计算流体力学(CFD)概论
- 格式:pdf
- 大小:486.90 KB
- 文档页数:46
第1章 CFD 基 础计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。
本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。
1.1 流体力学的基本概念1.1.1 流体的连续介质模型流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微 元体。
连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。
连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。
1.1.2 流体的性质1. 惯性惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。
惯性与质量有关,质量越大,惯性就越大。
单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。
对于均质流体,设其体积为V ,质量为m ,则其密度为mVρ= (1-1)对于非均质流体,密度随点而异。
若取包含某点在内的体积V ∆,其中质量m ∆,则该点密度需要用极限方式表示,即0limV mVρ∆→∆=∆ (1-2) 2. 压缩性作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。
压缩性(compressibility)可用体积压缩率k 来量度d /d /d d V V k p p ρρ=-=(1-3) 式中:p 为外部压强。
计算流体动力学概述1 什么是计算流体动力学计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。
CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。
通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。
还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。
此外,与CAD联合,还可进行结构优化设计等。
CFD方法与传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系,图1给出了表征三者之间关系的“三维”流体力学示意图理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证新的数值计算方法的理论基础。
但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。
对于非线性情况,只有少数流动才能给出解析结果。
实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。
然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过试验力一法得到结果。
此外,实验还会遇到经费投入、人力和物力的巨大耗费及周期长等许多困难。
而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算。
就好像在计算机上做一次物理实验。
例如,机翼的绕流,通过计算并将其结果在屏幕上显示,就可以看到流场的各种细节:如激波的运动、强度,涡的生成与传播,流动的分离、表面的压力分布、受力大小及其随时间的变化等。
流体力学的数值模拟计算流体力学(CFD)的基础和局限性流体力学(Fluid Mechanics)是研究流体(包括气体和液体)运动和力学性质的学科。
数值模拟计算流体力学(Computational Fluid Dynamics,简称CFD)是利用计算机和数值计算方法对流体力学问题进行模拟和求解的一种方法。
CFD已经成为研究流体力学问题、设计和优化工程流体系统的重要工具。
本文将探讨CFD的基础原理和其在实践中的局限性。
一、CFD的基础原理1. 连续性方程和Navier-Stokes方程CFD的基础原理建立在连续性方程和Navier-Stokes方程的基础上。
连续性方程描述了流体的质量守恒,即流入和流出某一区域的质量流量必须相等。
Navier-Stokes方程则描述了流体的运动和力学性质。
它包含了质量守恒、动量守恒和能量守恒三个方程。
2. 网格划分在进行CFD计算之前,需要将流体区域划分为离散的小单元,即网格。
网格的形状和大小对数值模拟的精度和计算量有着重要的影响。
常见的网格划分方法包括结构化网格和非结构化网格。
3. 控制方程的离散化将连续性方程和Navier-Stokes方程进行离散化处理,将其转化为代数方程组,是CFD模拟的关键步骤。
常用的离散化方法包括有限差分法、有限元法和有限体积法等。
4. 数值求解方法求解离散化后的方程组是CFD计算的核心内容。
数值求解方法可以分为显式方法和隐式方法。
显式方法将未知变量推导到当前时间级,然后通过已知的变量进行计算,计算速度快但对时间步长有限制;隐式方法则将未知变量推导到下一个时间级,需要迭代求解,计算速度较慢但更稳定。
二、CFD的局限性1. 网格依赖性CFD模拟的结果在很大程度上受到网格划分的影响。
过大或过小的网格单元都会导致计算结果的不准确性。
此外,网格的形状对流场的模拟结果也有很大的影响。
如果网格不够细致,细小的涡旋等流动细节可能无法被捕捉到。
2. 数值扩散和耗散数值模拟中的离散化和近似计算会引入数值扩散和耗散。
cfd计算流体力学CFD计算流体力学————————计算流体力学(Computational Fluid Dynamics,CFD)是一门研究和分析流体运动特性的计算方法。
它利用数学模型和计算机技术来模拟流体运动的物理过程,以获取流体运动的温度、压力、流速和其他变量的解决方案。
CFD技术在航空、航天、电力、水处理、食品加工、冶金、石油化工、医学、化学和机械制造等领域有广泛应用。
## 什么是CFDCFD是一个复杂的计算技术,它可以帮助我们理解流体运动的物理原理,以及它们在一定环境中的行为。
它是通过建立数学模型,利用计算机技术,根据流体的物理运动原理,对其运动过程进行模拟,以获得其运动特性及其影响的变量。
## CFD的工作原理CFD的工作原理是利用数学方法和计算机技术,对流体在某一特定时间内的行为进行数学模拟。
CFD根据流体的物理运动原理,建立数学模型,通过计算机程序对其运动过程进行模拟,以获得其运动特性及其影响的变量。
CFD的工作方式一般分为三个步骤:1. 首先,需要对流体流动的物理场进行划分,将其分成一些小部分,即将流体场分割成一些小的方格子,称为“单元格”。
2. 然后,根据流体物理学原理,建立数学模型,对各个单元格的变量进行计算,得出不同时间步骤的变量数值。
3. 最后,将各个单元格的变量数值合成一个整体,并通过图形可视化来显示出来,从而得出整个流体场的行为特征。
