空间向量的坐标运算(人教A版)(含答案)
- 格式:doc
- 大小:566.50 KB
- 文档页数:7
1.3.2空间向量运算的坐标表示素养目标·定方向课程标准学法解读1.掌握空间向量的线性运算的坐标表示.2.掌握空间向量的数量积的坐标表示.1.会利用空间向量的坐标运算解决简单的运算问题.(数学运算)2.掌握空间向量运算的坐标表示,并会判断两个向量是否共线或垂直.(逻辑推理、数学运算)3.掌握空间向量的模、夹角公式和两点间的距离公式,并能运用这些公式解决简单几何体中的问题.(逻辑推理、数学运算)必备知识·探新知知识点1 空间向量的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),有向量运算向量表示坐标表示加法a+b a+b=__(a1+b1,a2+b2,a3+b3)__减法a-b a-b=__(a1-b1,a2-b2,a3-b3)__数乘λaλa=__(λa1,λa2,λa3)__,λ∈R数量积a·b a·b=__a1b1+a2b2+a3b3__提示:空间向量运算的坐标表示与平面向量运算的坐标表示完全一致;如:一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标.知识点2 空间向量的平行、垂直及模、夹角设a=(a1,a2,a3),b=(b1,b2,b3),则有当b≠0时,a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R);a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0;|a|=a·a=a21+a22+a23;cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23.知识点3 空间两点间的距离公式设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)是空间中任意两点,则P 1P 2=|P 1P 2→|=__(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2__.思考2:已知点A (x ,y ,z ),则点A 到原点的距离是多少? 提示:OA =|OA →|=x 2+y 2+z 2.关键能力·攻重难题型探究题型一 空间向量的坐标运算典例1 已知在空间直角坐标系中,A (1,-2,4),B (-2,3,0),C (2,-2,-5).(1)求AB →+CA →,CB →-2BA →,AB →·AC →;(2)若点M 满足AM →=12AB →+34AC →,求点M 的坐标;(3)若p =CA →,q =CB →,求(p +q )·(p -q ).[分析] 先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.[解析] (1)因为A (1,-2,4),B (-2,3,0),C (2,-2,-5), 所以AB →=(-3,5,-4),CA →=(-1,0,9). 所以AB →+CA →=(-4,5,5).又CB →=(-4,5,5),BA →=(3,-5,4), 所以CB →-2BA →=(-10,15,-3). 又AB →=(-3,5,-4),AC →=(1,0,-9), 所以AB →·AC →=-3+0+36=33.(2)由(1)知,AM →=12AB →+34AC →=12(-3,5,-4)+34(1,0,-9)=⎝⎛⎭⎫-34,52,-354, 若设M (x ,y ,z ),则AM →=(x -1,y +2,z -4),于是⎩⎪⎨⎪⎧ x -1=-34,y +2=52,z -4=-354,解得⎩⎪⎨⎪⎧x =14,y =12,z =-194,故M ⎝⎛⎭⎫14,12,-194. (3)由(1)知,p =CA →=(-1,0,9),q =CB →=(-4,5,5). (方法1)(p +q )·(p -q )=|p |2-|q |2=82-66=16. (方法2)p +q =(-5,5,14),p -q =(3,-5,4), 所以(p +q )(p -q )=-15-25+56=16.[规律方法] 空间向量的坐标运算注意以下几点:(1)一个向量的坐标等于这个向量的终点的坐标减去起点的坐标.(2)空间向量的坐标运算法则类似于平面向量的坐标运算,牢记运算公式是应用的关键. (3)运用公式可以简化运算:(a ±b )2=a 2±2a ·b +b 2;(a +b )·(a -b )=a 2-b 2. 【对点训练】❶ 在△ABC 中,A (2,-5,3),AB →=(4,1,2),BC →=(3,-2,5). (1)求顶点B ,C 的坐标; (2)求CA →·BC →;(3)若点P 在AC 上,且AP →=12PC →,求点P 的坐标.[解析] (1)设B (x ,y ,z ),C (x 1,y 1,z 1),所以AB →=(x -2,y +5,z -3),BC →=(x 1-x ,y 1-y ,z 1-z ). 