第二节电磁波测距
- 格式:pptx
- 大小:1.45 MB
- 文档页数:15
电磁波测距的原理
电磁波测距的原理基于电磁波的传播速度恒定不变这一性质,利用发射器发送出的电磁波,经过被测对象的反射后被接收器接收到,然后通过测量电磁波从发射器到接收器的时间差,可以间接得出被测对象与测距设备之间的距离。
具体来说,电磁波测距可利用无线电波、雷达、激光测距等技术实现。
无论采用哪种技术,测距设备都包括一个发射器和一个接收器。
发射器会发出一定频率的电磁波,经过空气传播,当遇到被测对象时,部分电磁波会被对象反射回来并被接收器接收到。
电磁波测距的原理即是利用这部分反射的电磁波来计算距离。
当发射器发出电磁波后,通过计时器记录发射时刻,然后在接收器接收到反射的电磁波后立即停止计时,记录接收时刻。
通过计算发射和接收的时间差,再结合电磁波在真空中传播速度(近似等于光速),就可以推算出被测对象与测距设备之间的距离。
需要注意的是,由于电磁波在不同介质中传播速度会有所变化,所以在实际应用中需要根据介质的不同对测距结果进行修正。
另外,电磁波测距还需要考虑到多路径效应、噪声干扰等因素,以提高测距精度。
电磁波测距电磁波测距是用仪器发射并接收电磁波,通过测量电磁波在待测距离上往返传播的时间解算出距离。
一、概述电磁波测距是用电磁波(光波或微波)作为载波,传输测距信号,以测量两点间距离的一种方法。
与传统的钢尺量距和视距测量相比,具有测程长、精度高、作业快、工作强度低、几乎不受地形限制等优点。
电磁波测距的英文全称是:Electro-magnetic Distance Measuring,所以又简称为EDM。
电磁波测距仪按其所采用的载波可分为:①用微波段的无线电波作为载波的微波测距仪;②用激光作为载波的激光测距仪;③用红外光作为载波的红外测距仪。
后两者又统称为光电测距仪。
微波和激光测距仪多用于长程测距,测程可达60 km,一般用于大地测量;而红外测距仪属于中、短程测距仪(测程为15kffi以下),一般用于小地区控制测量、地形测量。
地籍测量和工程测量等。
本节主要介绍光电测距仪的基本原理和测距方法速发展~红外光电测距仪采用的是CaAs(砷化钦)发光二极管作为光源,不同的caAs发光二极管发光波长范围为0.82~0.93Pm。
由于GaAs发光管具有注人电流小、耗电省、寿命长、体积小、抗震性强及连续发光的特点,使测距仪体积大为减小。
近几年来又将光电测距仪与电子经纬仪和野外记录及数据处理器结合,;组成电子速测仪,同时进行角度和距离的测量,还能自动记录、存储、输出观测值及有关处理数据也能直接显示乎距、高差、坐标增量等,使测量工作大为简化。
所以红外测距仪在小面积的控制测量、地形测量和各种工程测量中得到广泛的应用。
二、红外测距仪基本原理若用红外测距仪测定AB二点间的距离D.如图5-12。
测距仪安置在A点,反光镜安置在B点。
由仪器发出的光束经过待测距离D到达反光镜,经反射回到仪器。
如果能测出光在距离D上往返传播为时间,则距离可按公式(5-19)求得。
如果测距仪发出的是光脉冲,通过测定发射的光脉冲和接收到波光脉冲的时间差t测定距离,称为脉冲法测距。
电磁波测距一、电磁波测距仪的测距原理钢尺量距是一项十分繁重的工作,在山区或沼泽地区使用钢尺更为困难,而视距测量精度又太低。
为了提高测距速度和精度,电磁波测距仪的使用越来越广泛。
电磁波测距是利用电磁波做载波,在其上调制测距信号,测量两点间距离的方法。
若电磁波在测线两端往返传播的时间为t,则可求出两点间距离为:D=c t(4-3-1)式中:c为电磁波在大气中的传播速度。
由式(4-3-1)可知,测定距离的精度主要取决于测定时间t的精度。
例如要达到±1c m的测距精度,时间t的测定要准确到 6.7×10-11s,这在目前是难以做到的。
因此,多采用间接方法测定时间,主要有下列两种:1、脉冲法测距测距仪发出光脉冲,经被测目标反射后由测距仪接收,测出该光脉冲往返所需时间t对应的脉冲个数,就可求得距离D。
该法测距精度为0.5~1m,所以多用于激光雷达、微波雷达等远距离测距上。
2、相位法测距在工程上使用的红外测距仪,都是采用相位法测距,它是将测量时间变成测量光在测线中传播的载波相位差。
通过测定相位差来测定距离,称为相位法测距。
如4-8测距仪在A站发射的调制光在待测距离上传播,在B点反射后又回到A点,被测距仪接收,所经过的时间为t。
为便于说明,将在B反射后经A点的光波沿测线方向展开,则调制光往返经过了2D的路程。