## CFD的应用CFD在航空、航天、电力、水处理、食品加工、冶金、石油化工、医学、化学和机械制造等领域有广泛应用。
例如:- 航空航天领域:可以用CFD来预测飞行器的性能,如飞行速度、飞行高度、飞行载荷等;- 电力领域:可以用CFD来优化发电厂的效率;- 水处理领域:可以用CFD来优化水处理厂的设计布局;- 食品加工领域:可以用CFD来优化食品加工厂的流程设计和布局;- 冶金领域:可以用CFD来优化冶金厂的冶炼工艺;- 其他工业领域也有广泛应用。
计算流体力学简介计算流体力学(Computational Fluid Dynamics,简称CFD)是现代科技中的一个重要领域,它利用计算机仿真和计算等技术,对流体力学问题进行数值求解,以达到预测和优化流体现象的目的。
本文将简要介绍CFD的发展过程、应用范围、数值模拟方法等方面。
一、CFD的发展CFD的发展源于20世纪50年代,当时的计算机技术还非常有限,CFD的应用范围很窄。
到了20世纪70年代,随着计算机的高速发展和应用,CFD得以迅速发展,越来越多地应用于航空航天、能源、环境等领域。
随着CFD标准化和工具的发展,越来越多的人开始使用CFD来预测流体现象,优化产品设计。
二、CFD的应用范围CFD的应用涉及到许多领域。
在航空航天领域中,CFD 可以用来预测飞机的空气动力学特性、燃烧炉的热力学特性、火箭发动机的燃烧过程等。
在汽车工业中,CFD可以用来模拟车辆的气动特性,优化车身结构和排放系统的设计,提高燃油经济性。
在能源领域中,CFD可以用来模拟煤热电联产的燃烧过程,预测钻井液在油井中的流动和携带油气的能力等。
在环境领域中,CFD可以用来预测气象和大气污染的传播,优化建筑物的设计和施工等。
三、CFD的基本数值模拟方法CFD的数值模拟方法可以分为欧拉法和纳维-斯托克斯NS (Navier-Stokes)方程法两种。
欧拉法是通过施加边界条件和初始条件来解决流体力学问题的,简单、快速,但只适用于高速简单流动。
NS方程法是采用角动量守恒定律、质量守恒定律和动量守恒定律来分析复杂流体流动问题,更准确地预测流体动力学特性,但需要更高的计算能力和更长的计算时间。
四、CFD的软件CFD的数值求解需要大量的计算能力和高度优化的计算机软件。
目前市场上较为常用的CFD软件有Fluent、OpenFOAM、StaMINA等,这些软件通过预测流体动力学特性,优化流体现象,提高产品质量和效率。
五、CFD的应用前景CFD的应用前景十分广阔,尤其随着计算机技术的不断发展,CFD预测和优化流体现象的能力将逐渐提高。
1 计算流体力学概述计算流体力学(Computational Fluid Dynamics,简称CFD)是以数值离散方法为数学基础,借助于计算机求解描述流体运动的基本方程,研究流体运动规律的学科。
CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。
CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。
通过这种数值模拟,可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。
还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。
此外,与CAD联合,还可进行结构优化设计等。
CFD可用来进行流体动力学的基础研究,复杂流动结构的工程设计,分析实验结果等。
CFD的特点:给出流体运动区域内的离散解,而不是解析解。
它的发展与计算机技术的发展直接相关。
若物理问题的数学提法(包括数学方程及其相应的边界条件)是正确的,则可在较广法的流动参数(如马赫数、雷诺数、飞行高度、气体性质、模型尺度等)范围内研究流体力学问题,且能给出流场参数的定量结果。
计算流体力学的技术原理任何流体运动的规律都是由以下3个定律为基础的:质量守恒定律,动量守恒定律和能量守恒定律。
这些基本定律可由数学方程组来描述。
如欧拉(Euler)方程,N-S方程。
首先确定了这些能够描述对象流动参量连续变化的微分方程组后,然后采用数值计算方法,通过离散化方法(如有限差分法或有限元法)对连续变化的参量用离散空间和时间的值来表示,使微分方程组转变成代数方程组形式,空间的离散位置可用计算网格上的节点描述,最后这些离散数学方程组通过计算机求解,来研究流体运动特性,给出流体运动空间定常或非定常流动规律,这样的学科就是计算流体力学。
第一部分 计算流体力学(CFD)的基本思想一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。
事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。
但遗憾的是,常见的流动控制方程如纳维-斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。
实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。
因此,采用CFD 方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维-斯托克斯方程或欧拉方程)的数值求解,而CFD 软件本质上就是一些求解流动控制方程的计算机程序。
二、计算流体力学的控制方程计算流体力学的控制方程就是流体流动的质量、动量和能量守恒方程。
守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。
通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。
式(1)-(3)是未经任何简化的流动守恒微分方程,即纳维-斯托克斯方程(N-S 方程)。
0)(=⋅∇+∂∂V tv ρρ (1) x zx xy xx f zy x x p V u t u ρτττρρ+∂∂+∂∂+∂∂+∂∂−=⋅∇+∂∂)()(v (2a) y yz yy xy f zy x y p V v t v ρτττρρ+∂∂+∂∂+∂∂+∂∂−=⋅∇+∂∂)()(v (2b) z zz yz xz f zy x z p V w t w ρτττρρ+∂∂+∂∂+∂∂+∂∂−=⋅∇+∂∂)()(v (2c) V f w zw yw x v z v y v x u z u y u x z wp y vp x up zT k z y T k y x T k x q V E t E zz yz xz zy yy xy zx yx xx v v &v ⋅+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂−∂∂−∂∂−∂∂∂∂+∂∂∂∂+∂∂∂∂+=⋅∇+∂∂ρτττττττττρρρ)()()()()()()()()()()()()()()()()( (3) N-S 方程可以表示成许多不同形式,上面的N-S 方程是所谓的守恒形式,之所以称为守恒形式,是因为这种形式的N-S 方程求解的变量ρ、u ρ、v ρ、w ρ、E ρ是守恒型的,是质量、动量和能量的守恒变量。