化工热力学第五章作业讲解
- 格式:docx
- 大小:81.13 KB
- 文档页数:5
第五章 蒸汽动力循环和制冷循环5-3设有一台锅炉,每小时产生压力为2.5MPa ,温度为350C 的水蒸汽4.5吨,锅炉的给水温度为30C,给水压力2.5MPa 。
已知锅炉效率为70%,锅炉效率: 如果该锅炉耗用的燃料为煤,每公斤煤的发热量为 29260J • kg -1,求该锅炉每小时的耗煤量。
2.5MPa 40 C H 2OH 169.77kJ kg内插得到 2.5MPa 30C H 2O H 169.7:86.3l28.04kJ kg查水蒸汽表2.0MPa 320 C H 2O H 3069.5kJ kg 1锅炉在等压情况下每小时从锅炉吸收的热量:出口压力P 1 0.008MPa 。
如果忽略所有过程的不可逆损失,试求: (1 )汽轮机出口乏气 的干度与汽轮机的作功量;(2)水泵消耗的功量;(3)循环所作出的净功;(4)循环热效率。
解:朗肯循环在 T —S 图上表示如下:1点(过热蒸汽)性质:p 1 6MPa , t 1 540 C ,解:查水蒸汽表2.5MPa 20 C H 2O H 86.3kJ kg 锅炉每小时耗煤量:mcoal13490235658.6kg h 10.7 292601(3125.87 128.04) 31490235kJ hQ m H 2O H(H 2 H 1)4.5 1035- 4某朗肯循环的蒸汽参数为:进汽轮机的压力5 6MPa ,温度t 1 540 C ,汽轮机蒸汽吸收的热量 染料可提供的热量内插得到2.0MPa 查水蒸汽表内插得到3.0MPa 内插得到2.5MPa2.0MPa 360 C H 2O350 C H 2OH3.0MPa 320 C H 2O 3.0MPa 360 C H 2O350 C H 2O H 350 C H 2OHH 3159.3kJ 3159.3 3069.540 H 3043.4kJ H 3138.7kJ 3138.7 3043.4kg30 kg kg403114.88 3136.8530 3069.5 3043.4 3125.87kJ 3136.85kJ 3114.88kJkg 1kg 1 kg 12点(湿蒸汽)性质:S g 8.2287kJ kg 1V l 1.0084 cm 3g 11-2过程在膨胀机内完成,忽略过程的不可逆性,则该过程为等熵过程,S 2 S 1 6.9999kJ kg 1 K 12点汽液混合物熵值:循环热效率旦 1326・9 6.°420.3958H 4 3517.0 179.922(2)乏气的干度;(3)循环的气耗率;(4 )循环的热效率; (5)分析以上计算的结果。
第5章 干燥的习题解答1.已知湿空气的总压强为50Pa,温度为60℃,相对湿度为40%,试求: (1)湿空气中水汽的分压; (2)湿度;(3)湿空气的密度。
解:(1)湿空气的水汽分压,V S p P ϕ=由附录查得60C 时水的饱和蒸汽压19.92S p KPa = 0.419.927.97V p KPa =⨯= (2) 湿度0.6220.6227.970.118/507.97VVP H kg kg p P ⨯===--绝干气(1) 密度553273 1.0131027360 1.01310(0.772 1.244)(0.772 1.2440.118)2732735010H t v H P +⨯+⨯=+⨯⨯=+⨯⨯⨯⨯32.27m =湿空气/kg 绝干气 密度 3110.1180.493/2.27H H H kg m v ρ++==湿空气 2.在总压101.33KPa 下,已知湿空气的某些参数,利用湿空气的H-I 图查出本题附表中空格内的数值,并给出序号4中各数值的求解过程示意图。
习题2附表解:上表中括号内的数据为已知,其余值由图H I -查得。
分题4的求解示意图如附图所示,其中A 为状态点。
3.干球温度为20℃、湿度为0.009kg 水/kg 绝干气的温空气通过预热器加热到50℃后,再送至常压干燥器中,离开干燥器时空气的相对温度为80%,若空气在干燥器中经历等焓干燥过程,试求:(1)1m 3原温空气在预热过程中始的变化; (2)1m 3原温空气在干燥器中获得的水分量。
解:(1)31m 原湿空气在预热器中焓的变化当0020,0.009/t C H kg kg ==绝干气时,由H I -图查出043/I KJ kg =绝干气。
当01050,0.009/t C H H kg kg ===绝干气时,由H I -图查出174/I KJ kg =绝干气1kg 绝干空气在预热器中焓的变化为:744331I ∆=-=/KJ kg 绝干气 原湿空气的比容为5273 1.0131027320(0.772 1.244)(0.772 1.2440.009)273273H t v H P +⨯+=+⨯⨯=+⨯⨯30.84m =湿空气/kg 绝干气31m 原湿空气的焓变为 33136.9/0.84H I KJ m v ∆==湿空气 (2)31m 原湿空气在干燥器中获得的水分当01050,0.009/t C H H kg kg ===绝干气时,在H I -图上确定空气的状态点,由该点沿等焓线向右下方移动与80%ϕ=的线相交,交点即为离开干燥器时空气的状态点。