设调制光的频率为f,角频率为,则调制光在测线上的相位移为:(4-3-2)(4-3-3)则:(4-3-4)由4-8可以看出,相位移可表示为:将上式代入式(4-3-4)得:(4-3-5)令,式(4-3-5)可变换为:(4-3-6)式(4-3-6)就是相位法测距原理的基本公式,它与钢尺量距公式相比,有相似之处,即距离等于N个整尺段的距离与不足一个整尺段距离之和。
二、红外测距仪及其使用红外测距仪的产品很多,下面只介绍W I L D D I1000。
W I L D D I1000红外测距仪小而轻,能架设在任何W I L D光学经纬仪上,同时完成测距和测角任务。
§4.1 电磁波测距基本原理4.1.1 概述建立高精度的水平控制网,需要测定控制网的边长。
过去精密距离测量,都是用因瓦基线尺直接丈量待测边的长度,虽然可以达到很高的精度,但丈量工作受地形条件的限制,速度慢,效率低。
从六十年代起,由于电磁波测距仪不断更新、完善和愈益精密,它以速度快,效率高取代了因瓦基线尺,广泛用于水平控制网和工程测量的精密距离测量中。
随着近代光学、电子学的发展和各种新颖光源(激光、红外光等)相继出现,电磁波测距技术得到迅速的发展,出现了以激光、红外光和其他光源为载波的光电测距仪和以微波为载波的微波测距仪。
因为光波和微波均属于电磁波的范畴,故它们又统称为电磁波测距仪。
由于光电测距仪不断地向自动化、数字化和小型轻便化方向发展,大大地减轻了测量工作者的劳动强度,加快了工作速度,所以在工程控制网和各种工程测量中,多使用各种类型的光电测距仪。
光电测距仪按仪器测程大体分三大类:(1)短程光电测距仪:测程在3km以内,测距精度一般在lcm左右。
这种仪器可用来测量三等以下的三角锁网的起始边,以及相应等级的精密导线和三边网的边长,适用于工程测量和矿山测量。
这类测程的仪器很多,如瑞士的ME3000,精度可达±(0.2mm+0.5 ×10-6D);DM 502、 DI3S、DI4,瑞典的AGA-112、AGA-116,美国的HP3820A,英国的CD6,日本的RED2,SDM3E,原西德的ELTA 2,ELDI2等,精度均可达±(5mm+5×10-6D);原东德的EOT 2000,我国的HGC-1、DCH-2、DCH3、DCH-05等。
短程光电测距仪,多采用砷化镓(GaAs或GaAlAs)发光二极管作为光源(发出红外荧光),少数仪器也用氦-氖(He-Ne)气体激光器作为光源。
砷化镓发光二极管是一种能直接发射调制光的器件,即通过改变砷化镓发光二极管的电流密度来改变其发射的光强。
电磁波测距原理公式电磁波测距是一种常见且重要的测量技术,在我们的生活和科学研究中都有着广泛的应用。
要理解电磁波测距,咱们得先从它的原理公式说起。
电磁波测距的基本原理就是利用电磁波在空气中传播的速度和时间来计算距离。
简单来说,就好比你朝着远处大喊一声,然后根据声音传回来的时间来估算你和远处物体的距离。
那电磁波测距的原理公式是啥呢?常见的就是 D = c × t / 2 。
这里的 D 表示测量得到的距离,c 是电磁波在真空中的传播速度,大约是299792458 米每秒,t 则是电磁波从发射到接收所经历的时间。
举个例子吧,有一次我和朋友去爬山,我们想知道从山脚下到山顶的直线距离。
这时候,我就拿出了一个带有电磁波测距功能的仪器。
我先朝着山顶的方向发射电磁波,仪器开始精准地记录电磁波发射的时刻。
当电磁波从山顶反射回来被仪器接收到时,仪器又迅速记录下接收的时刻。
这中间的时间差,经过仪器内部的精密计算,再结合电磁波的传播速度,就能得出我们和山顶之间的距离啦。
咱们再深入点讲讲这个公式。
为啥要除以 2 呢?这是因为电磁波从发射点出发,到达目标点后再反射回来,我们测量到的时间 t 实际上是电磁波走了一个来回的时间。
所以,真正单程的距离就得除以 2 。
在实际应用中,电磁波测距可不简单。
因为电磁波在空气中传播时,会受到各种因素的影响。
比如说,大气的温度、湿度、气压等等,都会让电磁波的传播速度发生变化。
这就好像你在跑步的时候,遇到顺风和逆风,速度感觉就不一样。
为了提高测距的精度,科学家们可没少下功夫。
他们不断改进仪器,提高测量时间的精度,还研究出各种方法来修正大气条件对电磁波传播速度的影响。
想象一下,在建筑工地上,工程师们要用电磁波测距来确定建筑物之间的距离,要是误差太大,那房子可就盖歪啦!又比如说在地质勘探中,准确测量地下岩层的距离,对于寻找矿产资源可是至关重要的。
回到我们的日常生活,现在很多汽车上的自适应巡航系统,其实也用到了电磁波测距的原理。
