最新化工热力学第五章作业讲解
- 格式:doc
- 大小:333.50 KB
- 文档页数:10
第五章 习 题 答 案5-10 某二组元液体混合物在恒定T 及p 下的焓可用下式表示:)(2121211025450300x x x x x x H +++= 式中H 单位为1mol J -⋅。
试确定在该温度、压力状态下(1)用1x 表示的1H 和2H ; (2)纯组分焓1H 和2H 的数值;(3)无限稀释下液体的偏摩尔焓∞1H 和∞2H 的数值。
解:(1)已知 )1025(450300212121x x x x x x H +++= (A ) 由于 211x x -=故 )1025(450300212121x x x x x x H +++=)]1(1025)[1()1(450300111111x x x x x x -+-+-+= 31211155140450x x x -+-= (B ) 根据 P T x Hx H H ⋅∂∂-+=))(1(11 P T x Hx H H ⋅∂∂-=)(112 其中 211.14510140)(x x x HP T -+-=∂∂ 则:)4510140)(1(1551404502111312111x x x x x x H -+--+-+-= 31211305010310x x x +-+= (C ) )4510140(1551404502111312112x x x x x x H -+---+-= 3121305450x x +-= (D) (2) 将11=x 及01=x 分别代入式(B ),得纯组元的焓1H 和2H 11mol J 300-⋅=H 12mol J 450-⋅=H(3)∞1H 和∞2H 是指在01=x 及11=x 时的1H 和2H 的极限值。
将01=x 代入式(C )中得 11mol J 310-∞⋅=H将11=x 代入式(D )中得 12mol J 475-∞⋅=H 5-11 在303K 、105Pa 下,苯(1)和环己烷(2)的液体混合物的摩尔体积V 和苯的摩尔分数1x 的关系如下:21164.28.164.109x x V --=13-⋅mol cm试导出1V 和2V 和V Δ的表达式。
化工热力学第五章作业讲解第五章 例题一、填空题1.指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。
2.说出下列汽液平衡关系适用的条件(1)l i v i f f ˆˆ= ______无限制条件__________;(2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。
3.丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是A 12=______0.587_____,A 21=____0.717____(已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)4.在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数693.1,38.121==γγ。
1.组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。
2.若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。
3.EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。
化工热力学第五章化工过程的能量分析化工过程的能量分析是对能量转化和能量平衡进行分析和计算的过程。
它旨在确定化工过程中的能量输入和输出,以及能量转化的效率。
能量分析的基本原理是能量守恒定律,即能量既不能被创造也不能被消灭,只能发生转化和传递。
在化工过程中,能量转化主要包括热能和工作能的转化。
对于化工过程的能量分析,首先需要确定系统的边界。
系统是指需要进行能量分析的化工过程的范围。
系统可以是一个反应器、一个加热器、一个蒸馏塔等。
接下来,需要确定系统的输入和输出。
输入和输出包括能量流和物质流。
能量流一般包括热能和工作能的流入和流出,物质流一般包括物质的流入和流出,以及化学反应中物质的转化。
在能量分析中,热能是一个重要的能量形式。
对于热能的分析,常常需要考虑热能的传递方式,如传导、对流和辐射。
传导是通过直接接触传递热能,对流是通过流体介质传递热能,辐射是通过辐射传递热能。
根据能量守恒定律,系统的输入和输出之间的热能的变化可以表达为:Σ(Qin) - Σ(Qout) = Σ(Win) + Σ(Wout) ± ΔE其中,Qin和Qout分别表示进入和离开系统的热能,Win和Wout分别表示进入和离开系统的工作能,ΔE表示系统内部的能量变化。
除了热能外,化工过程中还常常涉及到压力能和位能的转化。
压力能是由于流体在系统中的压力而具有的能量,位能是由于物体在重力场中的高度而具有的能量。
在能量分析中,压力能和位能的转化也需要考虑。
能量分析的另一个重要方面是能量的有效利用。
