E为AC的中点,连接DE,若的周长为26,则BC的长为A. 20B. 16C. 10D. 88.如图,已知四边形ABCD是平行四边形,若AF、BE分别是、的平分线,,,则EF的长是A. 1B. 2C. 3D. 49.若关于x的分式方程有增根,则m的值是A. 或B.C.D.10.如图,直线与相交于点P,点P的纵坐标为,则关于x的不等式的解集在数轴上表示正确的是A.B.C.D.11.如图,在菱形ABCD中,对角线AC、BD相交于点O,,,于点E,则AE的长等于A. 5B.C.D.12.如图,▱ABCD中,,F是BC的中点,作,垂足E在线段CD上,连接EF、AF,下列结论:;;;中,一定成立的是A. 只有B. 只有C. 只有D.二、填空题(本大题共8小题,共24.0分)13.分解因式:______.14.如果分式有意义,那么x的取值范围是______.15.若正多边形的一个内角等于,则这个正多边形的边数是______.16.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元若每个篮球80元,每个足球50元,则篮球最多可购买______个17.如图,已知点P是角平分线上的一点,,,M是OP的中点,,如果点C是OB上一个动点,则PC的最小值为______cm.18.如图,已知中,,,将绕点A逆时针反向旋转到的位置,连接,则的长为______.19.若关于x的分式方程无解,则______.20.一组正方形按如图所示的方式放置,其中顶点在y轴上,顶点、、、、、、在x轴上,已知正方形的边长为1,,,则正方形的边长是______.三、计算题(本大题共1小题,共6.0分)21.解不等式组,并将它的解集在数轴上表示出来.四、解答题(本大题共9小题,共72.0分)22.先化简,再求值:,其中.23.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且.求证:四边形AECF是平行四边形.24.北京到济南的距离约为500km,一辆高铁和一辆特快列车都从北京去济南,高铁比特快列车晚出发3小时,最后两车同时到达济南,已知高铁的速度是特快列车速度的倍求高铁和特快列车的速度各是多少?列方程解答25.如图,平面直角坐标系中,已知点,若对于平面内一点C,当是以AB为腰的等腰三角形时,称点C时线段AB的“等长点”.请判断点,点是否是线段AB的“等长点”,并说明理由;若点是线段AB的“等长点”,且,求m和n的值.26.为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.27.如图,在矩形ABCD中,,点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.当t为何值时,四边形ABQP是矩形;当t为何值时,四边形AQCP是菱形.28.问题的提出:如果点P是锐角内一动点,如何确定一个位置,使点P到的三顶点的距离之和的值为最小?问题的转化:把绕点A逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:;问题的解决:当点P到锐角的三顶点的距离之和的值为最小时,求和的度数;问题的延伸:如图2是有一个锐角为的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.29.如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;在的前提下,求EF的最小值和此时的面积;当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.30.如图,中,,,在AB的同侧作正、正和正,求四边形PCDE面积的最大值.答案和解析【答案】1. B2. D3. C4. C5. D6. B7. A8. B9. D10. A11. C12. C13.14.15. 1216. 1617. 418.19. 或6或120.21. 解:解不等式,得:,解不等式,得:,将不等式的解集表示在数轴上如下:所以不等式组的解集为.22. 解:原式,当时,原式.23. 证明:四边形ABCD是平行四边形,,且,,,,四边形AECF是平行四边形.24. 解:设特快列车的速度为x千米时,则高铁的速度为千米时,根据题意得:,解得:,经检验,是原分式方程的解,.答:特快列车的速度为100千米时,高铁的速度为250千米时.25. 解:点,,,,,.点,,,是线段AB的“等长点”,点,,,,,不是线段AB的“等长点”;如图,在中,,,,.分两种情况:当点D在y轴左侧时,,,点是线段AB的“等长点”,,,,;当点D在y轴右侧时,,,,点是线段AB的“等长点”,,.综上所述,,或,.26. 解:设购买甲种树苗x株,则购买乙种树苗株,由题意得解得,则答:甲、乙两种树苗各购买5000、2000株根据题意得解得则甲种树苗至多购买2800株设购买树苗的费用为W根据题意得:随x的增大而减小当时,最小27. 解:由已知可得,,在矩形ABCD中,,,当时,四边形ABQP为矩形,,得故当时,四边形ABQP为矩形.由可知,四边形AQCP为平行四边形当时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得,故当时,四边形AQCP为菱形.28. 解:问题的转化:如图1,由旋转得:,,是等边三角形,,,.问题的解决:满足:时,的值为最小;理由是:如图2,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、、在同一直线上时,的值为最小,,,,、P、在同一直线上,由旋转得:,,,、、在同一直线上,、P、、在同一直线上,此时的值为最小,故答案为:;问题的延伸:如图3,中,,,,,把绕点B逆时针旋转60度得到,连接,当A、P、、在同一直线上时,的值为最小,由旋转得:,,,,是等边三角形,,,,由勾股定理得:,,则点P到这个三角形各顶点的距离之和的最小值为.29. 解:,证明:、F的速度相同,且同时运动,,又四边形ABCD是菱形,,,,是等边三角形,同理也是等边三角形,,在和中,, ≌ ,;由得: ≌ ,,,,是等边三角形,,如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,,,,的最小值是,中,,,,,;如图3,当点E运动到DC边上时,大小不发生变化,在和中,,≌ ,,,,,,,、B、M、D四点共圆,.30. 解:延长EP交BC于点F,,,,,平分,又,,设中,,,则,,和都是等边三角形,,,,,≌ ,,同理可得: ≌ ,,四边形CDEP是平行四边形,四边形CDEP的面积,又,,,即四边形PCDE面积的最大值为1.【解析】1. 解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合.2. 解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以,不等号的方向改变,故C不成立;D、当时,成立,当,时,,故D不一定成立,故选:D.根据不等式的性质,可得答案.本题考查了不等式的性质,利用不等式的性质是解题关键.3. 解:A、,不符合题意;B、,不符合题意;C、是最简分式,符合题意;D、,不符合题意;故选:C.最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.本题考查了最简分式的定义及求法一个分式的分子与分母没有公因式时,叫最简分式分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题在解题中一定要引起注意.4. 解:沿直线边BC所在的直线向右平移得到,,,,,,,四边形四边形,但不能得出,故选:C.由平移的性质,结合图形,对选项进行一一分析,选择正确答案.本题考查了平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5. 解:等腰中,,,,线段AB的垂直平分线交AB于D,交AC于E,,,.由等腰中,,,即可求得的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得,继而求得的度数,则可求得答案.此题考查了线段垂直平分线的性质以及等腰三角形的性质此题难度不大,注意掌握数形结合思想的应用.6. 解:当时,四边形EFGH是矩形,,,,,即,四边形EFGH是矩形;故选:B.根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.7. 解:,AD平分,,,点E为AC的中点,.的周长为26,,.故选:A.根据等腰三角形的性质可得,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.8. 解:四边形ABCD是平行四边形,,,,,,、BE分别是、的平分线,,,,,,,.故选:B.由四边形ABCD是平行四边形,若AF、BE分别是、的平分线,易得与是等腰三角形,继而求得,则可求得答案.此题考查了平行四边形的性质以及等腰三角形的判定与性质注意证得与是等腰三角形是关键.9. 解:去分母得:,由分式方程有增根,得到,即,把代入整式方程得:,解得:,分式方程去分母转化为整式方程,由分式方程有增根,得到,求出x的值,代入整式方程求出m的值即可.本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.10. 解:把代入,得,解得.当时,,所以关于x的不等式的解集为,用数轴表示为:.