理论力学1.1力和力矩
- 格式:ppt
- 大小:2.74 MB
- 文档页数:60
理论力学中的力矩与力的计算与分析力矩是力在物体上产生转动的效果。
在理论力学中,力矩是一种重要的物理量,它可以帮助我们分析和计算物体的平衡状态和运动情况。
本文将介绍力矩的概念、计算方法以及力和力矩的关系,并通过一些实际例子来说明它们的应用。
1. 力与力矩的定义和计算力是物体受到的作用,可以引起物体的形变或运动。
力的大小用牛顿(N)来表示,方向用箭头表示。
在力的作用下,物体会产生力矩。
力矩的计算公式是:力矩 = 力 x 杠杆臂。
杠杆臂是力矩的重要参数,它是指力线与转轴之间的垂直距离。
力的方向和杠杆臂的方向相互垂直时,力矩最大,力对物体的转动效果最明显。
力矩的单位是牛顿米(N·m)。
2. 力矩与平衡条件在物体处于平衡状态时,力矩的总和为零。
这是力学中的一个基本原理,即力矩平衡条件。
根据力矩平衡条件,我们可以计算出物体所受力的大小和方向。
例如,一个杆上挂着两个质量相同的物体A和B,物体A与支点的垂直距离为d1,物体B与支点的垂直距离为d2。
在物体A和B的重力作用下,杆会受到一个向下的重力(由于重力的作用点在杆的中心)。
根据力矩平衡条件,我们可以得到:物体A产生的力矩:M1 = m·g·d1物体B产生的力矩:M2 = m·g·d2杆受到的重力产生的力矩:M3 = 2m·g·(d1 + d2)由于处于平衡状态,力矩总和为零,即M1 + M2 + M3 = 0。
通过解方程可以计算出物体A和B所受重力的大小和方向。
3. 力矩在静力学中的应用力矩在静力学中有广泛的应用。
例如,我们可以使用力矩来分析平衡悬挂物体的情况。
考虑一个悬挂在两个绳子上的物体,绳子的夹角为θ。
当物体处于平衡状态时,绳子所受张力的大小和方向可以通过力矩平衡条件来计算。
假设绳子A的张力为T1,绳子B的张力为T2,物体的重力为G。
根据力矩平衡条件,我们可以得到:绳子A产生的力矩:M1 = T1·d1绳子B产生的力矩:M2 = T2·d2物体的重力产生的力矩:M3 = G·h在平衡状态下,力矩总和为零,即M1 + M2 + M3 = 0。
理论力学中的力矩与力矢量分析理论力学是研究物体运动原理和力学性质的学科,其中力矩和力矢量是重要的概念。
力矩描述了力对物体的转动效应,而力矢量则描述了力的方向和大小。
本文将介绍力矩和力矢量的定义、性质和在理论力学中的应用。
一、力矩的定义与性质力矩是由力对物体的转动产生的效应。
它的定义为力矩=M=rFsinθ,其中M代表力矩,r代表力对物体转轴的垂直距离,F代表力的大小,θ代表力与转轴之间的夹角。
力矩的单位是牛顿·米(N·m)。
力矩具有以下性质:1. 力矩的大小与施力点到转轴的距离成正比。
当固定一力的大小和方向时,力矩随着施力点到转轴的距离增加而增加。
2. 力矩的大小与力的大小成正比。
当施力点到转轴的距离固定时,力矩随着力的大小增加而增加。
3. 力矩的方向由力和转轴之间的夹角决定。
当转轴可以看作一根轴时,力矩遵循右手定则:将右手的四指放在转轴上,四指的方向与力的方向相同,然后大拇指的方向即为力矩的方向。
4. 处于平衡状态的物体受到的合力矩为零。
当物体所受力矩的和为零时,物体处于平衡状态。
二、力矢量的定义与性质力矢量是用于描述力的方向和大小的物理量。
它可以用箭头表示,箭头的长度代表了力的大小,箭头的方向代表了力的方向。
力矢量具有以下性质:1. 力矢量的大小由力的大小决定。
力的大小越大,力矢量的长度越长。
2. 力矢量的方向由力的方向决定。
力的方向越变化,力矢量的方向越随之变化。
3. 多个力的合力可以通过力矢量的几何求和得到。
将每个力的力矢量放在同一起点,然后将他们相加,得到的结果即为合力的力矢量。
4. 力矢量满足平行四边形法则。
将两个力的力矢量按照顺序相连,形成一个平行四边形,那么对角线的力矢量就是合力的力矢量。
三、力矩与力矢量在理论力学中的应用力矩和力矢量在理论力学中被广泛应用,具有重要的意义。
以下是它们在理论力学中的应用:1. 刚体的平衡条件:根据力矩的定义,刚体处于平衡状态时,合力矩为零。
力对轴之矩正负由右手法则确定,从轴正向看,逆时针为正,顺时针为负。
FxFyr三、平面上力对点的矩平面上力对点的矩为代数量。
()()kF r F M xy xy O v v vv ⋅×=例1-9 已知α,AO =h ,OC =r ,求水平力F 对C 点的矩。
()ααcos sin Fh Fr r F h F F M y x C −=+−=vxFyF 解F v分解力αcos F F x =αsin F F y =板式的、均匀的,且沿翁。
绘出不倒翁的重心大体在什么范围才能保证不倒翁真正不倒?门轴略内倾。
这种柜子可以自动关门,定性说明其原因。
思考题1、如图所示的楔形块A、B自重不计,接触处光滑,则A、B的平衡情况是怎样的?不平衡2、根据力的可传性,可以将力F沿其作用线移至那里?A,B二、力偶的特征量0v v v v =′+=F F F V F r F r r OB OA v v v v v ×=×−=)()(F r F r OB OA v v v v −×+×=力偶的主矢为对任意点主矩恒等于矢量积,而与矩心的位置无关。
F r v v ×主矩与矩心无关,力偶只能使刚体转动主矢为零.力偶不能使刚体移动力偶对任意点O 的主矩为F r F r M OB OA O v v v v v ′×+×=力偶矩矢量是自由矢量(大小、方向)4.01+×−×=F F F m。
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。