对于化工过程来说,能量转化的效率直接影响着能源的消耗和产品的质量。
提高能量的利用效率是化工工程师的重要目标之一、为了提高能量的利用效率,可以采取一系列的措施,例如优化化工过程的操作参数,改进传热设备的设计和选型,提高能源的回收利用等。
同时,还可以利用先进的能源技术,如余热利用技术、低温热能利用技术等。
总之,化工过程的能量分析是研究化工过程能量转化和能量平衡的重要方法。
第五章 例题一、填空题1. 指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。
2. 说出下列汽液平衡关系适用的条件(1) l i v i f f ˆˆ= ______无限制条件__________; (2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。
3. 丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是 A 12=______0.587_____,A 21=____0.717____ (已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)4. 在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数693.1,38.121==γγ。
1. 组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。
2. 若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。
3. EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。
4. 由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数A i ,B i ,C i ;Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij =-λλ,Wilson 方程的能量参数是如何得到的?能从混合物的有关数据(如相平衡)得到。
5. 对于一个具有UCST 和LCST 的体系,当UCST T T >和ULST T T <时,溶液是 均相 (相态),PT x G ,212⎪⎪⎭⎫ ⎝⎛∂∂ >0 (>0,<0,=0);当UCST T T <和ULST T T >时,溶液是 液液平衡二、 计算题3.在常压和25℃时,测得059.01=x 的异丙醇(1)-苯(2)溶液的汽相分压(异丙醇的)是1720Pa 。
已知25℃时异丙醇和苯的饱和蒸汽压分别是5866和13252Pa 。
(a)求液相异丙醇的活度系数(对称归一化);(b)求该溶液的E G 。
解:由1111γx P Py s =得55866059.017205866059.010*********≈⨯=⨯==y x P Py sγ同样有:()813252059.0117201013252222≈⨯--==x P Py s γ28ln 941.05ln 059.0ln ln 2211≈⨯+⨯=+=γγx x RTG E16.495715.298314.82-⋅=⨯⨯=∴mol J G E1. 乙醇(1)-甲苯(2)体系的有关的平衡数据如下 T =318K 、P =24.4kPa 、x 1=0.300、y 1=0.634,已知318K 的两组饱和蒸汽压为 05.10,06.2321==ss P P kPa ,并测得液相的混合热是一个仅与温度有关的常数437.0=RT H ∆,令气相是理想气体,求 (a)液相各组分的活度系数;(b)液相的G ∆和G E ;(c)估计333K 、x 1=0.300时的G E 值;(d)由以上数据能计算出333K 、x 1=0.300时液相的活度系数吗? 为什么?(e )该溶液是正偏差还是负偏差?解:(a )由1111γx P Py s=得24.206.233.0634.04.241111=⨯⨯==x P Py s γ同样有:27.105.107.0)634.01(4.242222=⨯-==x P Py sγ(b)122110.108441.027.1ln 7.024.2ln 3.0ln ln -⋅=⇒=⨯+⨯=+=mol J G x x RTG E Eγγ()7.0ln 7.03.0ln 3.041.0ln ln 2211⨯+⨯+=++=x x x x RTG RT GE ∆()1Jmol 0.531--=∆G(c)(){}T R T H T H T T G E x P E 437.022,-=-=-=⎥⎦⎤⎢⎣⎡∂∂∆ 积分得390.0318333ln 437.041.0437.0333318318333=-=-=⎰====T T T E T E dT T RT G RT G(d)不能得到活度系数,因为没有G E 的表达式。
(e)由于G E >0,故为正偏差溶液。
2. 在总压101.33kPa 、350.8K 下,苯(1)-正已烷(2)形成x 1=0.525的恒沸混合物。