故选:A.先把代入,得出,再观察函数图象得到当时,直线都在直线的上方,即不等式的解集为,然后用数轴表示解集.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.11. 解:四边形ABCD是菱形,,,,在中,,,故,解得:.故选:C.在中,根据求出OC,再利用面积法可得,由此求出AE即可.此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.12. 解:是BC的中点,,在▱ABCD中,,,,,,,,,,故正确;延长EF,交AB延长线于M,四边形ABCD是平行四边形,,,为BC中点,,在和中,,≌ ,,,,,,,,故正确;,,,故错误;设,则,,,,,,故正确,故选:C.利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出 ≌ ,利用全等三角形的性质得出对应线段之间关系进而得出答案.此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出 ≌ .13. 解:,,.故答案为:.先提取公因式y,然后再利用平方差公式进行二次分解.本题考查了提公因式法,公式法分解因式,利用平方差公式进行二次分解因式是解本题的难点,也是关键.14. 解:由题意得,,即,故答案为:.根据分式有意义的条件是分母不为0,列出算式,计算得到答案.本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义分母为零;分式有意义分母不为零;分式值为零分子为零且分母不为零.15. 解:正多边形的一个内角等于,它的外角是:,它的边数是:.故答案为:12.首先根据求出外角度数,再利用外角和定理求出边数.此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.16. 解:设购买篮球x个,则购买足球个,根据题意得:,解得:.为整数,最大值为16.故答案为:16.设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.17. 解:是角平分线上的一点,,,,M是OP的中点,,,,点C是OB上一个动点,的最小值为P到OB距离,的最小值,故答案为:4.根据角平分线的定义可得,再根据直角三角形的性质求得,然后根据角平分线的性质和垂线段最短得到答案.本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.18. 解:连接,交于D,如图,中,,,,绕点A逆时针反向旋转到的位置,,,,,垂直平分,为等边三角形,,,.故答案为.连接,交于D,如图,利用等腰直角三角形的性质得,再根据旋转的性质得,,,,则可判断垂直平分,为等边三角形,所以,,然后计算即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰直角三角形的性质.19. 解:为原方程的增根,此时有,即,解得.为原方程的增根,此时有,即,解得.方程两边都乘,得,化简得:.当时,整式方程无解.综上所述,当或或时,原方程无解.该分式方程无解的情况有两种:原方程存在增根;原方程约去分母后,整式方程无解.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.20. 解:正方形的边长为1,,,,,,,则,同理可得:,故正方形的边长是:,则正方形的边长为:,故答案为:.利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.21. 首先解每个不等式,然后把每个解集在数轴上表示出来,确定不等式的解集的公共部分就是不等式组的解集.本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来向右画;,向左画,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示.22. 首先将括号里面通分,再将分子与分母分解因式进而化简得出答案.此题主要考查了分式的化简求值,正确分解因式是解题关键.23. 根据平行四边形性质得出,且,推出,,根据平行四边形的判定推出即可.本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.24. 设特快列车的速度为x千米时,则高铁的速度为千米时,根据时间路程速度结合高铁比特快列车少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25. 先求出AB的长与B点坐标,再根据线段AB的“等长点”的定义判断即可;分两种情况讨论,利用对称性和垂直的性质即可求出m,n.本题考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,坐标与图形性质解的关键是理解新定义,解的关键是画出图形,是一道中等难度的中考常考题.26. 列方程求解即可;根据题意,甲乙两种树苗的存货量大于等于树苗总量的列出不等式;用x表示购买树苗的总费用,根据一次函数增减性讨论最小值.本题为一次函数实际应用问题,综合考察一元一次方程、一元一次不等式及一次函数的增减性.27. 当四边形ABQP是矩形时,,据此求得t的值;当四边形AQCP是菱形时,,列方程求得运动的时间t;本题考查了菱形、矩形的判定与性质解决此题注意结合方程的思想解题.28. 问题的转化:根据旋转的性质证明是等边三角形,则,可得结论;问题的解决:运用类比的思想,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、、在同一直线上时,的值为最小,确定当:时,满足三点共线;问题的延伸:如图3,作辅助线,构建直角,利用勾股定理求的长,即是点P到这个三角形各顶点的距离之和的最小值.本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键,学会利用旋转的方法添加辅助线,构造特殊三角形解决问题,属于中考压轴题.29. 先证明和是等边三角形,再证明 ≌ ,可得结论;由 ≌ ,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;同理得: ≌ ,则可得,所以,则A、B、M、D四点共圆,可得.此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形的判定与性质注意证得 ≌ 是解此题的关键.30. 先延长EP交BC于点F,得出,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积,最后根据,判断的最大值即可.本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.。
2018-2019学年河南省开封市八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列各组数中,可以组成直角三角形的是()A.1:2:3B.2,3,4C.3,4,5D.32,42,52 3.(3分)下列计算正确的是()A.+=B.3﹣=2C.2+=2D.=24.(3分)汽车在匀速行驶过程中,路程s、速度v、时间t之间的关系为s=vt,下列说法正确的是()A.s、v、t都是变量B.s、t是变量,v是常量C.v、t是变量,s是常量D.s、v是变量,t是常量5.(3分)数据0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4B.2和2C.1和2D.3和26.(3分)正比例函数y=2x的图象必经过点()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)7.(3分)已知点A(﹣2,y1),B(1,y2)都在直线y=﹣2x+2上,则y1、y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.y1≥y28.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm9.(3分)在▱ABCD中,已知AB=6,BE平分∠ABC交AD边于点E,点E将AD分为1:3两部分,则AD的长为()A.8或24B.8C.24D.9或2410.(3分)正方形ABCD,正方形CEFG如图放置,点B、C、E在同一条直线上,点P在BC边上,P A=PF,且∠APF=90°,连接AF交CD于点M.有下列结论:①EC=BP;②AP=AM:③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD+S正方形CGFE=2S△APF,其中正确的是()A.①②③B.①③④C.①②④⑤D.①③④⑤二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的众数为.13.(3分)将直线y=2x+3向下平移2个单位,得直线.14.(3分)矩形两条对角线的夹角为60°,对角线长为14,则该矩形较长的边长为.15.(3分)如图所示,直线y=x+1与y轴相交于点A1,以OA1为边作正方形OA1B1C1,记作第一个正方形;然后延长C1B1与直线y=x+1相交于点A2,再以C1A2为边作正方形C1A2B2C2,记作第二个正方形;同样延长C2B2与直线y=x+1相交于点A3,再以C2A3为边作正方形C2A3B3C3,记作第三个正方形;…,依此类推,则第n个正方形的边长为.