化工热力学作业解剖
- 格式:doc
- 大小:1.29 MB
- 文档页数:27
化工热力学第五章作业讲解第五章 例题一、填空题1.指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。
2.说出下列汽液平衡关系适用的条件(1)l i v i f f ˆˆ= ______无限制条件__________;(2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。
3.丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是A 12=______0.587_____,A 21=____0.717____(已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)4.在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数693.1,38.121==γγ。
1.组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。
2.若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。
3.EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
《化⼯热⼒学》详细课后习题答案陈新志2习题第1章绪⾔⼀、是否题1. 孤⽴体系的热⼒学能和熵都是⼀定值。
(错。
和,如⼀体积等于2V 的绝热刚性容器,被⼀理想的隔板⼀分为⼆,左侧状态是T ,P 的理想⽓体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为⼀常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想⽓体的焓和热容仅是温度的函数。
(对)5. 理想⽓体的熵和吉⽒函数仅是温度的函数。
(错。
还与压⼒或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态⽅程 P=P (T ,V )的⾃变量中只有⼀个强度性质,所以,这与相律有⽭盾。
(错。
V 也是强度性质)7. 封闭体系的1mol ⽓体进⾏了某⼀过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压⼒相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径⽆关。
)8. 描述封闭体系中理想⽓体绝热可逆途径的⽅程是(其中),⽽⼀位学⽣认为这是状态函数间的关系,与途径⽆关,所以不需要可逆的条件。
(错。
)9. ⾃变量与独⽴变量是⼀致的,从属变量与函数是⼀致的。
(错。
有时可能不⼀致) 10. ⾃变量与独⽴变量是不可能相同的。
(错。
有时可以⼀致)三、填空题1. 状态函数的特点是:状态函数的变化与途径⽆关,仅决定于初、终态。
2. 单相区的纯物质和定组成混合物的⾃由度数⽬分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想⽓体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表⽰)或(以P 表⽰)。
4. 封闭体系中的1mol 理想⽓体(已知),按下列途径由T 1、P 1和V 1可逆地变化⾄P,则m ,温度为和⽔。
2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
(错。
和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。
(错。
V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
(错。
) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致)10. 自变量与独立变量是不可能相同的。
(错。
有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。
4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。
第二章习题解答一、问答题:2-1【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。
(1)流体的PVT 关系可以直接用于设计。
(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。
只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。
2-2【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。
2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。
5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。
6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。
7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。
2-3【参考答案】:气体只有在低于T c 条件下才能被液化。
2-4【参考答案】:不同。
真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。
2-5【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。
其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。
为了提高计算复杂分子压缩因子的准确度。
偏心因子不可以直接测量。
偏心因子ω,ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。
2-6 【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。
普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以()()()()点在点在C V PC V PT T 0022==∂∂∂两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法)2-7【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。
第五章 例题一、填空题1. 指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。
2. 说出下列汽液平衡关系适用的条件(1) l i v i f f ˆˆ= ______无限制条件__________; (2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。
