龙岩一中“万有引力定律及其运用”练习
- 格式:doc
- 大小:93.50 KB
- 文档页数:5
高中物理万有引力定律的应用练习题及答案及解析一、高中物理精讲专题测试万有引力定律的应用1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt =;2hRv t=【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt =质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月.【答案】(1)r =22022=R h M Gs 月月 【解析】本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解5.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h=(3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算6.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
高中物理万有引力定律的应用及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:23224GMTh R π因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π(3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ= (2)v gR =22324gT R h R π= 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v gR =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h T R h π=++,解得:22324gT R h R π=-3.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转的角速度为ω,地球半径为R . (2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50kg 的人对水平地板的压力大小.取地面附近的重力加速度g=10m/s 2,地球自转的角速度ω=7.3×10-5rad/s ,地球半径R=6.4×103km . 【答案】(1)22111()2m R h ω+;(2)11.5N 【解析】试题分析:(1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.(2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小. 解:(1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度v=(R+h 1)ω, 货物相对地心的动能.(2)根据,因为a=,,联立解得N==≈11.5N.根据牛顿第三定律知,人对水平地板的压力为11.5N.4.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M,自转周期为T,引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F0.①若在北极上空高出地面h处称量,弹簧测力计读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留两位有效数字);②若在赤道表面称量,弹簧测力计读数为F2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为R s和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②23 22 041F R F GMTπ=-(2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.5.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。
万有引力定律的应用练习题含答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m的物体P置于弹簧上端,用力压到弹簧形变量为3x0处后由静止释放,从释放点上升的最大高度为4.5x0,上升过程中物体P的加速度a与弹簧的压缩量x间的关系如图中实线所示。
若在另一星球N上把完全相同的弹簧竖直固定在水平桌面上,将物体Q在弹簧上端点由静止释放,物体Q的加速度a与弹簧的压缩量x间的关系如图中虚线所示。
两星球可视为质量分布均匀的球体,星球N半径为地球半径的3倍。
忽略两星球的自转,图中两条图线与横、纵坐标轴交点坐标为已知量。
求:(1)地球表面和星球N 表面重力加速度之比; (2)地球和星球N 的质量比;(3)在星球N 上,物体Q 向下运动过程中的最大速度。
【答案】(1)2:1(2)2:9(3)0032v a x = 【解析】 【详解】(1)由图象可知,地球表面处的重力加速度为 g 1=a 0 星球N 表面处的重力加速度为 g 2=00.5a 则地球表面和星球N 表面重力加速度之比为2∶1 (2)在星球表面,有2GMmmg R = 其中,M 表示星球的质量,g 表示星球表面的重力加速度,R 表示星球的半径。