化工热力学第五章作业讲解第五章 例题一、填空题1.指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。
2.说出下列汽液平衡关系适用的条件(1)l i v i f f ˆˆ= ______无限制条件__________;(2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。
3.丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是A 12=______0.587_____,A 21=____0.717____(已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)4.在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数693.1,38.121==γγ。
1.组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。
2.若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。
3.EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。
第五章 例题一、填空题1. 指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。
2. 说出下列汽液平衡关系适用的条件(1) l i v i f f ˆˆ= ______无限制条件__________; (2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。
3. 丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是A 12=______0.587_____,A 21=____0.717____(已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)4. 在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数693.1,38.121==γγ。
1. 组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。
2. 若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。
3. EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。
是否题 习题五 5-1汽液平衡关系?^?L 的适用的条件是理想气体和理想溶液。
解:否。
适用所有气体和溶液。
5-2汽液平衡关系pyj=p :X 的适用的条件是低压条件下的非理想液相。
解:是。
只有低压条件下?. =1 b =1I ' i 5-3在(1)-( 2) 二元系统的汽液平衡中,若( 分,(2)是重组分, 则 y 1 >■ x1, y 2 V 屜。
解:错,若系统存在共沸点,就可以出现相反的情况。
5-4混合物汽液相图中的泡点曲线表示的是饱和汽相,而露 点曲线表示的是饱和液相。
解:错。
正好相反。
5-5对于负偏差系统,液相的活度系数总是小于 1。
解:是。
5-6在一定压力下,组成相同的混合物的露点温度和泡 点温度不可能相同。
解:错,在共沸点时相同。
5-7在组分(1)-组分(2) 二元系统的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则系统的压力,随着x i 的增大而增大。
解:错,若系统存在共沸点,就可以出现相反的情况。
&^0貝1丈定律计算值5-8理想系统的汽液平衡K i 等于1。
解:错,理想系统即汽相为理想气体,液相为理想溶液, ?j =1,护=1,7j =1, I J j I 但K i 不一定等于1。
5-9对于理想系统,汽液平衡常数K i ,只与T 、P 有关,而与组成无关。
解:对, 对于理想系统£弋=肾=¥,只与T 、p 有关,而与组成无关。
5-10 能满足热力学一致性的汽液平衡数据就是高质量的数据。
解:错。
热力学一致性是判断实验数据可靠性的必要条件,但不是充分条件。
即 符合热力学一致性的数据,不一定是正确可靠的;但不符合热力学一致性的数据, 定是不正确可靠的。
5-11当潜水员深海作业时,若以高压空气作为呼吸介质,由于氮气溶入血液的 浓度过大,会给人体带来致命影响(类似氮气麻醉现象)。
根据习题 5-11表1中25r 下溶解在水中的各种气体的 Henry 常数H ,认为以二氧化碳和氧气的混 和气体为呼吸介质比较适合。
习 题 五一 是否题5-1 汽液平衡关系ˆˆV L i i f f =的适用的条件是理想气体和理想溶液。
解:否。
5-2 汽液平衡关系s i i i i py p x γ=的适用的条件是低压条件下的非理想液相。
解:是。
5-3 在(1)-(2)二元系统的汽液平衡中,若(1)是轻组分,(2)是重组分, 则11y x >, 22y x <。
