第章电磁波测距及其距离测量
- 格式:ppt
- 大小:3.57 MB
- 文档页数:10
电磁波测距的原理
电磁波测距的原理基于电磁波的传播速度恒定不变这一性质,利用发射器发送出的电磁波,经过被测对象的反射后被接收器接收到,然后通过测量电磁波从发射器到接收器的时间差,可以间接得出被测对象与测距设备之间的距离。
具体来说,电磁波测距可利用无线电波、雷达、激光测距等技术实现。
无论采用哪种技术,测距设备都包括一个发射器和一个接收器。
发射器会发出一定频率的电磁波,经过空气传播,当遇到被测对象时,部分电磁波会被对象反射回来并被接收器接收到。
电磁波测距的原理即是利用这部分反射的电磁波来计算距离。
当发射器发出电磁波后,通过计时器记录发射时刻,然后在接收器接收到反射的电磁波后立即停止计时,记录接收时刻。
通过计算发射和接收的时间差,再结合电磁波在真空中传播速度(近似等于光速),就可以推算出被测对象与测距设备之间的距离。
需要注意的是,由于电磁波在不同介质中传播速度会有所变化,所以在实际应用中需要根据介质的不同对测距结果进行修正。
另外,电磁波测距还需要考虑到多路径效应、噪声干扰等因素,以提高测距精度。
电磁波测距电磁波测距是用仪器发射并接收电磁波,通过测量电磁波在待测距离上往返传播的时间解算出距离。
一、概述电磁波测距是用电磁波(光波或微波)作为载波,传输测距信号,以测量两点间距离的一种方法。
与传统的钢尺量距和视距测量相比,具有测程长、精度高、作业快、工作强度低、几乎不受地形限制等优点。
电磁波测距的英文全称是:Electro-magnetic Distance Measuring,所以又简称为EDM。
电磁波测距仪按其所采用的载波可分为:①用微波段的无线电波作为载波的微波测距仪;②用激光作为载波的激光测距仪;③用红外光作为载波的红外测距仪。
后两者又统称为光电测距仪。
微波和激光测距仪多用于长程测距,测程可达60 km,一般用于大地测量;而红外测距仪属于中、短程测距仪(测程为15kffi以下),一般用于小地区控制测量、地形测量。
地籍测量和工程测量等。
本节主要介绍光电测距仪的基本原理和测距方法速发展~红外光电测距仪采用的是CaAs(砷化钦)发光二极管作为光源,不同的caAs发光二极管发光波长范围为0.82~0.93Pm。
由于GaAs发光管具有注人电流小、耗电省、寿命长、体积小、抗震性强及连续发光的特点,使测距仪体积大为减小。
近几年来又将光电测距仪与电子经纬仪和野外记录及数据处理器结合,;组成电子速测仪,同时进行角度和距离的测量,还能自动记录、存储、输出观测值及有关处理数据也能直接显示乎距、高差、坐标增量等,使测量工作大为简化。
所以红外测距仪在小面积的控制测量、地形测量和各种工程测量中得到广泛的应用。
二、红外测距仪基本原理若用红外测距仪测定AB二点间的距离D.如图5-12。
测距仪安置在A点,反光镜安置在B点。
由仪器发出的光束经过待测距离D到达反光镜,经反射回到仪器。
如果能测出光在距离D上往返传播为时间,则距离可按公式(5-19)求得。
如果测距仪发出的是光脉冲,通过测定发射的光脉冲和接收到波光脉冲的时间差t测定距离,称为脉冲法测距。
§4.1 电磁波测距基本原理4.1.1 概述建立高精度的水平控制网,需要测定控制网的边长。
过去精密距离测量,都是用因瓦基线尺直接丈量待测边的长度,虽然可以达到很高的精度,但丈量工作受地形条件的限制,速度慢,效率低。
从六十年代起,由于电磁波测距仪不断更新、完善和愈益精密,它以速度快,效率高取代了因瓦基线尺,广泛用于水平控制网和工程测量的精密距离测量中。
随着近代光学、电子学的发展和各种新颖光源(激光、红外光等)相继出现,电磁波测距技术得到迅速的发展,出现了以激光、红外光和其他光源为载波的光电测距仪和以微波为载波的微波测距仪。