三、解答题(本大题共8小题,共55分.解答应写出文字说明、证明过程或演算步骤)16.(10分)计算:(1)()﹣()(2)(3)(3)17.(6分)如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.18.(6分)如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD的中点.求证:四边形EFGH是平行四边形.19.(6分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示.(1)A,B两城相距km;(2)哪辆车先出发?哪辆车先到B城?(3)甲车的平均速度为km/h,乙车的平均速度为km/s?(4)你还能从图中得到哪些信息?20.(6分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:选手平均数众数中位数方差甲8b80.4乙α9c 3.2根据以上信息,请解答下面的问题:(1)α=,b=,c=;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会.(填“变大”、“变小”或“不变”)21.(7分)某商店销售每台A型电脑的利润为100元,销售每台B型电脑的利润为150元,该商店计划一次购进A,B两种型号的电脑共100台,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的函数关系式;(2)该商店计划一次购进A,B两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,那么商店购进A型、B型电脑各多少台,才能使销售总利润最大?22.(7分)如图,正方形ABCD的对角线AC,BD相交于点O,点E是AC的一点,连接EB,过点A做AM⊥BE,垂足为M,AM与BD相交于点F.(1)猜想:如图(1)线段OE与线段OF的数量关系为;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.23.(7分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.(1)求m和b的值;(2)直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x 轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.2018-2019学年河南省开封市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.【解答】解:A、被开方数含分母,不是最简二次根式;B、是最简二次根式;C、被开方数含能开得尽方的因数,不是最简二次根式;D、被开方数含能开得尽方的因数,不是最简二次根式;故选:B.2.【解答】解:A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;B、22+32≠42,根据勾股定理的逆定理不是直角三角形,故此选项错误;C、32+42=52,根据勾股定理的逆定理是直角三角形,故此选项正确;D、(32)2+(42)2≠(52)2,根据勾股定理的逆定理不是直角三角形,故此选项错误.故选:C.3.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、2与不能合并,所以C选项错误;D、原式==2,所以D选项正确.故选:D.4.【解答】解:汽车在匀速行驶过程中,速度v不变,是常量,t、s是变量;故选:B.5.【解答】解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.故选:B.6.【解答】解:A、∵当x=﹣1时,y=﹣2,∴此点在正比例函数的图象上,故本选项正确;B、∵当x=﹣1时,y=﹣2≠2,∴此点不在正比例函数的图象上,故本选项错误;C、当x=1时,y=2≠﹣2,∴此点不在正比例函数的图象上,故本选项错误;D、当x=2时,y=4≠1,∴此点不在正比例函数的图象上,故本选项错误.故选:A.7.【解答】解:∵一次函数y=﹣2x+2中,k=﹣2<0,∴y随x的增大而减小,∵﹣2<1,∴y1>y2.故选:C.8.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选:D.9.【解答】解:∵BE平分∠ABC,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠CBE,∴∠ABE=∠BEA,∴AB=AE=6.∵点E将AD分为1:3两部分,∴DE=18或DE=2,∴当DE=18时,AD=24;当DE=2,AD=8;故选:A.10.【解答】解:①∵∠EPF+∠APB=90°,∠APB+∠BAP=90°,∴∠EPF=∠BAP.在△EPF和△BAP中,有,∴△EPF≌△BAP(AAS),∴EF=BP,∵四边形CEFG为正方形,∴EC=EF=BP,即①成立;②无法证出AP=AM;③∵FG∥EC,∴∠GFP=∠EPF,又∵∠EPF=∠BAP,∴∠BAP=∠GFP,即③成立;④由①可知EC=BP,在Rt△ABP中,AB2+BP2=AP2,∵P A=PF,且∠APF=90°,∴△APF为等腰直角三角形,∴AF2=AP2+EP2=2AP2,∴AB2+BP2=AB2+CE2=AP2=AF2,即④成立;⑤由④可知:AB2+CE2=AP2,∴S正方形ABCD+S正方形CGFE=2S△APF,即⑤成立.故成立的结论有①③④⑤.故选:D.二、填空题(本大题共5小题,每小题3分,共15分)11.【解答】解:由二次根式有意义,得到x﹣3≥0,解得:x≥3,故答案为:x≥312.【解答】解:在数据10,10,11,12,8,10中,因为10出现了3次,所以10为这组数据的众数,故答案为:10.13.【解答】解:将直线y=2x+3向下平移2个单位,得到直线y=2x+3﹣2,即y=2x+1.故答案为:y=2x+1.14.【解答】解:如图,在矩形ABCD中,AC、BD相交于点O,∠AOB=60°,则OA=OB=×14=7,∴△AOB为等边三角形,∴AB=7,Rt△ABC中,由勾股定理得:BC====7,故答案为:7.15.【解答】解:根据题意不难得出第一个正方体的边长=1,那么:n=1时,第1个正方形的边长为:1=20n=2时,第2个正方形的边长为:2=21n=3时,第3个正方形的边长为:4=22…第n个正方形的边长为:2n﹣1故答案为:2n﹣1三、解答题(本大题共8小题,共55分.解答应写出文字说明、证明过程或演算步骤)16.【解答】解:(1)原式=2﹣﹣﹣=﹣;(2)原式=18﹣3=15.17.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+62=(10﹣x)2.解得:x=3.2答:折断处离地面的高度是3.2尺.18.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E、F、G、H分别是OA、OB、OC、OD的中点,∴EF∥AB,EF=AB,GH∥CD,GH=CD,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形.19.【解答】解:(1)由图示知:A,B两城相距300km;(2)由图示知,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城.答:甲车先出发,乙车先到达B城;(3)如图所示:甲车的平均速度为:=60(km/h),乙车的平均速度为:=100(km/h),答:甲、乙两车的平均速度分别是60km/h、100km/h.(4)300﹣60×4=60(千米),答:乙车到达B城时,甲车距离B城的距离60千米.故答案为:300;60;100.20.【解答】解:(1)由题可得,a=(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答案为:8,8,9;(2)乙成绩变化情况的折线如下:(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定.(4)由题可得,选手乙这6次射击成绩5,9,7,10,9,8的方差=[(5﹣8)2+(9﹣8)2+(10﹣8)2+(9﹣8)2+(8﹣8)2]=2.5<3.2,∴选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.故答案为:变小.21.【解答】解:(1)由题意可得,y=100x+150(100﹣x)=﹣50x+15000,即y与x的函数关系式是y=﹣50x+15000;(2)由题意可得,100﹣x≤2x,解得,x≥,∵y=﹣50x+15000,∴当x=34时,y取得最大值,此时y=13300,100﹣x=66,即商店购进A型34台、B型电脑66台,才能使销售总利润最大.22.【解答】解:(1)∵正方形ABCD的对角线AC、BD相交于点O,AM⊥BE,∴∠AOB=∠BOE=∠AMB=90°,∵∠AFO=∠BFM(对顶角相等),∴∠OAF=∠OBE(等角的余角相等),又∵OA=OB(正方形的对角线互相垂直平分且相等),∴△AOF≌△BOE(ASA),∴OE=OF.故答案为:OE=OF;(2)成立.理由如下:∠AOF=∠BOE=90°,OA=OB,∵∠ABC=90°,∴∠EBC+∠ABM=90°,∵∠ABM+∠BAF=90°,∴∠EBC=∠BAF,又∵∠OAB=∠OBC=45°,∴∠OAM=∠OBE,∴△AOF≌△BOE(ASA),∴OE=OF.23.【解答】解:(1)把点C(2,m)代入直线y=x+2中得:m=2+2=4,∴点C(2,4),∵直线y=﹣x+b过点C,4=﹣+b,b=5;(2)①由题意得:PD=t,y=x+2中,当y=0时,x+2=0,x=﹣2,∴A(﹣2,0),y=﹣x+5中,当y=0时,﹣x+5=0,x=10,∴D(10,0),∴AD=10+2=12,∵△ACP的面积为10,∴•4=10,t=7,则t的值7秒;②存在,分三种情况:i)当AC=CP时,如图1,过C作CE⊥AD于E,∴PE=AE=4,∴PD=12﹣8=4,即t=4;ii)当AC=AP时,如图2,AC=AP1=AP2==4,∴DP1=t=12﹣4,DP2=t=12+4;iii)当AP=PC时,如图3,∵OA=OB=2∴∠BAO=45°∴∠CAP=∠ACP=45°∴∠APC=90°∴AP=PC=4∴PD=12﹣4=8,即t=8;综上,当t=4秒或(12﹣4)秒或(12+4)秒或8秒时,△ACP为等腰三角形.。