解:错,若系统存在共沸点,就可以出现相反的情况。
5-4 混合物汽液相图中的泡点曲线表示的是饱和汽相,而露点曲线表示的是饱和液相。
解:错。
5-5 对于负偏差系统,液相的活度系数总是小于1。
解:是。
5-6 在一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。
解:错,在共沸点时相同。
5-7 在组分(1)-组分(2)二元系统的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则系统的压力,随着1x 的增大而增大。
解:错,若系统存在共沸点,就可以出现相反的情况。
5-8 理想系统的汽液平衡 K i 等于1。
解:错,理想系统即汽相为理想气体,液相为理想溶液。
5-9 对于理想系统,汽液平衡常数K i ,只与 T 、p 有关,而与组成无关。
解:对,可以从理想体系的汽液平衡关系证明。
5-10能满足热力学一致性的汽液平衡数据就是高质量的数据。
解:错。
5-11当潜水员深海作业时,若以高压空气作为呼吸介质,由于氮气溶入血液的浓度过大,会给人体带来致命影响(类似氮气麻醉现象)。
根据习题5-11表1中25℃下溶解在水中的各种气体的Henry 常数H,认为以二氧化碳和氧气的混和气体为呼吸介质比较适合。
习题5-11表1 几种气体的Henry 常数气体 H /MPa 气体 H / MPa 气体 H / MPa 气体 H / Pa 乙炔135一氧化碳540氦气12660甲烷4185空气7295乙烷 3060 氢气 7160 氮气 8765 二氧化碳 167 乙烯1155硫化氢55氧气4438解:对。
第五章 例题一、填空题1. 指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。
2. 说出下列汽液平衡关系适用的条件(1) l i v i f f ˆˆ= ______无限制条件__________; (2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。
3. 丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是 A 12=______0.587_____,A 21=____0.717____ (已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)4. 在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数693.1,38.121==γγ。
1. 组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。
2. 若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。
3. EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。
4. 由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数A i ,B i ,C i ;Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij Λ=-λλ,Wilson 方程的能量参数是如何得到的?能从混合物的有关数据(如相平衡)得到。
5. 对于一个具有UCST 和LCST 的体系,当UCST T T >和ULST T T <时,溶液是 均相 (相态),PT x G ,212⎪⎪⎭⎫ ⎝⎛∂∂ >0 (>0,<0,=0);当UCST T T <和ULST T T >时,溶液是 液液平衡二、 计算题3.在常压和25℃时,测得059.01=x 的异丙醇(1)-苯(2)溶液的汽相分压(异丙醇的)是1720Pa 。
已知25℃时异丙醇和苯的饱和蒸汽压分别是5866和13252Pa 。
(a)求液相异丙醇的活度系数(对称归一化);(b)求该溶液的E G 。
解:由1111γx P Py s =得55866059.017205866059.010*********≈⨯=⨯==y x P Py sγ同样有:()813252059.0117201013252222≈⨯--==x P Py s γ1. 乙醇(1)-甲苯(2)体系的有关的平衡数据如下 T =318K 、P =24.4kPa 、x 1=0.300、y 1=0.634,已知318K 的两组饱和蒸汽压为 05.10,06.2321==ss P P kPa ,并测得液相的混合热是一个仅与温度有关的常数437.0=RT H ∆,令气相是理想气体,求 (a)液相各组分的活度系数;(b)液相的G ∆和G E ;(c)估计333K 、x 1=0.300时的G E 值;(d)由以上数据能计算出333K 、x 1=0.300时液相的活度系数吗 为什么(e )该溶液是正偏差还是负偏差?解:(a )由1111γx P Py s=得24.206.233.0634.04.241111=⨯⨯==x P Py s γ同样有:27.105.107.0)634.01(4.242222=⨯-==x P Py s γ(b)122110.108441.027.1ln 7.024.2ln 3.0ln ln -⋅=⇒=⨯+⨯=+=mol J G x x RTG E Eγγ(c)(){}T R T H T H T T G E x P E 437.022,-=-=-=⎥⎦⎤⎢⎣⎡∂∂∆ 积分得(d)不能得到活度系数,因为没有G E 的表达式。