因为光波和微波均属于电磁波的范畴,故它们又统称为电磁波测距仪。
由于光电测距仪不断地向自动化、数字化和小型轻便化方向发展,大大地减轻了测量工作者的劳动强度,加快了工作速度,所以在工程控制网和各种工程测量中,多使用各种类型的光电测距仪。
光电测距仪按仪器测程大体分三大类:(1)短程光电测距仪:测程在3km以内,测距精度一般在lcm左右。
这种仪器可用来测量三等以下的三角锁网的起始边,以及相应等级的精密导线和三边网的边长,适用于工程测量和矿山测量。
这类测程的仪器很多,如瑞士的ME3000,精度可达±(0.2mm+0.5 ×10-6D);DM 502、 DI3S、DI4,瑞典的AGA-112、AGA-116,美国的HP3820A,英国的CD6,日本的RED2,SDM3E,原西德的ELTA 2,ELDI2等,精度均可达±(5mm+5×10-6D);原东德的EOT 2000,我国的HGC-1、DCH-2、DCH3、DCH-05等。
短程光电测距仪,多采用砷化镓(GaAs或GaAlAs)发光二极管作为光源(发出红外荧光),少数仪器也用氦-氖(He-Ne)气体激光器作为光源。
砷化镓发光二极管是一种能直接发射调制光的器件,即通过改变砷化镓发光二极管的电流密度来改变其发射的光强。
电磁波测距原理公式电磁波测距是一种常见且重要的测量技术,在我们的生活和科学研究中都有着广泛的应用。
要理解电磁波测距,咱们得先从它的原理公式说起。
电磁波测距的基本原理就是利用电磁波在空气中传播的速度和时间来计算距离。
简单来说,就好比你朝着远处大喊一声,然后根据声音传回来的时间来估算你和远处物体的距离。
那电磁波测距的原理公式是啥呢?常见的就是 D = c × t / 2 。
这里的 D 表示测量得到的距离,c 是电磁波在真空中的传播速度,大约是299792458 米每秒,t 则是电磁波从发射到接收所经历的时间。
举个例子吧,有一次我和朋友去爬山,我们想知道从山脚下到山顶的直线距离。
这时候,我就拿出了一个带有电磁波测距功能的仪器。
我先朝着山顶的方向发射电磁波,仪器开始精准地记录电磁波发射的时刻。
当电磁波从山顶反射回来被仪器接收到时,仪器又迅速记录下接收的时刻。
这中间的时间差,经过仪器内部的精密计算,再结合电磁波的传播速度,就能得出我们和山顶之间的距离啦。
咱们再深入点讲讲这个公式。
为啥要除以 2 呢?这是因为电磁波从发射点出发,到达目标点后再反射回来,我们测量到的时间 t 实际上是电磁波走了一个来回的时间。
所以,真正单程的距离就得除以 2 。
在实际应用中,电磁波测距可不简单。
因为电磁波在空气中传播时,会受到各种因素的影响。
比如说,大气的温度、湿度、气压等等,都会让电磁波的传播速度发生变化。
这就好像你在跑步的时候,遇到顺风和逆风,速度感觉就不一样。
为了提高测距的精度,科学家们可没少下功夫。
他们不断改进仪器,提高测量时间的精度,还研究出各种方法来修正大气条件对电磁波传播速度的影响。
想象一下,在建筑工地上,工程师们要用电磁波测距来确定建筑物之间的距离,要是误差太大,那房子可就盖歪啦!又比如说在地质勘探中,准确测量地下岩层的距离,对于寻找矿产资源可是至关重要的。
回到我们的日常生活,现在很多汽车上的自适应巡航系统,其实也用到了电磁波测距的原理。
电磁波测距基本原理咱今天就来说说电磁波测距的基本原理,这事儿啊,就像你想知道你和一个朋友隔了多远。
电磁波这东西,就像一个个看不见的小信使在空间里跑来跑去。
那测距咋实现的呢?这得从电磁波的速度说起。
电磁波在空气中的速度那可是相当快的,快到啥程度呢?就像闪电一样,唰的一下就出去老远。