则M =2gR G因此,地球和星球N 的质量比为2∶9(3)设物体Q 的质量为m 2,弹簧的劲度系数为k 物体的加速度为0时,对物体P :mg 1=k·x 0对物体Q :m 2g 2=k ·3x 0联立解得:m 2=6m在地球上,物体P 运动的初始位置处,弹簧的弹性势能设为E p ,整个上升过程中,弹簧和物体P 组成的系统机械能守恒。
高考物理万有引力定律的应用的技巧及练习题及练习题( 含答案 ) 及分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.一名宇航员抵达半径为R、密度均匀的某星球表面,做以下实验:用不行伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕 O 点在竖直面内做圆周运动,测得绳的拉力大小 F 随时间 t 的变化规律如图乙所示. F1、F2已知,引力常量为G,忽视各样阻力.求:(1)星球表面的重力加快度;(2)卫星绕该星的第一宇宙速度;(3)星球的密度.F1F2( 2)(F1 F2)R F1 F2【答案】(1)g6m (3)6m8 GmR【分析】【剖析】【详解】(1)由图知:小球做圆周运动在最高点拉力为 F2,在最低点拉力为 F1设最高点速度为 v2,最低点速度为 v1,绳长为l在最高点:F2mv22mg①l在最低点:F1mv12mg②l由机械能守恒定律,得1mv12mg 2l 1mv22③22由①②③,解得F1 F2 g6m(2)GMmmg R2GMm mv2R2=R两式联立得:v=(F1F2)R6mGMm(3)在星球表面:R2mg④M星球密度:⑤V由④⑤,解得F1F2 8 GmR点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳索的拉力与重力的协力供给向心力,由牛顿第二定律能够求出重力加快度;万有引力等于重力,等于在星球表面飞翔的卫星的向心力,求出星球的第一宇宙速度;而后由密度公式求出星球的密度.3.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为常量为 G,行星半径为求:r,周期为T,引力(1)行星的质量M;(2)行星表面的重力加快度g ;(3)行星的第一宇宙速度v.【答案】(1)( 2)( 3)【分析】【详解】(1)设宇宙飞船的质量为m,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】1s 2 g0(3)T1s2(1) g星= g0 (2) v04H[1] mg0 4L42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0ts2g0解得v0H L4v2(3)由牛顿定律,在最低点时:T mg星= mL1s2解得:T1mg042( H L)L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度 g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.5.在地球大将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体 P 置于弹簧上端,用力压到弹簧形变量为3x0 处后由静止开释,从开释点上涨的最大高度为4.5x0,上涨过程中物体 P 的加快度 a 与弹簧的压缩量 x 间的关系如图中实线所示。
高中物理万有引力定律的应用专题训练答案及解析一、高中物理精讲专题测试万有引力定律的应用1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯2.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(202V hR L 3)0()2()L R H R H T RV hπ++=【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =3.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】t=或者t =【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22Mm Gmr rω= 航天飞机在地面上,有2mMG Rmg = 联立解得ω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以22t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.4.某宇航员驾驶宇宙飞船到达某未知星球表面,他将一个物体以010m/s v =的速度从10m h =的高度水平抛出,测得落到星球表面A 时速度与水平地面的夹角为60θ=︒。