此温度下两组分的蒸汽压分别是99.4KPa 和97.27KPa ,液相活度系数模型选用Margules 方程,汽相服从理想气体,求350.8K 下的汽液平衡关系1~x P 和11~x y 的函数式。
解:将低压下的二元汽液平衡条件与共沸点条件结合可以得 04.127.9733.101,02.14.9933.1012211======s az az s az az P P P P γγ将此代入Margules 方程()[]()[]212211221222112211212ln 2ln x x A A A x x A A A -+=-+=γγ得()[]()[]22112212122112525.0475.0204.1ln 475.0525.0202.1ln A A A A A A -+=-+=解出0879.0,1459.02112==A A由此得新条件下的汽液平衡关系()()[]()()()[]211121112221111116.00879.0exp 127.971116.01459.0exp 4.99x x x x x x x P x P P s s -+-+--=+=γγ()()[]Px x x P x P y s 211111111116.01459.0ex p 4.99--==γ3. 苯(1)-甲苯(2)可以作为理想体系。
(a)求90℃时,与x 1=0.3 的液相成平衡的汽相组成和泡点压力;(b) 90℃和101.325kPa 时的平衡汽、液相组成多少? (c)对于x 1=0.55和y 1=0.75的平衡体系的温度和压力各是多少? (d)y 1=0.3的混合物气体在101.325KPa 下被冷却到100℃时,混合物的冷凝率多少? 解:查出Antoine 方程常数K)(15.36315.27390=+=T ,由Antoine 方程得(a )kPa 136,995.126.5315.36342.27699419.6ln 11=-=--=s s P P同样得kPa 2.542=sP 由理想体系的汽液平衡关系得52.074.783.0136kPa 74.787.02.543.01361112211=⨯===⨯+⨯=+=P x P y x P x P P s s s(b) 由()576.012.54136325.1011112211=→-+=→+=x x x x P x P P s s 773.0325.101576.0136111=⨯==P x P y s(c)由222111,x P Py x P Py s s==得⎪⎪⎭⎫ ⎝⎛=-→=122121122121ln ln ln x y x y P P x y x y P P ss s s 即K 64.36955.025.045.075.0ln 65.5465.30760580.726.5342.27699419.6≈→⎪⎭⎫⎝⎛⨯⨯=-+---T T T所以kPa 6.66,4.16321==s s P P kPa 84.1192211=+=x P x P P s s(d )K)(15.37315.273100=+=T ,由Antoine 方程得 kPa 1.74,.18021==s s P P()743.0,257.011.74180325.1012111==→-+=x x x x544.0,456.0325.101257.018021==⨯=y y设最初混合物汽相有10mol ,即苯3mol ,甲苯7mol 。
冷凝后汽、液相分别为(10-a)和a mol ,则:mol 839.7257.0456.03456.010456.0)10(257.03=--⨯=→-+=a a a冷凝率:%39.7810839.710==a5.用Wilson 方程,计算甲醇(1)-水(2)体系的露点(假设气相是理想气体,可用软件计算)。
(a )P =101325Pa ,y 1=0.582(实验值T =81.48℃,x 1=0.2);(b )T =67.83℃,y 1=0.914(实验值P =101325Pa ,x 1=0.8)。
已知Wilson 参数13.10851112=-λλJmol -1和04.16312221=-λλ Jmol -1解:(a )已知P =101325Pa ,y 1=0.582,属于等压露点计算,由于压力较低,气相可以作理想气体。
21,,y y T 可以从22211122221111γγγγx P x P P P x P y P x P y s s s s +===活度系数用Wilson 方程计算,()⎥⎦⎤⎢⎣⎡+-+++-=121221212112221211ln ln x x x x x x x ΛΛΛΛΛγ()⎥⎦⎤⎢⎣⎡+-+++-=212112121221112122ln ln x x x x x x x ΛΛΛΛΛγ其中()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=RT V V RT V V ll l l 2221212111121212exp exp λλΛλλΛ纯组分的液体摩尔体积由Rackett 方程;纯分的饱和蒸汽压由Antoine 方程计算。