10.1图上距离与实际距离苏科版
- 格式:ppt
- 大小:1.38 MB
- 文档页数:20
10.1图上距离与实际距离[教学目标]1.结合现实情境了解线段的比和成比例的线段.2.理解并掌握比例的性质.3.通过实际问题的研究,发展从数学的角度提出问题、分析问题和解决问题的能力,增强用数学的意识.[教学过程]1.情境创设展示课本中两幅不同比例尺的江苏省地图,引导学生完成下列实践活动:(1)分别量出两幅地图中南京市与徐州市、南京市与连云港市之间的图上距离;(2)求出这两幅地图中,南京市与徐州市的图上距离的比,南京市与连云港市的图上距离的比,探究这两个比值之间的关系.通过实践活动,使学生体会到:(1)这两幅地图的形状相同,但比例尺不同.因此,研究形状相同的图形,首先要从研究比例线段人手;(2)研究相似图形与研究全等图形一样,是现实生活和生产实际的需要.此外,教学时,还可以从两个大小不同的正方形人手:从两个大小不同的正方形来看,它们之所以大小不同,是因为边的长度不同.因此,研究形状相同的图形,首先要研究比例线段.2.探索活动活动一通过课本提供的实践活动,引入两条线段的比和成比例线段的概念.学生在小学里学习过两个数的比,知道比例的意义.两条线段的比与成比例线段都类比两个数的比与比例的意义.因此,教学中,要认真抓好复习两个正数的比及比例概念这一关键,这对理解两条线段的比和成比例线段的概念起着巩固、深化作用.比和比例是既有联系又有区别的两个概念.比是用来表明一个数是另一个数的几倍或几分之几,表达两个数之间的关系,它的值叫做比值.比例是用“=”连接比值相等的两个式子,它是一个等式,具有等式的一切性质.线段的比与成比例的线段是两个不同的概念,教学中要注意它们的联系和区别.线段的比是指两条线段长度的比,对于任意两条线段总是能得到它们的比值的;但对于任意四条线段并非都成比例,四条线段成比例必须具备其中两条线段的比值等于另两条线段的比值.对线段的比的教学要强调如下几点:(1)线段a:b=k,说明a是b的k倍,又由于线段的长度是正数,因此k>0;(2)求两条线段的比时,其单位长度要一致,两条线段的比值与采用的长度单位无关.活动二研究比例的一些性质.学生在小学里学习过比例的基本性质:组成比例的四个数叫做比例的项;两端的两项叫做比例的外项,中间的两项叫做比例内项;在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质.课本在此基础上,通过“回忆”,引入了比例的基本性质.教学中,要注意向学生说明如下几点:(1)小学里,比例基本性质中的字母a 、b 、c 、d 仅限于正数,而这里的字母a 、b 、c 、d 不仅可以是任意实数,而且可以是线段,其中与小学相同的是b 、d 不能为0;(2)“图形的相似”中,对比例的基本性质更多地采用分式的形式表示:d c b a =,则ad=bc ;若ad=bc ,则dc b a =.因为分式使用起来更加便利; (3)根据比例的基本性质,一个比例可以写成8种不同的形式,如:dc b a =、d b c a =、cd a b =等。
年月日2. 成比例线段的定义对照比例的概念,说出怎样的四条线段叫做成比例线段?四条线段a,b,c,d 中,如果a 与b 的比等于c 与d 的比,即f =_2 , b d 那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段 . 3. 比例的基本性质两条线段的比实际上就是两个数的比•如果a,b,c,d 四个数满足 上=上,b d那么ad=bc 吗?反过来,如果 ad=bc,那么里=£吗?为什么?b d4. 线段的比和比例线段的区别和联系线段的比是指两条线段之间的比的关系,比例线段是指四条线段间的 关系.若两条线段的比等于另两条线段的比, 则这四条线段叫做成比例线段 .线段的比有顺序性,四条线段成比例也有顺序性.如a =c 是线段a 、b 、 b dc 、d 成比例,而不是线段 a 、c 、b 、d 成比例. 5. 线段的比例中项.a ca » 2在比例式 一=—中,当b=c 时,有 一=—?b = ac ,称b 为线b d b c段a 、c 的比例中项.反之,若b2=ac,也称b 为线段a 、c 的比例中项.(2)如果駅泊(k 为常数),那么晋.晋 成立吗?你得到什么结论?(1) 如果a = c ,那么a —b 二c _d 成立吗?为什么?b db d(2) 如果a = c = e ,那么a 」c 飞=a 成立吗?为什么? b d f b+d+f b(3) 如果a =c ,那么a -b =c —d 成立吗?为什么.b db d(4) --------------------------------------------------------------- 如果a=c=…=m ( b+d+…+门工0),那么——c ------------------------------- m =~a 成立吗?b d n b+d+…+ n b三、小结:1)比例线段的有关概念; 2)总结比例的有关性质.教学后记a(1)如图,已知bc=3,求 a b 和 c d d b d。