北京理工大学高等流体力学-计算流体力学共161页文档
- 格式:ppt
- 大小:12.34 MB
- 文档页数:161
高等计算流体力学讲义(3)§2 Riemann 问题1.预备知识:Euler 方程解的结构我们讨论Euler 方程解的结构。
在上一节,我们已经得到,在均熵流动条件下,有const R =±,沿au dt dx±= (1) 其中 a u R 12-±=±γ。
且全场 S const =。
(2)在这种情况下,Euler 方程的光滑解有如下几种可能。
1)在求解域中,Riemann 不变量a u R 12-±=±γ均不为常数。
这是最一般的情况,Euler 方程的解比较复杂,通常无解析解。
2)均匀流:Riemann 不变量a u R 12-±=±γ均为常数。
此时,令R R ±±=, 有:0000()/21()4u R R a R R γ+-+-=+-=-,可见,此时流动是均匀的。
3)简单波:有一个Riemann 不变量在某区域内为常数(00R R or R R ++--==)。
以0R R ++=的情况为例。
此时021R u a R γ++=+=-。
(3) 且沿dxu a dt=-,有 21u a const γ-=-。
这个常数具体的数值与特征线的起点有关。
由此我们知道,沿dxu a dt=-,有00()/21()4u R const a R const γ++=+-=-。
这说明,沿dxu a dt=-,u 和a 均为常数,即特征线是直线。
由均熵条件,密度ρ和压力p 沿特征线dx u a dt =-也为常数。
参见上图,由于u a u -<,所以流线dx u dt=(或流体质点)从左侧穿过特征线dxu a dt=-,这种简单波称为左简单波或向后简单波。
简单波可以分为压缩波和稀疏波(膨胀波)两类。
设流线与dxu a dt=-交点处,流线的切线方向为ξ 。
把(3)式沿ξ求方向导数,得:201u a ξγξ∂∂+=∂-∂ 当0uξ∂>∂,有()0,0,0,0a p u c ρξξξξ∂∂∂∂-<<<>∂∂∂∂。
高等计算流体力学讲义(2)第二章 可压缩流动的数值方法§1. Euler 方程的基本理论 0 概述在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。
其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。
所以,本章主要研究无粘的Euler 方程的解法。
在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。
Euler 方程是一种典型的非线性守恒系统。
下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。
1非线性守恒系统和Euler 方程一维一阶非线性守恒系统(守恒律)可写为下列一般形式=∂∂+∂∂xF tU ,0,>∈t R x(1)其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。
T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即:0)(lim=→U F U即通量是对守恒变量的输运,守恒变量为零时,通量也为零。
守恒律的物理意义设U 的初始值为:0(,0)(),U x U x x =∈R 。
如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =⎰⎰RR。
即此时虽然(,)U x t 的分布可以随时间变化,但其总量保持守恒。
多维守恒律可以写为)(=++∙∇+∂∂k H j G i F tU(2)守恒律的空间导数项可以写为散度形式。
守恒系统(1)可以展开成所谓拟线性形式)(=∂∂+∂∂xU U A tU (3)A 是m m ⨯矩阵,称为系数矩阵或Jacobi 矩阵,其具体形式为111122221212.........m m m m mm f f f u u u f f f u u u A f f f u u u ∂∂∂⎡⎤⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂=⎢⎥⎢⎥⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎣⎦(4),容易验证:F U Axx∂∂=∂∂,通常也记F A U∂=∂。