电磁波测距的基本公式,式中为电磁波测距是一种利用电磁波传播速度和测量时间来确定距离的方法。
在航天、地质勘探、通信等领域具有广泛的应用。
本文将介绍电磁波测距的基本公式,以及公式中各个参数的含义和实际应用案例。
一、电磁波测距的基本概念电磁波测距是基于电磁波在空间中传播的速度和时间来计算距离的一种方法。
电磁波传播的速度在真空中最快,约为每秒3×10^8米。
通过测量电磁波从发射点到接收点所需的时间,可以计算出两点之间的距离。
二、电磁波测距的基本公式电磁波测距的基本公式为:距离(D)= 速度(V)× 时间(T)其中,距离(D)以米为单位,速度(V)以米/秒为单位,时间(T)以秒为单位。
三、公式中各个参数的解释1.速度(V):电磁波在真空中的传播速度,一般取值为3×10^8米/秒。
2.时间(T):电磁波从发射点到接收点所需的时间。
通过测量接收到的电磁波与发射电磁波之间的时间差,可以得到距离。
四、公式在实际应用中的案例分析以地球卫星通信为例,假设卫星与地面的距离为36000公里,电磁波在真空中的传播速度为3×10^8米/秒。
卫星发射电磁波后,地面接收站接收到电磁波的时间为127秒。
根据公式计算距离:距离(D)= 速度(V)× 时间(T)= 3×10^8米/秒× 127秒= 3.81×10^10米将公里转换为千米:3.81×10^10米= 3.81×10^7千米五、电磁波测距的优缺点优点:1.电磁波传播速度快,测距速度快。
2.受地形、地貌影响较小,适用于各种复杂环境。
3.设备相对简单,易于安装和维护。
缺点:1.受天气、电磁干扰等因素影响较大。
2.精度受限,难以达到亚米级精度。
3.无法测距小于光速的距离。
六、未来发展趋势和展望1.提高电磁波测距技术精度,实现亚米级甚至厘米级精度。
2.结合多种测距手段,提高测量可靠性。
电磁波测距的基本公式,式中为
(原创版)
目录
1.电磁波测距的基本概念
2.电磁波测距的基本公式
3.公式中各符号的含义
4.电磁波测距的应用领域
正文
电磁波测距是一种通过测定光波在两点间传播的时间来计算距离的
方法。
它基于电磁波在真空或空气中的传播速度,以及光波在两点间往返所需的时间。
电磁波测距的基本公式为:D = 1/2ct,其中D表示距离,c 表示空气中的光速,t表示光波在两点间往返的时间。
在这个公式中,D 表示的是电磁波在空气中传播的单程距离,c 是电磁波在真空或空气中的传播速度,它的数值约为 3×10^8 米/秒。
t 则是光波在两点间往返所需的时间,可以通过测量发射和接收电磁波的时间差来得到。
电磁波测距的应用领域非常广泛,包括但不限于地图制图、地形测绘、军事侦察、航空航天、无线通信等等。
例如,在军事侦察中,通过电磁波测距可以精确地确定敌方目标的位置,为我方的攻击和防御提供依据。
在航空航天中,电磁波测距技术可以帮助飞行器精确地确定自身的位置,从而提高飞行的精度和安全性。
总的来说,电磁波测距是一种非常重要的距离测量技术,它在各个领域都有着广泛的应用。
第1页共1页。
电磁波测距的基本公式(二)电磁波测距的基本公式1. 电磁波测距简介电磁波测距是利用电磁波在空气或其他介质中传播的特性来测量距离的一种常用方法。
在电磁波测距中,常用的公式有以下几个。
2. 电磁波传播速度公式根据电磁波在真空中的速度恒为光速c,电磁波在介质中的传播速度与真空中的光速有关。
电磁波传播速度V与介质折射率n的关系可以通过以下公式表示:V=c n其中,c是真空中的光速,n是介质的折射率。
3. 电磁波传播时间公式电磁波从发射点到接收点的传播时间可以通过以下公式表示:t=d V其中,t是传播时间,d是发射点到接收点的距离,V是电磁波的传播速度。
4. 电磁波测距公式根据电磁波传播时间公式,我们可以推导出电磁波测距的基本公式:d=V⋅t其中,d是测距结果,V是电磁波的传播速度,t是电磁波的传播时间。
5. 示例解释假设有一个发射器和一个接收器,在真空中发射的电磁波在介质中传播。
假设介质的折射率为,发射器与接收器之间的距离为2米。
根据电磁波传播速度公式,我们可以计算出电磁波在该介质中的传播速度:V=cn=3×108=2×108 m/s根据电磁波传播时间公式,我们可以计算出电磁波从发射点到接收点的传播时间:t=dV=22×108=1×10−8 s根据电磁波测距公式,我们可以计算出测距结果:d=V⋅t=2×108×1×10−8=2 m因此,根据电磁波测距公式,我们可以得出发射器与接收器之间的距离为2米。
以上就是电磁波测距的基本公式及其示例解释。
通过这些公式,我们可以准确测量电磁波的传播距离。