07-射线检测方法
- 格式:ppt
- 大小:4.09 MB
- 文档页数:63
标准《承压设备无损检测》2005版——射线探伤加入时间: 2008-10-10 浏览次数:4222中中华人民共和国行业标准JB/T 4730-2005代替JB4730-1994部分承压设备无损检测第1部分:射线探伤Nondestructive Testing of Pressure Equipments—Part 2:Radiographic testing2005-07-26发布 2005-11-01实施国家发展和改革委员会发布目次前言……………………………………………………………………………1 范围…………………………………………………………………………2 规范性引用文件……………………………………………………………3 一般要求…………………………………………………………………4 具体要求…………………………………………………………………5 承压设备熔化焊对接焊接接头射线检测质量分级…………………6 承压设备熔化焊环向对接焊接接头射线检测质量分级…7 射线检测报告……………………………………………………………………附录A(资料性附录)工业射线胶片系统的特性指标…………………………附录B(资料性附录)黑度计(光学密度计)定期校验方法…………………附录C(资料性附录)典型透照方式示意图……………………………………附录D(资料性附录)环向对接焊接接头透照次数确定方法…………………………附录E(规范性附录)焦点尺寸计算方法………………………………………附录F(规范性附录)专用像质计的型式和规格………………………………附录G(规范性附录)搭接标记的摆放位置……………………………………附录H(规范性附录)对比试块的型式和规格…………………………………前言JB/T 4730.1—2005~4730.6-2005《承压设备无损检测》分为以下六部分:——第1部分:通用要求;——第2部分:射线检测;——第3部分:超声检测;——第4部分:磁粉检测;——第5部分:渗透检测;——第6部分:涡流检测。
探伤仪使用指南HY-28型全数字智能超声波探伤仪采用国际先进的数字集成技术,各项性能指标达到国内先进水平,仪器功能齐全,性能稳定,操作简便,是模拟仪器升级换代最经济的数字式超声波探伤仪。
该仪器用于检测各种材料内部的缺陷如焊缝、钢、铜、铝、硬质合金(粉末冶金件)、铸件(铸钢和球墨铸铁)、复合材料等等),可有效检测出气孔、裂纹、疏松、夹杂、未焊透等缺陷。
功能简介:全中文显示,独具模拟超声波探伤仪操作模式,上手极快。
良好的放大特性和很宽的检测范围,检测灵敏度和分辨率比模拟机有明显的改善和提高。
四个独立探伤通道,可自由设置各行业探伤工艺标准,现场探伤无需携带试块。
存储500组的A扫描数据,可直接连接打印机打印探伤报告,并可支持多种打印机。
仪器可与计算机数据通讯实现数据管理,RS232双向串行接口传输。
实际使用时无须调节水平扫描,仪器自动显示回波位置(即具有声程-水平距离-深度的三角显示和测量)和波幅高度及当量等数据;且具备闸门定位声光报警功能。
自动制作DAC曲线,取样点不受限制。
判废线、测长线、定量线可根据各行业标准自由调整,并贮存于仪器中,DAC曲线可随增益的改变自动同步浮动。
仪器采用SMT技术组装,低功耗设计并配置高容量锂电池,仪器带电池重量仅3.5Kg,且具有高强度的铸铝合金机壳,坚固耐用,携带与使用轻松自如。
主要技术指标:1、什么是无损探伤/无损检测?(1)无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。
(2)无损检测:Nondestructive Testing(缩写 NDT)2、常用的探伤方法有哪些?无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。