2019年6月八年级下期期末数学试题(北师大版)考试时间:120分钟试卷总分:150分A卷(100分)一.选择题(本大题共小10题,每小题3分,共30分)1.下列图案是我国几家银行的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.2.若分式的值为0,则x等于()A.﹣1B.﹣1或2C.﹣1或1D.13.如图在数轴上表示的解集是()A.﹣3<x<2B.﹣3≤x<2C.﹣3≤x≤2D.﹣3<x≤24.下列各因式分解正确的是()A.x2+2x+1=(x﹣1)2B.x2+2x﹣1=(X﹣1)2C.x3﹣9x=x(x+3)(x﹣3)D.﹣x2+(﹣2)2=(x﹣2)(x+2)5.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=15°,则∠2度数为()A.15°B.30°C.45°D.55°6.若关于x的分式方程有增根,则m的值是()A.m=2或m=6B.m=2C.m=6D.m=2或m=﹣6 7.如图,直线y=kx+b与直线y=﹣交于点A(m,2),则关于x的不等式kx+b x+的解集是()A.x≤2B.x≥1C.x≤1D.x≥28.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为()A.12B.24C.36D.489.正方形具有而矩形不一定有的性质是()A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等10.已知关于x的方程=3的解是正数,则m的取值范围为()A.m<﹣9B.m>﹣9且m≠﹣6C.m<﹣9D.m<﹣9且m≠﹣6二.填空题(本大题共4小题,每小题4分,共16分)11.化简:=.12.因式分解:m3﹣n2m=.13.一个正多边形的每个外角等于72°,则它的边数是.14.如图,将一块30°角的直角三角板ACB(∠B=30°)绕直角顶点C逆时针旋转到△A′CB′的位置,此时点A′刚好在AB上,若AC=3,则点B与点B'的距离为.三.解答题(本大题共6小题,共54分)15.(本小题满分12分,每题6分)(1)解不等式组:(2)解方程:16.(本小题满分6分)先化简,再求值:(x﹣2﹣),其中x=.17.(本小题满分8分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,18.(本小题满分8分)如图,正方形网格中,△ABC为格点三角形(顶点都在格点上)(1)作出△ABC绕点A逆时针旋转90°后的△AB1C1;将△ABC向上平移3格,在向左平移4格得到△A2B2C2;(2)设小正方形的边长为1,求出△ABC旋转到△AB1C1的过程中AB所扫过的面积(结果保留π)19.(本小题满分10分)某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.20.(本小题满分10分)已知:在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD 的中点.过点A做AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCF的面积.(3)当△ABC满足什么条件时,四边形ADCF是正方形,请说明理由.B卷(50分)一、填空题(每小题4分,共20分)21.多项式kx2﹣9xy﹣10y2可分解因式得(mx+2y)(3x﹣5y),则k=,m=.22.若不等式组无解,则m应满足.23.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.24.如图,在△ABC中,DE是AC的垂直平分线且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD的度数为.25.已知:如图,∠MON=90°,四边形ABCD为矩形,A、B两点分别在射线ON、OM 上,AD=2,AB=4,A、B两点在ON、OM上滑动时,C、D点随之运动,则线段OD 的最大值为.二、解答题(26题8分,27题10分,28题12分,共计30分)26.(8分)阅读下面的材料,并解答问题:分式)0(282≥++x x x 的最大值是多少? 解:242242)2(224)2(22442282++=++++=+++=+++=++x x x x x x x x x x ∵x ≥0,∴x +2的最小值是2,∴24+x 的最大值是2,∴282++x x 的最大值为2+24+x =4 试用上述方法解答下列问题:(1)分式)3(73≥+x x 的最大值是 ;(2分)(3)解方程: 7364+++=+++x x x x (4分) 27.(10分)如图1,四边形ABCD 是正方形,在AB 的延长线上取一点E ,连接EC ,过点C 作CF ⊥EC 交AD 于F .(1)求证:EC=FC .(2)若G 、M 分别是AB 、CD 上一动点,连接GM .H 是GM 上的中点,连接BH ,当G 、M 运动到某一特殊位置时得到BH=BG+CM ,此时∠ABH 的度数是多少?请说明理由.(3)如图2在(2)的条件下,若BG=1,MC=,连接AH .求出四边形△AHMD 的面积.28.(12分)如图1,在平面直角坐标系中.直线y=﹣x +3与x 轴、y 轴相交于A 、B 两点,动点C 在线段OA 上,将线段CB 绕着点C 顺时针旋转90°得到CD ,此时点D 恰好落在直线AB 上时,过点D 作DE ⊥x 轴于点E .(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.2019年6月成都高新海螺九义校八年级下期数学试题参考答案A卷(100分)一.选择题(本大题共小10题,每小题3分,共30分)1.【解答】解:A、是轴对称图形,也是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是中心对称图形也是轴对称图形,不符合题意.故选:B.2.【解答】解:∵分式的值为0,∴|x|﹣1=0,x﹣2≠0,x+1≠0,解得:x=1.故选:D.3.【解答】解:由图可得,x≥﹣3且x<2,∴在数轴上表示的解集是﹣3≤x<2,故选:B.4.【解答】解:A、原式=(x+1)2,不符合题意;B、原式不能分解,不符合题意;C、原式=x(x2﹣9)=x(x+3)(x﹣3),符合题意;D、原式=(2+x)(2﹣x),不符合题意,故选:C.5.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+15°=45°,故选:C.6.【解答】解:去分母得:﹣x﹣m+x(x+2)=(x+2)(x﹣2),由分式方程有增根,得到x=2或x=﹣2,把x=2代入整式方程得:m=6;把x=﹣2代入整式方程得:m=2.7.【解答】解:把A(m,2)代入y=﹣,得2=﹣.解得m=1.则A(1,2).根据图象可得关于x的不等式kx+b x+的解集是x≤1.故选:C.8.【解答】解:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=24.故选:B.9.【解答】解:A、正方形和矩形的四个角都是直角,故本选项不符合题意;B、正方形和矩形的对角线互相平分,故本选项不符合题意;C、正方形的对角线互相垂直,矩形的对角线不互相垂直,故本选项符合题意.D、正方形和矩形的对角线都相等,故本选项不符合题意;故选:C.10.【解答】解:=3,去分母得2x+m=3x﹣9,移项合并得x=m+9,∴m+9>0,∴m>﹣9,∵x﹣3≠0,∴x≠3,m+9≠3,∴m≠﹣6,∴m的取值范围为m>﹣9且m≠﹣6.故选:B.二.填空题(本大题共4小题,每小题4分,共16分)11.【解答】解:+===﹣1,故答案为:﹣1.12.【解答】解:原式=m(m2﹣n2)=m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).13.【解答】解:360÷72=5.故它的边数是5.故答案为:5.14.【解答】解:如图,连BB′,∵∠B=30°,AC=3,∠ABC=90°,∴∠A=60°,AC=CA′=3,∴△CAA′是等边三角形,BC=,∴∠BCB′=60°,CB′=CB,△B′BC是等边三角形,∴B′C=BC=3.三.解答题(本大题共6小题,共54分)15.