(物理)万有引力定律的应用练习题含答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度.【答案】(1)34gGRρπ= (2)v gR= (3)22324gT Rh Rπ=-【解析】(1)在地球表面重力与万有引力相等:2MmG mgR=,地球密度:343M MRVρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2vmg mR=v gR=(3)天宫一号的轨道半径r R h=+,据万有引力提供圆周运动向心力有:()()2224MmG m R hTR hπ=++,解得:22324gT Rh Rπ=-3.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x=求空腔所引起的Q点处的重力加速度反常;(2)若在水平地面上半径为L的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vdd xρ+(2)22/3.(1)L kVG kδρ=-【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离r=22d x +③Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤ (2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为(Δg′)max =2G Vd ρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k V G k k δρ==--4.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m考点:考查了万有引力定律的应用5.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R1,周期为T1,已知万有引力常量为G。
高考物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=3.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。
高中物理万有引力定律的应用技巧和方法完整版及练习题及解析一、高中物理精讲专题测试万有引力定律的应用1.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin R r )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。
龙岩一中2013届高一物理“万有引力定律”复习练习 命题人:梁鸿辉 2011-06-24
一、选择题
1.关于地球同步通讯卫星,下列说法中正确的是 ( )
A .它一定在赤道上空运行
B .各国发射的这种卫星轨道半径都一样
C .它运行的线速度一定小于第一宇宙速度
D .它运行的线速度介于第一和第二宇宙速度之间
2.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球
仍可看做是均匀的球体,月球仍沿开采前的圆周轨道运动.则与开采前相比 ( ) A .地球与月球的万有引力将变大 B .地球与月球的万有引力将变小
C .月球绕地球运动的周期将变长
D .月球绕地球运动的周期将变短
3.宇宙飞船要与环绕地球运转的轨道空间站对接,飞船为了追上轨道空间站 ( )
A .只能从较高轨道上加速
B .只能从较低轨道上加速
C .只能从与空间站同一轨道上加速
D .无论在什么轨道,只要加速即可
4.关于沿圆轨道运行的人造地球卫星,以下说法中正确的是 ( )
A .卫星轨道的半径越大,飞行的速率就越大
B .在轨道上运行的卫星受到的向心力一定等于地球对卫星的引力
C .人造地球卫星的轨道半径只要大于地球的半径,卫星的运行速度就一定小于第一宇
宙速度
D .在同一条轨道上运行的不同卫星,周期可以不同
5.利用下列哪组数据,可以计算出地球质量 ( )
A .已知地球半径和地面重力加速度
B .已知卫星绕地球作匀速圆周运动的轨道半径和周期
C .已知月球绕地球作匀速圆周运动的周期和月球质量
D .已知同步卫星离地面高度和地球自转周期
6.两颗靠得较近的天体叫双星,它们以两者重心连线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是 ( )
A .它们做圆周运动的角速度与其质量成反比
B .它们做圆周运动的线速度与其质量成反比
C .它们所受向心力与其质量成反比
D .它们做圆周运动的半径与其质量成反比
7.关于人造地球卫星的向心力,下列各种说法中正确的是 ( )
A .根据向心力公式r
v m F 2
= ,可见轨道半径增大到2倍时,向心力减小到原来的21 B .根据向心力公式F = mr ω2,轨道半径增大到2倍时,向心力增大到原来的2倍
C .根据向心力公式F = mv ω,可见向心力的大小与轨道半径无关
D .根据卫星的向心力是地球对卫星的引力2r Mm
G F =,可见轨道半径增大到2倍时,
向心力减小到原来的41
8.某同学这样来计算第一宇宙速度: v = T R
π2=36002410
4.614.323⨯⨯⨯⨯km/s=0.465km/s
这一结果与正确的值相差很大,这是由于他在近似处理中错误地假设 ( )
A .卫星的轨道是圆
B .卫星的周期等于地球自转的周期
C .卫星的轨道半径等于地球的半径
D .卫星的向心力等于它在地面上时所受的地球引力
9.“探路者”号宇宙飞船在宇宙深处飞行过程中,发现A 、B 两颗天体各有一颗靠近表面飞行的卫星,并测得两颗卫星的周期相等,以下判断错误的是 ( )
A .天体A 、
B 表面的重力加速度与它们的半径成正比
B .两颗卫星的线速度一定相等
C .天体A 、B 的质量可能相等
D .天体A 、B 的密度一定相等
10.地球与月球之间的距离大约是地球半径的60倍,若把月球绕地球运行的轨道视为圆轨 道,那么,月球绕地球运行的向心加速度a 与地面上物体的重力加速度g 之比约为 ( )