但在实际应用中比较常见的有以下几种:常规无损检测方法有:-超声检测 Ultrasonic Testing(缩写 UT);-射线检测 Radiographic Testing(缩写 RT);-磁粉检测 Magnetic particle Testing(缩写 MT);-渗透检验 Penetrant Testing (缩写 PT);-涡流检测Eddy current Testing(缩写 ET);非常规无损检测技术有:-声发射Acoustic Emission(缩写 AE);-泄漏检测Leak Testing(缩写 UT);-光全息照相Optical Holography;-红外热成象Infrared Thermography;-微波检测 Microwave Testing3、超声波探伤的基本原理是什么?超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。
射线检测质量分级焊缝质量按缺欠性质、长度、数量分为四个级别;其中Ⅰ级最佳,Ⅱ级、Ⅲ级依次降低,超过Ⅲ级为Ⅳ级。
裂纹是焊缝中危害性大的缺陷,应评为Ⅳ级。
(1)长宽比小于或等于3的气孔、夹渣和夹钨统称圆形缺欠。
(2)圆形缺欠应用评定区进行评定。
评定区框线的放置是引起圆形缺欠评级争议的关键。
本标准参照GB3323-87的使用说明,从正文中明确了评定区的框线的放置要求。
即:评定区的框线必须放在焊缝内缺欠最严重的区域,框线内必须完整的包括严重区域的主要缺欠,框线的长边与焊缝平行。
与框线外切的不计点数,相割的计入点数,如图05所示。
图05 圆形评定区框放置(3)表7、表8、表9及表10与原标准相同,只不过表10的评定区10㎜×20㎜,对应的母材厚度由原来的>25~30㎜,变为>25~50㎜。
(4)对圆形缺欠各国评定不一:ASME和API std 1104都是用标准图来表示合格与否的。
我国焊缝射线检测标准都是分级的,合格级别在相应的标准或设计图样中明确,这与日本JIS3104的评定方法相一致。
圆形缺欠长径超过1/2壁厚评为Ⅳ级与原标准相同,这与我国的锅炉压力容器标准的规定是一致的。
GB3323-87规定“Ⅰ级焊缝或母材厚度小于或等于5㎜的Ⅱ级焊缝内不计点数的圆形缺陷,在评定区内不得多于10点,否则应降一级”,此条规定不是说Ⅰ级焊缝在评定区内不计点数的缺欠超过10点就评为不合格而可以评为Ⅱ级;母材厚度小于或等于5㎜的Ⅱ级焊缝内不计点数的圆形缺欠超过10点,不能评为Ⅱ级而评为Ⅲ级。
原标准“把计点数与不计点数之和不得多于10点,若多于10点,则应降一级”的规定对圆形缺欠评定过严。
不计点数的圆形缺欠对焊接质量影响很小,故本标准予以修正,修改后的此条规定与JB4730的规定相一致。
此条与原标准相同。
底片上发现的气孔有的黑度很大,按评定区内的点数算,可评为合格。
但是要注意这种缺欠是否是垂直于板厚方向的柱孔或针孔,这类缺欠易造成管道泄漏。
乳腺机X射线性能检测操作规程1. 目的为了规范乳腺机X射线性能检测操作程序,保证正确使用仪器,保证检测工作的顺利进行和设备安全。
2. 适用范围适用于从事乳腺X射线摄影系统质量控制性能检测的专业技术人员常规操作,质量控制人员检测、校正仪器,有关职能部门负责人监督仪器的使用维护。
3. 检测所用仪器及模块表3-1 仪器及型号4.质量控制性能检测项目与技术要求表4-1 检测项目与技术要求1.质量控制性能检测操作方法4.1. 标准照片密度4.1.1. 将4cm 厚的专用检测模体置于乳腺摄影乳房支撑台上。
将装有胶片的暗盒插入乳房支撑台的暗盒匣中。
4.1.2. 在自动曝光条件下曝光,冲洗胶片,测量距胸侧边沿4cm 处照片长轴中心的光密度,并与基线值进行比较,基线值的光密度在1.4D~1.8D 范围内。
4.2. 胸壁侧射野的准直4.2.1. 将装有胶片的暗盒插入乳房支撑台的暗盒匣中,调整光野与胸侧支撑台边沿对齐,进行曝光,冲洗胶片。
4.2.2. 观察胶片,胸侧胶片边缘应全部曝光。
4.3. 胸壁侧射野与台边的准直4.3.1. 将装有胶片的暗盒于乳房支撑台底部,胸壁侧暗盒超出支撑台边沿4cm 左右,进行曝光,冲洗胶片。