【解答】解:(1),由①得x≤3,……………………………………..2分由②得x>2,…………………………………….. 2分∴不等式组的解集为2<x≤3;…………………..2分(2)去分母得到:x2+2x+1﹣x2+1=4,…………2分解得:x=1,……………………………………..1分经检验:x=1是原方程的增根,…………2分∴原方程无解.……………………………..1分1分16.【解答】解:原式=()÷………………………….=()÷……………………………………..1分=÷……………………………………..1分=……………………………………..1分=2x﹣4……………………………………..1分当x=时,原式=……………………………………..1分17.【解答】解:(1)∵AB=AC,∴∠B=∠C,……………………………………..1分∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,……………………………………..1分而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,……………………………………..1分∴△ADF是等腰三角形;……………………………………..1分(2)∵DE⊥BC,∴∠DEB=90°,……………………………………..1分∵∠B=60°,BD=4,∴BE=BD=2,……………………………………..1分∵AB=AC,∴△ABC是等边三角形,……………………………………..1分∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.……………………………………..1分18.【解答】解:(1)△AB1C1,△A2B2C2如图所示.……………………………………..4分(2).……………………………………..4分19.【解答】解:(1)100××30+100××90=7800(元).……………..3分答:所需的购买费用为7800元.(2)设购买温馨提示牌x个,则购买垃圾箱(100﹣x)个,依题意,得:,………………………………..2分解得:45≤x≤48.……………………………………..1分∵x为整数,∴x=45,46,47,48,……………………………………..1分∴共4个购买方案,方案1:购买温馨提示牌45个、垃圾箱55个;方案2:购买温馨提示牌46个、垃圾箱54个;方案3:购买温馨提示牌47个、垃圾箱53个;方案1:购买温馨提示牌48个、垃圾箱52个.……………………………………..3分20.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE,……………………………………..1分∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,……………………………………..1分在△AEF和△DEB中,,∴△AEF≌△DEB(AAS)……………………………………..1分(2)由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,……………………………………..1分∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;……………………………………..1分连接DF,如图所示:∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,……………………………………..1分∴DF=AB=5,∵四边形ADCF是菱形,∴菱形ADCF的面积=AC▪DF=×4×5=10;……………………………………..1分(3)当AB=AC时,四边形ADCF是正方形……………………………………..1分理由:∵AB=AC,D是BC的中点∴AD⊥BC……………………………………..1分又∵四边形ADCF是菱形,∴菱形ADCF是正方形.……………………………………..1分B卷(50分)一、填空题(每小题4分,共20分)21.【解答】解:∵kx2﹣9xy﹣10y2=(mx+2y)(3x﹣5y),∴kx2﹣9xy﹣10y2=3mx2﹣5mxy+6xy﹣10y2,∴,解得:,故答案为:9,3.22.【解答】解:∵不等式组无解,∴m≥7.故答案为m≥7.23.【解答】解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.24.【解答】解:∵DE是AC的垂直平分线且分别交BC,AC于点D和E,∴AD=CD,∴∠C=∠DAC,∵∠C=25°,∴∠DAC=25°,∵在△ABC中,∠B=60°,∠C=25°,∴∠BAC=180°﹣∠B﹣∠C=95°,∴∠BAD=∠BAC﹣∠DAC=95°﹣25°=70°,故答案为:70°.25.【解答】解:如图,取AB的中点E,连接OE、DE、OD,∵OD <OE +DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB =4,BC =2,∴OE =AE =AB =2,DE ==2,∴OD 的最大值为:2+2. 故答案为:2+2.二、解答题(26题8分,27题10分,28题12分,共计30分)26.解:(1)11031101)1(3110)1(311033173-+=-+--=-+-=-+-=-+x x x x x x x x x x …..1分 ∵x ≥3,∴当x =3时,分式173-+x x 的值最大为8…………………..1分 (2)127312712)12(37)12(373646-+=-+--=+-=+-=+x x x x x x x .1分2x -1=±1或2x -1=±7 ∴x =0或x =1或x =4或x =-3……………………………………..1分∴当x =1时,分式1246-+x x 的值最大为10. ……………………...1分 (3)原方程可化为:71316141+++=+++x x x x 41317161+-+=+-+x x x x )4)(3(1)7)(6(1++=++x x x x (x +6)(x +7)=(x +3)(x +4)∴x =-5……………………...1分检验:当x =-5时, (x +3)(x +4)(x +6)(x +7) ≠0……………………...1分 ∴原方程的解为x =-5……………………...1分27.解:(1)证明:如题干图1,∵四边形ABCD 是正方形∴CD=BC ,∠D=∠DCB=∠ABC=90°,∴∠CBE=180°﹣90°=90°,………………...1分∴∠CBE=∠D∵CF ⊥EC ,∴∠ECF=90°,∴∠ECF ﹣∠BCF=∠BCD ﹣∠BCF ,……………………...1分∴∠DCF=∠BCE ,∴△DCF ≌△BCE ,∴EC=FC ,……………………...1分(2)∠ABH=60°,……………………...1分理由:如图2,延长BH 交CD 于N ,∵H 是MG 的中点,∴HM=HG ……………………...1分在正方形ABCD 中,DC ∥AB ,∴∠MNH=∠GBH ,∠NMH=∠BGH ,∴△HNM ≌△HGB ,∴HN=HB ,MN=GB ,……………………...1分∵BH=GB +MC ,∴NC=BH=BN ,∴∠NBC=30°,∴∠ABH=90°﹣30°=60°……………………...1分(3)如图3:延长BH 交CD 于N 作HP ⊥AB 于P .∴∠HPB=90°,∴∠PHB=90°﹣60°=30°……………………...1分由(2)得:BH=CN=GB +MC=1+∴BN=2(+1),……………………...1分由勾股定理得:PH=(+1)=,BC=(+1)=3+,∴S 四边形AHMD =S 四边形ABND ﹣S △AGH =﹣=.……………………...1分28.【解答】(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°,……………………...1分∴∠BCO=∠CDE,……………………...1分∵BC=CD,∴△BOC≌△CED.……………………...1分(2)∵△BOC≌△CED,∴OC=DE=m,BO=CE=3,∴D(m+3,m),……………………...1分把D(m+3,m)代入y=﹣x+3得到,m=﹣(m+3)+3,∴2m=﹣m﹣3+6,∴m=1,∴D(4,1),……………………...1分∵B(0,3),C(1,0),∴直线BC的解析式为y=﹣3x+3,……………………...1分设直线B′C′的解析式为y=﹣3x+b,把D(4,1)代入得到b=13,∴直线B′C′的解析式为y=﹣3x+13,……………………...1分∴C′(,0),∴CC′=,∴△BCD平移的距离是个单位.……………………...1分(3)解:如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,易知直线PC的解析式为y=﹣x+,∴P(0,),……………………...1分∵点C向左平移1个单位,向上平移个单位得到P,∴点D向左平移1个单位,向上平移个单位得到Q,∴Q(3,),……………………...1分当CD为对角线时,四边形PCQ″D是平行四边形,可得Q″(5,),………………...1分当四边形CDP′Q′为平行四边形时,可得Q′(﹣3,),……………………...1分综上所述,满足条件的点Q的坐标为(3,)或(5,)或(﹣3,).。
2018-2019学年八年级(下)期末数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()
A.B.
C.D.