(e)由于G E >0,故为正偏差溶液。
2. 在总压101.33kPa 、350.8K 下,苯(1)-正已烷(2)形成x 1=0.525的恒沸混合物。
此温度下两组分的蒸汽压分别是99.4KPa 和97.27KPa ,液相活度系数模型选用Margules 方程,汽相服从理想气体,求350.8K 下的汽液平衡关系1~x P 和11~x y 的函数式。
解:将低压下的二元汽液平衡条件与共沸点条件结合可以得 将此代入Margules 方程得解出0879.0,1459.02112==A A由此得新条件下的汽液平衡关系3. 苯(1)-甲苯(2)可以作为理想体系。
(a)求90℃时,与x 1=0.3 的液相成平衡的汽相组成和泡点压力;(b) 90℃和101.325kPa 时的平衡汽、液相组成多少 (c)对于x 1=0.55和y 1=0.75的平衡体系的温度和压力各是多少 (d)y 1=0.3的混合物气体在101.325KPa 下被冷却到100℃时,混合物的冷凝率多少 AntoineK)(15.36315.27390=+=T ,由Antoine 方程得(a )同样得kPa 2.542=sP 由理想体系的汽液平衡关系得 (b) 由(c)由222111,x P Py x P Py s s==得即 所以(d )K)(15.37315.273100=+=T ,由Antoine 方程得设最初混合物汽相有10mol ,即苯3mol ,甲苯7mol 。
冷凝后汽、液相分别为(10-a)和a mol ,则:mol 839.7257.0456.03456.010456.0)10(257.03=--⨯=→-+=a a a冷凝率:%39.7810839.710==a 5.用Wilson 方程,计算甲醇(1)-水(2)体系的露点(假设气相是理想气体,可用软件计算)。
(a )P =101325Pa ,y 1=0.582(实验值T =81.48℃,x 1=0.2);(b )T =67.83℃,y 1=0.914(实验值P =101325Pa ,x 1=0.8)。
已知Wilson 参数13.10851112=-λλJmol -1和04.16312221=-λλ Jmol -1解:(a )已知P =101325Pa ,y 1=0.582,属于等压露点计算,由于压力较低,气相可以作理想气体。
21,,y y T 可以从活度系数用Wilson 方程计算, 其中纯组分的液体摩尔体积由Rackett 方程;纯分的饱和蒸汽压由Antoine 方程计算。
查得有关物性常数,并列于下表纯组分的物性常数用软件来计算。
输入独立变量、Wilson 能量参数和物性常数,即可得到结果:K T 9816.356=和2853034.01=x(b )已知T =67.83℃,y 1=0.914,属于等温露点计算,同样由软件得到结果,kPa P 051.97=,7240403.01=x6. 测定了异丁醛(1)-水(2)体系在30℃时的液液平衡数据是0150.0,8931.011==βαx x 。
(a)由此计算van Laar 常数(答案是55.2,32.42112==A A );(b)推算30=T ℃,915.01=x 的液相互溶区的汽液平衡(实验值:31.29=P kPa )。
已知30℃时,22.4,58.2821==s s P P kPa 。
解:(a )液液平衡准则得将van Laar 方程⎪⎪⎭⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=22211121122122221112221121ln ln x A x A x A A xA x A x A A γγ代入上式再代入数据 ββααβα1212111,1,0150.0,8931.0x x x x x x -=-===,解方程组得结果: (b) 30=T ℃,915.01=x 的液相活度系数是 设汽相是理想气体,由汽液平衡准则得 三、图示题描述下列二元y x T --图中的变化过程D C B A →→→:这是一个等压定(总)组成的降温过程。
A 处于汽相区,降温到B 点时,即为露点,开始有液滴冷凝,随着温度的继续下降,产生的液相量增加,而汽相量减少,当达到C 点,即泡点时,汽相消失,此时,液相的组成与原始汽相组成相同。
继续降温到达D 点。
描述下列二元y x P --图中的变化过程D C B A →→→:这是一等温等压的变组成过程。
从A 到B ,是液相中轻组分1的含量增加,B 点为泡点,即开始有汽泡出现。
B 至C 的过程中,系统中的轻组分增加,汽相相对于液相的量也在不断的增加,C 点为露点,C 点到D 点是汽相中轻组分的含量不断增加。
1. 将下列T-x-y 图的变化过程A →B →C →D →E 和P-x-y 图上的变化过程F →G →H →I →J表示在P-T 图(组成=0.4)上。
PA B C DT =常数。