因为AB →=(4,1,2), 所以⎩⎪⎨⎪⎧x -2=4,y +5=1,z -3=2,解得⎩⎪⎨⎪⎧x =6,y =-4,z =5,所以点B 的坐标为(6,-4,5).因为BC →=(3,-2,5), 所以⎩⎪⎨⎪⎧x 1-6=3,y 1+4=-2,z 1-5=5,解得⎩⎪⎨⎪⎧x 1=9,y 1=-6,z 1=10,所以点C 的坐标为(9,-6,10).(2)因为CA →=(-7,1,-7),BC →=(3,-2,5), 所以CA →·BC →=-21-2-35=-58.(3)设P (x 2,y 2,z 2),则AP →=(x 2-2,y 2+5,z 2-3),PC →=(9-x 2,-6-y 2,10-z 2),于是有(x 2-2,y 2+5,z 2-3)=12(9-x 2,-6-y 2,10-z 2),所以⎩⎪⎨⎪⎧ x 2-2=12(9-x 2),y 2+5=12(-6-y 2),z 2-3=12(10-z 2),解得⎩⎪⎨⎪⎧x 2=133,y 2=-163,z 2=163.故点P 的坐标为⎝⎛⎭⎫133,-163,163. 题型二 空间向量的平行与垂直典例2 已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4).设a =AB →,b =AC →.(1)若|c |=3,c ∥BC →,求c ;(2)若k a +b 与k a -2b 互相垂直,求k .[分析] (1)根据c ∥BC →,设c =λBC →,则向量c 的坐标可用λ表示,再利用|c |=3求λ值; (2)把k a +b 与k a -2b 用坐标表示出来,再根据数量积为0求解. [解析] (1)∵BC →=(-2,-1,2)且c ∥BC →, ∴设c =λBC →=(-2λ,-λ,2λ)(λ∈R ). ∴|c |=(-2λ)2+(-λ)2+(2λ)2=3|λ|=3,解得λ=±1.∴c =(-2,-1,2)或c =(2,1,-2). (2)∵a =AB →=(1,1,0),b =AC →=(-1,0,2),∴k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4). ∵(k a +b )⊥(k a -2b ),∴(k a +b )·(k a -2b )=0, 即(k -1,k,2)·(k +2,k ,-4)=2k 2+k -10=0, 解得k =2或k =-52.[规律方法] 向量平行与垂直问题主要题型 (1)平行与垂直的判断.(2)利用平行与垂直求参数或解其他问题,即平行与垂直的应用.解题时要注意:①适当引入参数(比如向量a ,b 平行,可设a =λb ),建立关于参数的方程;②最好选择坐标形式,以达到简化运算的目的.【对点训练】❷ 已知a =(λ+1,1,2λ),b =(6,2m -1,2). (1)若a ∥b ,分别求λ与m 的值;(2)若|a |=5,且a 与c =(2,-2λ,-λ)垂直,求a . [解析] (1)由a ∥b ,得(λ+1,1,2λ)=k (6,2m -1,2), ∴⎩⎪⎨⎪⎧λ+1=6k ,1=k (2m -1),2λ=2k ,解得⎩⎪⎨⎪⎧λ=k =15,m =3.∴λ=15,m =3.(2)∵|a |=5,且a ⊥c ,∴⎩⎪⎨⎪⎧(λ+1)2+12+(2λ)2=5,(λ+1,1,2λ)·(2,-2λ,-λ)=0,化简,得⎩⎪⎨⎪⎧5λ2+2λ=3,2-2λ2=0,解得λ=-1.因此,a =(0,1,-2).题型三 空间向量夹角及长度的计算 角度1 向量法求夹角典例3 在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1D ,BD 的中点,G 在棱CD 上,且CG =14CD .(1)求证:EF ⊥B 1C ;(2)求cos 〈EF →,C 1G →〉.[解析] (1)如图,建立空间直角坐标系Dxyz ,D 为坐标原点,则有E ⎝⎛⎭⎫0,0,12,F ⎝⎛⎭⎫12,12,0,C (0,1,0),C 1(0,1,1),B 1(1,1,1),G ⎝⎛⎭⎫0,34,0. EF →=⎝⎛⎭⎫12,12,0-⎝⎛⎭⎫0,0,12=⎝⎛⎭⎫12,12,-12, B 1C →=(0,1,0)-(1,1,1)=(-1,0,-1).所以EF →·B 1C →=12×(-1)+12×0+⎝⎛⎭⎫-12×(-1)=0,所以EF →⊥B 1C →,即EF ⊥B 1C . (2)因为C 1G →=⎝⎛⎭⎫0,34,0-(0,1,1)=⎝⎛⎭⎫0,-14,-1. 所以|C 1G →|=174.又EF →·C 1G →=12×0+12×⎝⎛⎭⎫-14+⎝⎛⎭⎫-12×(-1)=38,|EF →|=32, 所以cos 〈EF →,C 1G →〉=EF →·C 1G →|EF →||C 1G →|=5117.角度2 向量法求模典例4 如图,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是AA 1,CB 1的中点.(1)求BM ,BN 的长;(2)求△BMN 的面积.