2.(3分)下列等式从左到右的图形,属于因式分解的是()A.m(a﹣b)=ma﹣mb B.2a2+a=a(2a+1)
C.(x+y)2=x2+2xy+y2D.m2+4m+4=m(m+4)+4
3.(3分)若分式有意义,则实数x的取值范围是()
A.x=0B.x=3C.x≠0D.x≠3
4.(3分)如图,直线m∥n,点A在直线m上,点B、C在直线n上,AB=CB,∠1=70°,则∠BAC等于()
A.40°B.55°C.70°D.110°
5.(3分)一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()
A.增加(n﹣2)×180°B.减小(n﹣2)×180°
C.增加(n﹣1)×180°D.没有改变
6.(3分)关于x的分式方程=有增根,则a的值为()A.﹣3B.﹣5C.0D.2。
(北师大版)2018~2019学年下学期八年级期末教学质量检测数学(含答案)考生注意:1.本卷共三大题,23小题,全卷满分120分,考试时间为120分钟.2.请将各题答案填在答题卡上.一、填空题(本大题共6小题,每小题3分,共18分)= .2.在不等式4x ≥-12中,x 的最小值是 .3.正六边形的每一个内角的度数都为 .4.已知一组数据:8、6、2、x,它们的众数是8,则这组数据的中位数是 .5.如图,在Y □ABCD 中,若AB=5,AD=4,则△AOB 的周长比△AOD 的周长长 .6.若关于x 的分式方程2124x x mx x +-=--=1无解,则m 的值为 . 二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.要使分式13x -有意义,x 必须满足的条件是( )A. x ≠3B. x ≠0C. x >3D. x=3 8.下列多项式中能用平方差公式分解因式的是( ) A.x 2+4 B.x 2-xy C.x 2-9 D.-x 2-y 29.下列美丽的图案中,不是中心对称图形的是( )10.不等式3x ≤-2x+5的解集在数轴上表示正确的是( )11.在四边形ABCD 的每个顶点处取一个外角,有三个外角的和为240°,则第四个外角的度数是( )A.120°B.60°C.150°D.240°12.如图,等边三角形ABC 的边长为2,连接其三边的中点构成一个新的三角形,则新的三角形周长为( )A.1B.2C.3D.413.已知x 、y 满足方程组 361x m y m+=-=,则无论m 取何值,x 、y 恒有关系式是( )A. x+y=1B. x+y=-1C. x+y=9D. x+y=-914.已知点A 、B 、C 、D 在同一平面内,若从①AB ∥CD,②AB=CD,③BC ∥AD,④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( ) A.3种 B.4种 C.5种 D.6种 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)解不等式组21390x x >--+≥.16.(本小题满分6分)分解因式:a 2x-6ax+9x.17.(本小题满分8分)先化简,再求值:21(1)11a a a a --÷++,最后选择一个你喜欢的数作为a 的值代入求值.18.(本小题满分6分)如图,四边形ABCD 为平行四边形,点E 、F 在对角线AC 上,且AE=CF.求证:四边形EBFD 是平行四边形.19.(本小题满分7分)已知关于x 的一次函数y=kx+b(k ≠0の)的图象过点A(2,4)、B(0,3). (1)求一次函数y=kx+b 的解析式;(2)若关于x 的一次函数y=mx+n(m<0)的图象也经过点A,则关于x 的不等式mx+n ≥kx+b 的解集为 .20.(本小题满分8分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,AB的垂直平分线DE交AB 于点D,交AC于点E,连接BE.(1)求AD的长;(2)求AE的长.21.(本小题满分8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求解决下列问题:(1)画出将△ABC向右平移3个单位长度后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后得到的△A2B1C2;(2)在网格中建立平面直角坐标系,使点B的坐标为(0,4),点A2的坐标为(4,5).22.(本小题满分9分)智能时代引领铁路的高速发展,已知某铁路现阶段列车的平均速度是200千米/时,未来还将提速.在相同的时间内,列车现阶段行驶3000千米,提速后列车比现阶段多行驶450千米.问列车平均提速多少千米/小时?23.(本小题满分12分)如图1,将Y OABC放在平面直角坐标系中,O为原点,点C的坐标为(-6,0),点A在第一象限,OA=2,∠A=60°.(1)求A、B两点的坐标;(2)如图2,将Y OABC绕点O逆时针旋转得到Y OA´B´C´,当点A的对应点A´落在y轴正半轴上时,求旋转角及点B的对应点B'的坐标.。
2018-2019学年下学期期末考试八年级数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里每小题3分,共36分1.(3分)当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x2.(3分)如果分式的值为零,那么m的值是()A.m≠2 B.m=±2 C.m=﹣2 D.m=23.(3分)如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是()A.5 B.7 C.8 D.104.(3分)下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)25.(3分)下列各式从左到右的变形正确的是()A.B.C.D.6.(3分)若分式方程有增根,则m等于()A.3 B.﹣3 C.2 D.﹣27.(3分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.8.(3分)如图,▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是()A.16° B.22° C.32° D.68°9.(3分)过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为()A.1620°B.1800°C.1980°D.2160°10.(3分)某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.11.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE 的周长为24,则BC的长为()A.18 B.14 C.12 D.612.(3分)关于x的方式方程=3的解是正数,则m可能是()A.﹣4 B.﹣5 C.﹣6 D.﹣7二、填空题(每小题4分,共24分)13.(4分)代数式有意义,则x的取值范围是.14.(4分)平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为cm.15.(4分)已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .16.(4分)已知x﹣y=4xy,则的值为.17.(4分)定义一种新运算:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b.若3⊕(x+2)>0,则x的取值范围是.18.(4分)如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.三、解答题(共7道大题,满分60分)19.(8分)已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.20.(8分)先化简,再求值:(1+),其中x是不等式组的整数解.21.(8分)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.22.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B 地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?23.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB'C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.24.(10分)探索发现: =1﹣; =﹣; =﹣…根据你发现的规律,回答下列问题:(1)= , = ;(2)利用你发现的规律计算: +++…+(3)灵活利用规律解方程: ++…+=.25.(10分)如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.参考答案1-10.CDDCA DDCBB AB13.14、2115、-3116、17、-2<x<1或x>118、19. 解:∵x2+y2-4x+6y+13=(x-2)2+(y+3)2=0,∴x-2=0,y+3=0,即x=2,y=-3,则原式=(x-3y)2=112=12120.21.22.23.24.25.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠OBE=∠ODF.在△OBE与△ODF中,∴△OBE≌△ODF(AAS).∴BO=DO.(2)解:∵EF⊥AB,AB∥DC,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°.∴AE=GE∵BD⊥AD,∴∠ADB=∠GDO=90°.∴∠GOD=∠G=45°.∴DG=DO,∴OF=FG=1,由(1)可知,OE=OF=1,∴GE=OE+OF+FG=3,∴AE=3.。