4.3.2. 用刻度为1mm 的钢制直尺测量照片上曝光区域边沿与台边的距离。
4.4. 光野与照射野的一致性4.4.1. 将装有胶片的暗盒插入乳房支撑台的暗盒匣中,调整光野与胸侧支撑台边沿对齐,并在四边作好光野的标记,进行曝光,冲洗胶片。
4.4.2. 用刻度为1mm的钢制直尺测量光野与照射野相应边沿的距离。
4.5. 自动曝光控制4.5.1. 乳房支撑台上分别放置2cm、4cm、6cm 厚的模体,将装有胶片的暗盒分别插入乳房支撑台的暗盒匣中,在自动曝光控制下分别进行曝光。
4.5.2. 测量距胸侧4cm 处照片长轴中心的光密度,2cm 和6cm 模体影像光密度分别与4cm 影像光密度值比较。
4.6. 管电压指示的偏离4.6.1. 应采用非介入方法,如用剂量仪进行检测。
数字射线检测图像空间分辨率测量方法陈乐章有为(上海市特种设备监督检验技术研究院,上海200062)摘要:工业数字射线检测技术应用过程中,图像空间分辨率是最重要的图像质量衡量指标。
分析相关标准提出的图像空间分辨率的测量方法,对比提出采用灰度轮廓图20%下凹内插值法最为合理。
关键词:数字射线检测;图像空间分辨率;20%下凹内插值法以CR和DR为主的数字射线检测技术在医学影像领域已经几乎完全取代了传统胶片照相,而在工业检测领域,数字射线检测技术应用则相对迟缓。
究其原因,主要是受制于数字射线检测普遍分辨率相对不足。
近些年,随着相关元器件制造工艺的不断改进和相关标准的不断完善,CR、DR系统等数字射线检测技术也逐渐开始在工业检测领域中崭露头角。
其中衡量数字射线检测图像质量最重要的指标之一便是图像空间分辨率(以下简称SR b),它反映了系统能够识别最小细节的能力,所以正确测量SR b就显得尤为必要。
本文通过对ISO17636-2-2015[1]以及ASTM E2597-07[2]等标准的研究,提出了正确测量SR b的前提,并阐述了数字射线检测SR b的几种测量方法及注意事项,提出采用内插值20%下凹法测量SR b最为合理。
1正确测量SR b的前提1.1线性灰度是正确测量SR b的前提[1]因为测量SR b主要依靠灰度直方图中双丝像质计线对灰度下沉幅度来决定,如果系统不能提供线性灰度,接收器上有无双丝像质计处接收到不同射线剂量而不能正比反应到图像灰度值上,那么下沉20%方法就失去其意义,测量结果也相差甚远。
1.2数字图像的平均灰度应大于最大灰度的50%对于像元尺寸≥80μm的标准系统,信噪比应大于100;对于像元尺寸<80μm的高分辨率系统,信噪比应大于70。
[1]这样的要求是保证双丝像质计影像质量较好,提高测量精度。
尤其对于厚度较大的工件,采用高电压和较长的曝光时间,散射线累积较大,所成图像噪声较大,会经常出现无法测量SR b的情况。
原子荧光对地质矿样中硒的测定摘要:沸水浴中王水消解地质矿样样品,加入尿素去除HNO3,利用盐酸铁盐作为掩蔽剂消除共存元素干扰,首次建立了氢化物发生原子荧光光谱法测定地质矿样中硒的快速检测方法。
经国家标准物质GBW07402、GBW07404和GBW07407验证,测定结果与标准值吻合,相对标准偏差(RSD)在0.57%~1.89%之间,加标回收率为94.00%~104.67%。
方法检出限和测定下限分别为0.11ng/mL和0.37ng/mL。
与其它消解方法对比,本方法消解时间为1h,适用于地质矿样中硒的快速测定。
关键词:沸水浴;氢化物发生原子荧光光谱法;尿素;盐酸铁盐;硒前言测定地质矿样中硒的方法主要有:原子荧光光谱法、紫外光谱法、低压离子色谱法、电感耦合等离子体发射光谱法、石墨炉原子吸收法和全反射X-射线光谱法等。
其中氢化物发生原子荧光光谱法(HG-AFS)由于具备灵敏度高、检出限低、线性范围宽、试剂用量少、操作简单快速及分析成本低廉的特点,一直是测定地质矿样中硒含量的首选方法。
在各种检测方法中,地质矿样样品的消解处理是关键。
本文首次采用水浴加热,王水消解样品,尿素去除硝酸,利用盐酸铁盐消除共存元素干扰,有效解决了传统方法中硝酸和高氯酸消解处理样品时导致硒测定结果偏低的问题。