[分析] 建立空间直角坐标系,写出B ,M ,N 等点的坐标,从而得出BM →,BN →的坐标.然后利用模的公式求得BM ,BN 的长度.对于(2),可利用夹角公式求得cos ∠MBN ,再求出sin ∠MBN 的值,然后套用面积公式计算.[解析] 以C 为原点,以CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图).则B (0,1,0),M (1,0,1),N ⎝⎛⎭⎫0,12,1. (1)∵BM →=(1,-1,1), BN →=⎝⎛⎭⎫0,-12,1, ∴|BM →|=12+(-1)2+12=3, |BN →|=02+⎝⎛⎭⎫-122+12=52. 故BM 的长为3,BN 的长为52. (2)S △BMN =12·|BM |·|BN |·sin ∠MBN .∵cos ∠MBN =cos 〈BM →,BN →〉=BM →·BN →|BM →||BN →|=323×52=155,∴sin ∠MBN =1-⎝⎛⎭⎫1552=105,故S △BMN =12×3×52×105=64.即△BMN 的面积为64.[规律方法] 利用空间两点间的距离公式求线段长度问题的一般步骤【对点训练】❸ 已知点M (3,2,1),N (1,0,5),求: (1)线段MN 的长度;(2)到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件.[解析] (1)根据空间两点间的距离公式得线段MN 的长度|MN |=(3-1)2+(2-0)2+(1-5)2=26, 所以线段MN 的长度为26.(2)因为点P (x ,y ,z )到M ,N 两点的距离相等,所以有下面等式成立: (x -3)2+(y -2)2+(z -1)2 =(x -1)2+(y -0)2+(z -5)2,化简得x +y -2z +3=0,因此,到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件是x +y -2z +3=0.易错警示混淆两向量平行与两向量同向典例5 已知向量a =(1,2,-1),b =(m ,m 2+3m -6,n ),若向量a ,b 同向,求实数m ,n 的值.[错解] 由题意可知a ∥b ,所以m 1=m 2+3m -62=n-1,即⎩⎪⎨⎪⎧ m 2+3m -6=2m ,n =-m ,解得⎩⎪⎨⎪⎧ m =-3,n =3或⎩⎪⎨⎪⎧m =2,n =-2. 故m =-3,n =3或m =2,n =-2.[辨析] “两向量同向”是“两向量平行”的充分不必要条件.错解中错认为“同向”就是“平行”,从而导致错误.[正解] 由题意可知a ∥b ,所以m 1=m 2+3m -62=n -1,即⎩⎪⎨⎪⎧m 2+3m -6=2m ,n =-m , 解得⎩⎪⎨⎪⎧ m =-3,n =3或⎩⎪⎨⎪⎧m =2,n =-2.当m =-3,n =3时,b =(-3,-6,3)=-3a ,向量a ,b 反向,不符合题意,舍去; 当m =2,n =-2时,b =(2,4,-2)=2a ,向量a ,b 同向,符合题意. 综上,m =2,n =-2.。
2020秋高中数学人教A版选修2-1达标练习:3.1-3.1.5 空间向量运算的坐标表示含解析A级基础巩固一、选择题1.设M(5,-1,2),A(4,2,-1).若错误!=错误!,则点B的坐标为()A.(-1,3,-3)B.(9,1,1)C.(1,-3,3) D.(-9,-1,-1)解析:错误!=(5,-1,2),错误!=(4,2,-1).又错误!=错误!=错误!-错误!,所以错误!=错误!+错误!=(9,1,1)。
答案:B2.已知错误!=(2,4,5),错误!=(3,x,y),若错误!∥错误!,则() A.x=6,y=15 B.x=3,y=错误!C.x=3,y=15 D.x=6,y=错误!答案:D3.点P(x,2,1)到点Q(1,1,2),R(2,1,1)的距离相等,则x的值为()A。
12B.1C.错误!D.2答案:B4.如图所示的空间直角坐标系中,正方体ABCD—A1B1C1D1棱长为1,B1E1=14A1B1,则错误!等于()A.(0,14,-1)B.(-错误!,0,1)C.(0,-错误!,1)D.(错误!,0,-1)解析:因为B(1,1,0),A1(1,0,1),B1(1,1,1).所以E1错误!,所以错误!=错误!.答案:C5.若a=(x,2,0),b=(3,2-x,x2),且a与b的夹角为钝角,则x的取值范围是()A.x〈-4 B.-4<x〈0C.0<x<4 D.x〉4解析:因为a与b的夹角为钝角,所以a·b<0所以3x+2(2-x)<0,解得x<-4.若a与b的夹角为180°,则存在λ<0,使a=λb(λ<0),即(x,2,0)=λ(3,2-x,x2)所以错误!此方程组无解,即a与b不可能共线.答案:A二、填空题6.已知a=(1,-1,1),则与向量a共线的单位向量是________.答案:±错误!7.已知向量a=(-1,0,1),b=(1,2,3),k∈R,若ka -b与b垂直,则k=________.解析:因为(ka-b)⊥b,所以(ka-b)·b=0,所以ka·b-|b|2=0,所以k(-1×1+0×2+1×3)-(错误!)2=0,解得k=7.答案:78.若a=(2,2,0),b=(1,3,z),<a,b〉=错误!,则z等于________.解析:cos<a,b〉=cos错误!=错误!=错误!=错误!。