3. 丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是 A 12=______0.587_____,A 21=____0.717____ (已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)4. 在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数693.1,38.121==γγ。
1. 组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。
2. 若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。
3. EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。
化工热力学第二章作业解答2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式解 (1)用理想气体方程(2-4) V =RT P =68.3146734.05310⨯⨯=1.381×10-3m 3·mol -1(2)用R-K 方程(2-6)从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b )2 2.50.42748c cR T a p ==2 2.560.42748(8.314)(190.6)4.610⨯⨯⨯=3.224Pa ·m 6·K 0.5·mol -20.0867c c RT b p ==60.08678.314190.64.610⨯⨯⨯=2.987×10-5 m 3·mol -1将有关的已知值代入式(2-6) 4.053×106=58.3146732.98710V -⨯-⨯-0.553.224(673)( 2.98710)V V -+⨯ 迭代解得V =1.390×10-3 m 3·mol -1(注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式6733.53190.6r T T Tc === 664.053100.8814.610r P P Pc ⨯===⨯ 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。
由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43)010.02690.0080.1380.0281BPcB B RTcω=+=+⨯= 由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ⎛⎫⎛⎫=+=+⨯= ⎪⎪⎝⎭⎝⎭V =1.390×10-3m 3·mol -12.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算273.15K 时将CO 2压缩到比体积为550.1cm 3·mol -1所需要的压力。
化工热力学大作业1、计算101.3kPa 下,乙醇(1)-水(2)体系汽液平衡数据(1)泡点温度和组成的计算 计算气液平衡数据方法(步骤): 1、由C2H5OH 以及H2O ,查得两物质临界参数Tc1、Tc2、Pc1、Pc2、ω查得antonio 方程中C2H5OH 和H2O 参数A1,B1,C1,A2,B2,C2,进入2 2、利用总压强P 总=101.325kpa ,带入antonio 方程iii s i C T B A p +-=ln 得T1,T2,进入33、假设x1,x2数据,从小到大假设,并取0.01为间隔,逐次递增,由T=T1*x1+T2*x2,并另各Viϕˆ初值均为1,进入4 4、将T 值带入antonio 方程iii si C T B A p +-=ln 可得Ps1和Ps2,进入5 5、选择NRTL 方程,计算γi ,进入66、利用两物质临界参数以及T 、P 值计算Tr1,Tr2,Prs1,Prs2,再利用对比态法(计算逸度系数的对比态法)计算气态混合物各组元i 的逸度系数,进入77、利用平衡方程,Vi si S i i i i P P x y ϕϕγˆ=计算y1、y2,进入88、计算y1+y2的值,并判断是否进行迭代9、将yi 归一化,利用混合物维里方程(计算混合物逸度系数的维里方程)结合混合规则计算各V i ϕˆ,返回710、判断y1+y2是否与8的值不同,“是”返回6,“否”进入1111、计算y1+y2,判断是否为1,“否”进入12,“是”进入1312、调整T 值,如果y1+y2大于1,则把T 值变小,如果y1+y2小于1,则把T 值变大,并返回413、得出T 、所有yi 值,并列出表格,进入1414、将所有按从小到大顺序假设的Xi 值所对应的Yi 值求出,并作出T-X-Y 图,进入15 15、结束(2)露点温度和组成的计算已知P,yi ,si S i i Vii i P Py x ϕγϕˆ= ∑=ii i i x x x / 露点温度T ,液相组成x 1,x 2 ···x n 采用以下流程计算:可得到露点温度和组成计算过程运用Aspen软件计算1 .选择模板为General with Metric Units;Run Type为物性分析(Property Analysis),组分为乙醇(C2H5OH)和水(H2O)物性方法为NRTL-RK2 乙醇及水的流率均设为50kmol/h初输入温度为25℃,压力为101.325KPa。
2-1 使用下述三种方法计算1kmol 的甲烷贮存在容积为0.1246m 3、温度为50℃的容器中所产生的压力是多少?(1)理想气体方程;(2)Redlich-Kwong 方程; (3)普遍化关系式。
2-2 欲将25kg ,289K 的乙烯装入0.1m 3的刚性容器中,试问需加多大压力?2-3 分别使用理想气体方程和Pitzer 普遍化方法,计算510K ,2.5MPa 下正丁烷的摩尔体积。
已知实验值为1480.7cm 3·mol -1.2-4 试用下列方法求算473K ,1MPa 时甲醇蒸气的Z 值和V 值:(1)三项截尾维里方程式(2-6),式中第二、第三维里系数的实验值为: B = -219cm 3·mol -1 C = -17300 cm 6·mol -2(2) Redlich-Kwong 方程; (3)普遍化维里系数法。
2-5 某气体的p v T 行为可用下述在状态方程式来描述: p RT b RT pV ⎪⎭⎫⎝⎛-+=θ 式中b 为常数,θ只是T 的函数。
试证明此气体的等温压缩系数Tp V V k ⎪⎪⎭⎫ ⎝⎛∂∂-=1的关系式为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=p RT b RT p RTk θ2-6 试计算含有30%(摩尔)氮气(1)和70%(摩尔)正丁烷(2)的气体混合物7g ,在188℃和6.888MPa 条件下的体积。
已知:B 11=14 cm 3·mol -1, B 22= -265 cm 3·mol -1, B 12= -9.5 cm 3·mol -1。
2-7分别使用下述方法计算171℃,13.78MPa 下二氧化碳和丙烷的等分子混合物的摩尔体积。
已知实验值为0.199m 3·kmol -1(1)普遍化压缩因子关系式; (2)Redlich-Kwong 方程。
2-8 有一气体的状态方程式Vab V RT p --=,a 及b 是不为零的常数,则此气体是否有临界点呢?如果有,用a 、b 表示。