2018-2019学年河南省开封市八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列各组数中,可以组成直角三角形的是()A.1:2:3B.2,3,4C.3,4,5D.32,42,52 3.(3分)下列计算正确的是()A.+=B.3﹣=2C.2+=2D.=24.(3分)汽车在匀速行驶过程中,路程s、速度v、时间t之间的关系为s=vt,下列说法正确的是()A.s、v、t都是变量B.s、t是变量,v是常量C.v、t是变量,s是常量D.s、v是变量,t是常量5.(3分)数据0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4B.2和2C.1和2D.3和26.(3分)正比例函数y=2x的图象必经过点()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)7.(3分)已知点A(﹣2,y1),B(1,y2)都在直线y=﹣2x+2上,则y1、y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.y1≥y28.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm9.(3分)在▱ABCD中,已知AB=6,BE平分∠ABC交AD边于点E,点E将AD分为1:3两部分,则AD的长为()A.8或24B.8C.24D.9或2410.(3分)正方形ABCD,正方形CEFG如图放置,点B、C、E在同一条直线上,点P在BC边上,P A=PF,且∠APF=90°,连接AF交CD于点M.有下列结论:①EC=BP;②AP=AM:③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD+S正方形CGFE=2S△APF,其中正确的是()A.①②③B.①③④C.①②④⑤D.①③④⑤二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的众数为.13.(3分)将直线y=2x+3向下平移2个单位,得直线.14.(3分)矩形两条对角线的夹角为60°,对角线长为14,则该矩形较长的边长为.15.(3分)如图所示,直线y=x+1与y轴相交于点A1,以OA1为边作正方形OA1B1C1,记作第一个正方形;然后延长C1B1与直线y=x+1相交于点A2,再以C1A2为边作正方形C1A2B2C2,记作第二个正方形;同样延长C2B2与直线y=x+1相交于点A3,再以C2A3为边作正方形C2A3B3C3,记作第三个正方形;…,依此类推,则第n个正方形的边长为.三、解答题(本大题共8小题,共55分.解答应写出文字说明、证明过程或演算步骤)16.(10分)计算:(1)()﹣()(2)(3)(3)17.(6分)如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.18.(6分)如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD的中点.求证:四边形EFGH是平行四边形.19.(6分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示.(1)A,B两城相距km;(2)哪辆车先出发?哪辆车先到B城?(3)甲车的平均速度为km/h,乙车的平均速度为km/s?(4)你还能从图中得到哪些信息?20.(6分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:根据以上信息,请解答下面的问题:(1)α=,b=,c=;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会.(填“变大”、“变小”或“不变”)21.(7分)某商店销售每台A型电脑的利润为100元,销售每台B型电脑的利润为150元,该商店计划一次购进A,B两种型号的电脑共100台,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的函数关系式;(2)该商店计划一次购进A,B两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,那么商店购进A型、B型电脑各多少台,才能使销售总利润最大?22.(7分)如图,正方形ABCD的对角线AC,BD相交于点O,点E是AC的一点,连接EB,过点A做AM⊥BE,垂足为M,AM与BD相交于点F.(1)猜想:如图(1)线段OE与线段OF的数量关系为;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.23.(7分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.(1)求m和b的值;(2)直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x 轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.2018-2019学年河南省开封市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.【分析】最简二次根式满足:被开方数不含分母;被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.【解答】解:A、被开方数含分母,不是最简二次根式;B、是最简二次根式;C、被开方数含能开得尽方的因数,不是最简二次根式;D、被开方数含能开得尽方的因数,不是最简二次根式;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.2.(3分)下列各组数中,可以组成直角三角形的是()A.1:2:3B.2,3,4C.3,4,5D.32,42,52【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;B、22+32≠42,根据勾股定理的逆定理不是直角三角形,故此选项错误;C、32+42=52,根据勾股定理的逆定理是直角三角形,故此选项正确;D、(32)2+(42)2≠(52)2,根据勾股定理的逆定理不是直角三角形,故此选项错误.故选:C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.(3分)下列计算正确的是()A.+=B.3﹣=2C.2+=2D.=2【分析】根据二次根式的加减法对A、B、C、D进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、2与不能合并,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.(3分)汽车在匀速行驶过程中,路程s、速度v、时间t之间的关系为s=vt,下列说法正确的是()A.s、v、t都是变量B.s、t是变量,v是常量C.v、t是变量,s是常量D.s、v是变量,t是常量【分析】利用变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.【解答】解:汽车在匀速行驶过程中,速度v不变,是常量,t、s是变量;故选:B.【点评】此题主要考查了常量和变量,关键是掌握变量和常量的定义.5.(3分)数据0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4B.2和2C.1和2D.3和2【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.故选:B.【点评】本题考查了中位数及平均数的定义,属于基础题,掌握基本定义是关键.6.(3分)正比例函数y=2x的图象必经过点()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)【分析】把各点代入此函数的解析式进行检验即可作答.【解答】解:A、∵当x=﹣1时,y=﹣2,∴此点在正比例函数的图象上,故本选项正确;B、∵当x=﹣1时,y=﹣2≠2,∴此点不在正比例函数的图象上,故本选项错误;C、当x=1时,y=2≠﹣2,∴此点不在正比例函数的图象上,故本选项错误;D、当x=2时,y=4≠1,∴此点不在正比例函数的图象上,故本选项错误.故选:A.【点评】本题考查的是正比例函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)已知点A(﹣2,y1),B(1,y2)都在直线y=﹣2x+2上,则y1、y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣2<1即可得出结论.【解答】解:∵一次函数y=﹣2x+2中,k=﹣2<0,∴y随x的增大而减小,∵﹣2<1,∴y1>y2.故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选:D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.9.(3分)在▱ABCD中,已知AB=6,BE平分∠ABC交AD边于点E,点E将AD分为1:3两部分,则AD的长为()A.8或24B.8C.24D.9或24【分析】由平行四边形的性质和角平分线得出AB=AE=6,再由已知条件得出DE=18或DE=2,分别求出AD即可.【解答】解:∵BE平分∠ABC,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠CBE,∴∠ABE=∠BEA,∴AB=AE=6.∵点E将AD分为1:3两部分,∴DE=18或DE=2,∴当DE=18时,AD=24;当DE=2,AD=8;故选:A.【点评】本题考查了平行四边形的性质、平行线的性质、角平分线定义、等腰三角形的判定等知识;熟练掌握平行四边形的性质,证出AB=AE是解题的关键.10.(3分)正方形ABCD,正方形CEFG如图放置,点B、C、E在同一条直线上,点P在BC边上,P A=PF,且∠APF=90°,连接AF交CD于点M.有下列结论:①EC=BP;②AP=AM:③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD+S正方形CGFE=2S△APF,其中正确的是()A.①②③B.①③④C.①②④⑤D.①③④⑤【分析】①由同角的余角相等可证出△EPF≌△BAP,由此即可得出EF=BP,再根据正方形的性质即可得出①成立;②没有满足证明AP=AM的条件;③根据平行线的性质可得出∠GFP=∠EPF,再由∠EPF=∠BAP即可得出③成立;④在Rt△ABP中,利用勾股定理即可得出④成立;⑤结合④即可得出⑤成立.综上即可得出结论.【解答】解:①∵∠EPF+∠APB=90°,∠APB+∠BAP=90°,∴∠EPF=∠BAP.在△EPF和△BAP中,有,∴△EPF≌△BAP(AAS),∴EF=BP,∵四边形CEFG为正方形,∴EC=EF=BP,即①成立;②无法证出AP=AM;③∵FG∥EC,∴∠GFP=∠EPF,又∵∠EPF=∠BAP,∴∠BAP=∠GFP,即③成立;④由①可知EC=BP,在Rt△ABP中,AB2+BP2=AP2,∵P A=PF,且∠APF=90°,∴△APF为等腰直角三角形,∴AF2=AP2+EP2=2AP2,∴AB2+BP2=AB2+CE2=AP2=AF2,即④成立;⑤由④可知:AB2+CE2=AP2,∴S正方形ABCD+S正方形CGFE=2S△APF,即⑤成立.故成立的结论有①③④⑤.故选:D.【点评】本题考查了正方形的性质、全等三角形的判定及性质、平行线的性质以及勾股定理,解题的关键是逐条分析五条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,通过证明三角形全等以及利用勾股定理等来验证题中各结论是否成立是关键.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)若二次根式有意义,则x的取值范围是x≥3.【分析】根据负数没有平方根求出x的范围即可.【解答】解:由二次根式有意义,得到x﹣3≥0,解得:x≥3,故答案为:x≥3【点评】此题考查了二次根式有意义的条件,熟练掌握二次根式性质是解本题的关键.12.(3分)某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的众数为10.