3.1.5 空间向量运算的坐标表示1.在空间直角坐标系Oxyz中,已知点A的坐标为(-1,2,1),点B的坐标为(1,3,4),则( )A. =(-1,2,1)B. =(1,3,4)C. =(2,1,3)D. =(-2,-1,-3)【答案】C【解析】【分析】由向量坐标公式可求得向量的坐标。
【详解】=(2,1,3).选C.【点睛】若点,则。
2.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则向量的夹角为( )A. 30°B. 45°C. 60°D. 90°【答案】C【解析】【分析】先求得向量的坐标,再用向量夹角公式可求解。
【详解】由已知得=(0,3,3),=(-1,1,0),因此cos<>=,所以向量的夹角为60°.选C.【点睛】求平面向量夹角公式:,若若,则3.已知a=(1,0,1),b=(-2,-1,1),c=(3,1,0),则|a-b+2c|等于( )A. 3B. 2C.D. 5【答案】A【解析】【分析】先求向量坐标,再由向量模的坐标公式求解。
【详解】因为a-b+2c=(1,0,1)-(-2,-1,1)+(6,2,0)=(3,1,0)+(6,2,0)=(9,3,0),所以|a-b+2c|=3.选A.【点睛】若点,则。
.4.在空间直角坐标系中,O为坐标原点,设A,B,C,则有( )A. OA⊥ABB. AB⊥ACC. AC⊥BCD. OB⊥OC【答案】B【解析】【分析】由向量坐标表示求得,,再由=0可知选项B对。
【详解】由已知得,,因此=0,故,即AC⊥BC.选B.【点睛】用向量的数量积为0可判定两向量所在直线垂直,如果不为0,则两向量所在直线不垂直。
5. 已知点A(1,-2,11),B(4,2,3),C(6,-1,4),则△ABC的形状是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等边三角形【答案】C【解析】,,.所以,故△ABC是直角三角形.选C.6.下列各组向量中共面的组数为( )①a=(1,2,3),b=(3,0,2),c=(4,2,5);②a=(1,2,-1),b=(0,2,-4),c=(0,-1,2);③a=(1,1,0),b=(1,0,1),c=(0,1,-1);④a=(1,1,1),b=(1,1,0),c=(1,0,1).A. 0B. 1C. 2D. 3【答案】D【解析】【分析】根据平面向量基本定理,用向量做基底表示向量,如果能表示则共面,不能表示则不共面。
空间向量的坐标运算(人教A版)
一、单选题(共10道,每道10分)
1.已知点的坐标分别为与,则向量的相反向量的坐标是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间向量运算的坐标表示
2.已知空间直角坐标系中且,则点的坐标为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间向量运算的坐标表示
3.若向量,,则向量的坐标是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:空间向量运算的坐标表示
4.已知向量,,则=( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:空间向量运算的坐标表示
5.已知向量是空间的一组单位正交基底,若向量在基底下的坐标为,那么向量在基底下的坐标为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:空间向量的基本定理及其意义
6.已知为空间的一组单位正交基底,而是空间的另一组
基底,若向量在基底下的坐标为,则向量在基底下的坐标为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间向量的基本定理及其意义
7.已知三点不共线,点为平面外的一点,则下列条件中,能使得平面成立的是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:共线向量与共面向量
8.已知,,,若,,三向量共面,则实数=( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:共线向量与共面向量
9.已知空间三点的坐标为,,,若三点共线,则=( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:共线向量与共面向量
10.已知点,点和点,则三角形的边上的中线长为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:空间向量模的运算。