1 实验1.1 仪器与试剂AFS-8220型双道原子荧光光度计(北京吉天仪器有限公司)。
硝酸(优级纯,上海国药集团),盐酸(优级纯,上海国药集团),TiCl3(分析纯,15%~20%,上海迈瑞尔化学技术有限公司),尿素(分析纯,上海国药集团),H2O2(分析纯,上海国药集团),FeCl3?6H2O(分析纯,宜兴阿拉丁化工贸易有限公司),KBH4(分析纯,上海国药集团),KOH(分析纯,上海国药集团),硫脲(分析纯,上海国药集团),硒的标准贮备溶液(100mg/L,国家标准物质中心)。
实验用水均为二次蒸馏水。
1.2 试剂配制王水:用2000mL量筒分别量取1500mLHCl和500mLHNO3,混匀保存于2.5L玻璃瓶中。
射线透照工艺射线透照工艺是指为达到一定要求而对射线透照过程规定的方法、程序、技术参数和技术措施等,也泛指详细说明上述方法、程序、参数、措施的书面文件。
射线透照工艺文件有两种,一种称通用工艺规范,依照有关管理法规和技术标准,结合本单位具体情况(涉及的产品范围和现有设备条件)编制而成。
其内容除包括从试件准备直至资料归档的射线照相全过程,还包括对人员、设备、材料的要求以及一些基本技术数据,如曝光曲线等图表。
另一种称专用工艺,其内容比较简明,主要是与透照有关的技术数据,用于指导给定试件的透照工作。
因其通常用卡片形式填写,所以有时称为透照工艺卡。
工艺条件是指工艺过程中的有关参变量及其组合。
射线透照工艺条件包括设备器材条件,透照几何条件,工艺参数条件,工艺措施条件等。
本章重点介绍一些主要的工艺条件对照相质量的影响及应用选择原则。
4.1透照设备器材4.1.1射线源1、射线源分类X射线:400KV以下,可通过调节KV选择能量大小,穿透厚度上限达70-90mm左右。
Y射线:能量不可改变,只能根据工件厚度选择源的种类。
常用Y射线源的特性参数高能X射线:由加速器产生,能量1—30MeV,穿透厚度100—300mm,设备昂贵,适用于厚壁容器制造企业。
2、射线能量(射线源种类)的选择考虑因素:穿透力照相灵敏度设备特点选择原则:1)对于较薄材料(50mm以下)的透照,尤其是钢板对接,应优先选择X射线,可获得较好的照相灵敏度。
2)厚度50以上的透照,采用X射线、Y射线获得的照相灵敏度相近,根据工件及现场情况选择。
3)透照困难的现场,如狭小空间、架空管道等,可考虑采用Y射线。
4)环焊缝X射线透照,焦距满足要求的情况下,尽量采用锥靶周向X射线机,一来可提高工效,二来可减小缺陷影像的畸变。
4.1.2胶片1、胶片分类按现行承压设备射线检测标准(JB/T4730.2—2005):胶片系统按照GB/T19384.1分为四类,即T1、T2、T3和T4类。
怎样检测辐射
为了检测辐射,可以采取以下方法:
1. 使用辐射测量仪器:辐射测量仪器能够检测并测量辐射水平。
最常见的辐射测量仪器包括Geiger-Muller计数器、电离室和
闪烁体探测器等。
这些仪器可以检测不同类型的辐射,如γ射线、X射线和β粒子。
2. 使用辐射剂量测量仪器:辐射剂量测量仪器可以测量在特定时间内吸收的辐射剂量。
这些仪器通常被用于工作场所辐射防护和个人剂量监测等领域。
常见的辐射剂量测量仪器有Thermo Luminescent Dosimeters (TLD)、Optically Stimulated Luminescent Dosimeters (OSLD)、Film Badge Dosimeters和电
离室等。
3. 使用核辐射监测设备:核辐射监测设备主要用于监测和测量核辐射。
这些设备通常包括核辐射探测器和放射性颗粒物采集器,可以用于检测空气、水和土壤中的放射性物质。
4. 进行环境样品测试:环境样品测试可以用于检测物体、空气、水和土壤中的放射性物质。
这些测试通常由专业实验室进行,可以通过采集样品并使用适当的放射性测量方法来确定辐射水平。
无论您使用何种方法进行辐射检测,都应确保使用适当的个人防护装备,并且只在具备相关知识和经验的人员的指导下进行。