而且这个速度是个固定的值,就像火车按照固定的时刻表行驶一样。
这个速度大约是每秒三十万公里呢。
想象一下,你站在一个地方,朝着一个目标发射电磁波。
这就好比你朝着远方的小伙伴扔出一个小皮球,这个小皮球就是电磁波。
然后呢,这个电磁波碰到目标之后就会反射回来。
这就像小皮球碰到墙会弹回来一样。
从你发射电磁波到接收到反射回来的电磁波,这中间是有个时间差的。
这个时间差可太关键了。
就像你扔出皮球的那一刻开始计时,等到皮球弹回来接到手的时候停止计时。
这个时间的长短就和你与目标的距离有关系。
如果这个时间很短,那就说明目标离你比较近,就像你轻轻一扔皮球,很快就弹回来了,那肯定是墙离你近呗。
如果这个时间比较长,那就意味着目标离你远。
就好比你用力把皮球扔得老远,过了好一会儿才弹回来。
那具体怎么根据这个时间算出距离呢?这就简单啦。
因为距离等于速度乘以时间嘛。
不过这里的时间是电磁波往返的时间,所以我们得把这个时间除以二。
比如说,你测得电磁波往返的时间是两秒钟,那单程的时间就是一秒钟。
已知电磁波速度是每秒三十万公里,那距离就是三十万公里乘以一秒,也就是三十万公里。
这就是你和目标之间的距离啦。
在实际生活中,这个原理可有用了。
比如说测量两个山头之间的距离。
以前人们可能要翻山越岭,拿个尺子一点点量,那多费劲啊。
现在呢,只要拿个能发射和接收电磁波的仪器,往对面山头一照,很快就能知道距离了。
又或者是在建筑工地上,要测量建筑物的长度、宽度啥的,电磁波测距仪一放,数据就出来了。
还有在航海的时候,船与岸边或者与其他船只之间的距离,也可以用这个方法测量。
就像船员们有了一个神奇的眼睛,能随时知道周围的距离情况,这样就可以避免碰撞之类的危险啦。
物理实验中电磁波的测量技巧与方法电磁波是一种电场和磁场以波动形式传播的能量。
在物理实验中,测量电磁波的技巧和方法是非常重要的,它们帮助我们理解和探索电磁波的性质和特征。
本文将介绍一些常用的电磁波测量技巧和方法。
一、电磁波的测量仪器1. 示波器:示波器是测量电信号的重要仪器,可以观察波形的幅度、频率和相位等特征。
在测量电磁波时,可以将示波器与天线或接收器连接,通过观察示波器上的波形来了解电磁波的特性。
2. 频谱分析仪:频谱分析仪用于分析和测量信号的频谱成分。
它可以将信号进行频谱分解,并显示出信号在不同频率上的能量分布情况。
在测量电磁波时,可以利用频谱分析仪来分析电磁波的频谱特性。
3. 天线:天线是接收和发射电磁波的关键元件。
不同类型的天线适用于不同频段和波长的电磁波测量。
在实验中选择适当的天线,并正确放置和定位,可以有效地测量电磁波的强度和方向。
二、电磁波测量技巧1. 距离测量:要准确测量电磁波的传播距离,可以利用时延测量或多普勒效应。
时延测量是通过测量信号的传播时间来计算距离,而多普勒效应则是利用信号频率的变化来计算距离。
这些技巧在雷达和无线通信系统等应用中都有广泛的应用。
2. 强度测量:电磁波强度的测量可以通过接收器和功率计等仪器实现。
接收器将电磁波转化为可测量的电信号,功率计则用于测量电磁波的功率或能量。
在测量过程中,应注意选择合适的灵敏度和量程,以确保测量结果的准确性。
3. 极化测量:电磁波的极化状态是描述波动方向的重要参数。
在测量过程中,可以使用极化器和极化计来测量电磁波的极化方向和极化度。
这对于理解电磁波的传播方式和信号特性非常重要。
三、电磁波测量方法1. 直接测量法:直接测量法是通过将测量仪器直接放置在电磁波的作用区域来进行测量。
这种方法简单直接,适用于测量强度较高或频率较低的电磁波。
但是在进行测量时需要注意仪器本身对被测电磁波的干扰。
2. 反射测量法:反射测量法是通过观察电磁波在目标物体上产生的反射情况来进行测量。