A . 1:60
B . 60:1
C . 1:3600
D . 3600;1
11.假充太阳系中天体的密度不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是 ( )
A .地球的向心力变为缩小前的一半
B .地球的向心力变为缩小前的161
C .地球绕太阳公转周期与缩小前的相同
D .地球绕太阳公转周期变为缩小前的一半
12.几十亿年来,月球总是以同一面对着地球,人们只能看到月貌的59%,由于在地球上看不
到月球的背面,所以月球的背面蒙上了一层十分神秘的色彩.试通过对月球运动的分析,说明人们在地球上看不到月球背面的原因是 ( )
A .月球的自转周期与地球的自转周期相同
B .月球的自转周期与地球的公转周期相同
C .月球的公转周期与地球的自转周期相同
D .月球的公转周期与月球的自转周期相同
13.已知地球和火星的质量比M 地:M 火=8:1,半径比R 地:R 火=2:1,表面动摩擦
因数均为0.5,用—根绳在地球表面上水平拖一个箱子,箱子能获得10 m /s2的最大加速度.将此箱子和绳送上火星表面,仍用该绳子水平拖木箱。
则木箱产生的最大加速度为(地球表面的重力加速度为10m /s 2) ( )
A .10m /s 2
B .12.5m /s 2
C . 7.5 10m /s 2
D .m /s 2
14.英国《新科学家(New Scientist )》杂志评选出了2008年度世界8项科学之最,在
XTEJ1650-500双星系统中发现的最小黑洞位列其中,若某黑洞的半径R 约45km ,质量M 和半径R 的关系满足G c R M
22
=(其中c 为光速,G 为引力常量),则该黑洞表面
重力加速度的数量级为 ( )
A .8210m/s
B .10210m/s
C .12210m/s
D .142
10m/s
15.如图所示,“a 和b 是某天体M 的两个卫星,它们绕天体公转的周期为Ta 和Tb ,某一
时刻两卫星呈如图所示位置。
且公转方向相同,则下列说法中正确的是 ( )
A .经
a b b
a T T T T -后,两卫星相距最近
B .经)
(2a b b
a T T T T -后,两卫星相距最远 C .经2
b
a T T +后,两卫星相距最近 D .经2b
a T T +后,两卫星相距最远
二、填空题
16.已知火星的半径约为地球半径的1/2,火星质量约为地球质量的1/9。
若一物体在地球
表面所受重力比它在火星表面所受重力大49N ,则这个物体的质量是_____kg 。
17.某行星表面附近有一颗卫星,其轨道半径可认为近似等于该行星的球体半径。
已测出此
卫星运行的周期为80min ,已知万有引力常量为6.67×10-11N ·m 2/kg 2
,据此求得该行星的平均密度约为________________。
(要求取两位有效数字)
18.一颗以华人物理学家“吴健雄”命名的小行星,半径约为16 km ,密度与地球相近.若在此
小行星上发射一颗绕其表面运行的人造卫星,它的发射速度约为___________。
(已知地球的半径R=6.4×103 km ,取g=10 m/s 2)
19.某物体在地球表面上受到的重力为160 N ;将它放置在卫星中,在卫星以加速度a =g /2
随火箭加速上升的过程中,当物体与卫星中的支持物的相互挤压力为90 N ,卫星此时距地面的高度为______________。
(已知地球的半径R =6.4×103 km ,取g =10 m/s 2) 三、计算题
20.在月球上以初速度v 0自高h 处水平抛出的小球,射程可达s ,已知月球半径为R ,如果
在月球上发射一颗月球的卫星,则它在月球表面附近环绕月球运动的周期。
21.荡秋千是大家喜爱的一项体育活动。
随着科技的迅速发展,将来的某一天,同学们也许会在其它星球上享受荡秋千的乐趣。
假设你当时所在星球的质量为M、半径为R,可将人视为质点,秋千质量不计、摆长不变、摆角小于90°,万有引力常量为G。
那么,
(1)该星球表面附近的重力加速度
g等于多少?
星
(2)若经过最低位置的速度为v0,你能上升的最大高度是多少?
22.宇航员站在某一星球表面上的某高处,沿水平方向抛出一小球。
经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。
若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为3L。
已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。
求该星球的质量M。
23.据美联社2002年10月7日报道,天文学家在太阳系的9大行星之外,又发现了一颗比地球小得多的小行星,而且还测得它绕太阳公转的周期约为288年.若把它和地球绕太阳公转的轨道看作圆,问它与太阳的距离约是地球与太阳距离的多少倍。
(最后结果可用根式表示)
参考答案
一、选择题
1ABC ;2BD ;3B ;4BC ;5AB ;6BD ;7D ;8B ;9B ;10C ;11BC ;12D ;13B ;14C ;15AB ;
二、填空题
16,9 kg,;17,6.1×103kg/m 3
;18,20 m/s ;19,19.2×103 km ; 三、计算题
20,T=
h
R
v s 220π;21,(1)2G M g R =星,(2)h=2202v R G M ; 22,22332Gt LR
M =;23,44(或32288)。