【分析】在这组数据中出现次数最多的数据叫作这组数据的众数;据此解答.【解答】解:在数据10,10,11,12,8,10中,因为10出现了3次,所以10为这组数据的众数,故答案为:10.【点评】本题考查了众数的定义,属于统计基础知识,比较简单.13.(3分)将直线y=2x+3向下平移2个单位,得直线y=2x+1.【分析】根据“平移时k值不变及上移加,下移减”可得出平移后直线的解析式.【解答】解:将直线y=2x+3向下平移2个单位,得到直线y=2x+3﹣2,即y=2x+1.故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.14.(3分)矩形两条对角线的夹角为60°,对角线长为14,则该矩形较长的边长为7.【分析】由矩形的对角线相等且平分可求得较短边与对角线的一半所构成的三角形为等边三角形,则可求得答案.【解答】解:如图,在矩形ABCD中,AC、BD相交于点O,∠AOB=60°,则OA=OB=×14=7,∴△AOB为等边三角形,∴AB=7,Rt△ABC中,由勾股定理得:BC====7,故答案为:7.【点评】本题主要考查矩形的性质,证得△AOB为等边三角形是解题的关键.15.(3分)如图所示,直线y=x+1与y轴相交于点A1,以OA1为边作正方形OA1B1C1,记作第一个正方形;然后延长C1B1与直线y=x+1相交于点A2,再以C1A2为边作正方形C1A2B2C2,记作第二个正方形;同样延长C2B2与直线y=x+1相交于点A3,再以C2A3为边作正方形C2A3B3C3,记作第三个正方形;…,依此类推,则第n个正方形的边长为2n﹣1.【分析】解题的关键是求出第一个正方体的边长,然后依次计算n=1,n=2…总结出规律.【解答】解:根据题意不难得出第一个正方体的边长=1,那么:n=1时,第1个正方形的边长为:1=20n=2时,第2个正方形的边长为:2=21n=3时,第3个正方形的边长为:4=22…第n个正方形的边长为:2n﹣1故答案为:2n﹣1【点评】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.三、解答题(本大题共8小题,共55分.解答应写出文字说明、证明过程或演算步骤)16.(10分)计算:(1)()﹣()(2)(3)(3)【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=2﹣﹣﹣=﹣;(2)原式=18﹣3=15.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+62=(10﹣x)2.解得:x=3.2答:折断处离地面的高度是3.2尺.【点评】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.18.(6分)如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD的中点.求证:四边形EFGH是平行四边形.【分析】根据平行四边形的性质得到AB∥CD,AB=CD,根据三角形中位线定理得到EF∥AB,EF=AB,GH∥CD,GH=CD,根据平行四边形的判定定理证明.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E、F、G、H分别是OA、OB、OC、OD的中点,∴EF∥AB,EF=AB,GH∥CD,GH=CD,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形.【点评】本题考查的是中点四边形、平行四边形的判定,掌握三角形中位线定理、平行四边形的判定定理是解题的关键.19.(6分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示.(1)A,B两城相距300km;(2)哪辆车先出发?哪辆车先到B城?(3)甲车的平均速度为60km/h,乙车的平均速度为100km/s?(4)你还能从图中得到哪些信息?【分析】(1)根据图示知,纵坐标表示汽车离开A城的距离,所以A,B两城相距300米;(2)根据甲、乙两车的出发时间和到达时间进行回答;(3)速度=,依此列式计算即可求解.(4)根据图象得出其他信息即可.【解答】解:(1)由图示知:A,B两城相距300km;(2)由图示知,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城.答:甲车先出发,乙车先到达B城;(3)如图所示:甲车的平均速度为:=60(km/h),乙车的平均速度为:=100(km/h),答:甲、乙两车的平均速度分别是60km/h、100km/h.(4)300﹣60×4=60(千米),答:乙车到达B城时,甲车距离B城的距离60千米.故答案为:300;60;100.【点评】本题考查了一次函数的应用.主要利用了路程、速度、时间三者之间的关系,准确识图,理解横、纵坐标的实际意义是解题的关键.20.(6分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:根据以上信息,请解答下面的问题:(1)α=8,b=8,c=9;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.(填“变大”、“变小”或“不变”)【分析】(1)依据平均数、众数以及中位数的概念进行计算判断即可;(2)依据乙的成绩:5,9,7,10,9,即可完成图中表示乙成绩变化情况的折线;(3)两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定,故选择甲参加射击比赛;(4)依据选手乙这6次射击成绩5,9,7,10,9,8,即可得到方差的大小.【解答】解:(1)由题可得,a=(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答案为:8,8,9;(2)乙成绩变化情况的折线如下:(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定.(4)由题可得,选手乙这6次射击成绩5,9,7,10,9,8的方差=[(5﹣8)2+(9﹣8)2+(10﹣8)2+(9﹣8)2+(8﹣8)2]=2.5<3.2,∴选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.故答案为:变小.【点评】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.21.(7分)某商店销售每台A型电脑的利润为100元,销售每台B型电脑的利润为150元,该商店计划一次购进A,B两种型号的电脑共100台,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的函数关系式;(2)该商店计划一次购进A,B两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,那么商店购进A型、B型电脑各多少台,才能使销售总利润最大?【分析】(1)根据题意可以求得y与x的函数关系式,从而可以解答本题;(2)根据题意和B型电脑的进货量不超过A型电脑的2倍,可以求得x的取值范围,再根据一次函数的性质即可解答本题.【解答】解:(1)由题意可得,y=100x+150(100﹣x)=﹣50x+15000,即y与x的函数关系式是y=﹣50x+15000;(2)由题意可得,100﹣x≤2x,解得,x≥,∵y=﹣50x+15000,∴当x=34时,y取得最大值,此时y=13300,100﹣x=66,即商店购进A型34台、B型电脑66台,才能使销售总利润最大.【点评】本题考查一次函数的应用、解一元一次不等式,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的性质解答.22.(7分)如图,正方形ABCD的对角线AC,BD相交于点O,点E是AC的一点,连接EB,过点A做AM⊥BE,垂足为M,AM与BD相交于点F.(1)猜想:如图(1)线段OE与线段OF的数量关系为OE=OF;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.【分析】(1)根据正方形的性质对角线垂直且平分,得到OB=OA,又因为AM⊥BE,所以∠MEA+∠MAE=90°=∠AFO+∠MAE,从而求证出Rt△BOE≌Rt△AOF,得到OE =OF.(2)根据第一步得到的结果以及正方形的性质得到OB=OA,再根据已知条件求证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】解:(1)∵正方形ABCD的对角线AC、BD相交于点O,AM⊥BE,∴∠AOB=∠BOE=∠AMB=90°,∵∠AFO=∠BFM(对顶角相等),∴∠OAF=∠OBE(等角的余角相等),又∵OA=OB(正方形的对角线互相垂直平分且相等),∴△AOF≌△BOE(ASA),∴OE=OF.故答案为:OE=OF;(2)成立.理由如下:∠AOF=∠BOE=90°,OA=OB,∵∠ABC=90°,∴∠EBC+∠ABM=90°,∵∠ABM+∠BAF=90°,∴∠EBC=∠BAF,又∵∠OAB=∠OBC=45°,∴∠OAM=∠OBE,∴△AOF≌△BOE(ASA),∴OE=OF.【点评】本题是四边形的综合题,考查了正方形的性质、三角形全等的性质和判定,并运用了类比的思想,两个问题都是证明△BOE≌△AOF解决问题.23.(7分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.(1)求m和b的值;(2)直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x 轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)分别令y=0可得b和m的值;(2)①根据△ACP的面积公式列等式可得t的值;②存在,分三种情况:i)当AC=CP时,如图1,ii)当AC=AP时,如图2,iii)当AP=PC时,如图3,分别求t的值即可.【解答】解:(1)把点C(2,m)代入直线y=x+2中得:m=2+2=4,∴点C(2,4),∵直线y=﹣x+b过点C,4=﹣+b,b=5;(2)①由题意得:PD=t,y=x+2中,当y=0时,x+2=0,x=﹣2,∴A(﹣2,0),y=﹣x+5中,当y=0时,﹣x+5=0,x=10,∴D(10,0),∴AD=10+2=12,∵△ACP的面积为10,∴•4=10,t=7,则t的值7秒;②存在,分三种情况:i)当AC=CP时,如图1,过C作CE⊥AD于E,∴PE=AE=4,∴PD=12﹣8=4,即t=4;ii)当AC=AP时,如图2,AC=AP1=AP2==4,∴DP1=t=12﹣4,DP2=t=12+4;iii)当AP=PC时,如图3,∵OA=OB=2∴∠BAO=45°∴∠CAP=∠ACP=45°∴∠APC=90°∴AP=PC=4∴PD=12﹣4=8,即t=8;综上,当t=4秒或(12﹣4)秒或(12+4)秒或8秒时,△ACP为等腰三角形.【点评】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.。