第三讲 无理数与实数
- 格式:doc
- 大小:333.50 KB
- 文档页数:6
代数(二)根式计算(二)——无理数与实数【知识要点】 1.无理数:定义:无限不循环小数叫做无理数,如π=…,21.414213=, -…,都是无理数。
注意:①既是无限小数,又是不循环小数,这两点必须同时满足;②无限不循环小数与有限小数、无限循环小数的本质区别是:前者不能化成分数,而后两者都可以化成分数;③凡是整数的开不尽的方根都是无理数,如2、3等。
2.实数:有理数和无理数统称为实数。
⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 3.实数的几个有关概念:①相反数:a与-a互为相反数,0的相反数是0。
a+b=0⇔a、b互为相反数。
②倒数:若0a≠,则1a称为a的倒数,0没有倒数。
1ab a=⇔、b互为倒数。
③绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。
即()()()00a aa aa a>⎧⎪==⎨⎪-<⎩【典型例题】例1 在实数,25,3.3333,3,0.412⋅⋅,…,π,256-中,哪些是有理数,哪些是无理数例2 (1)下列说法中,正确的是()A.带根号的数是无理数 B.无理数都是开不尽方的数C.无限小数都是无理数 D.无限不循环小数是无理数(2)下列说法正确的是()A.若a为实数,则a大于-a B.实数m的倒数一定是1mC .若实数x 、y ,有x y =,则x =yD .任何负数的倒数都小于它的相反数例的相反数之和的倒数的平方为 。
例4 设a 、b 互为相反数,但不为0,c 、d 互为倒数,m 的倒数等于它本身,化简111c m m m d a b ⎛⎫÷++- ⎪⎝⎭的结果是 。
例5 试比较下列各组数的大小;①和②,1π-,310-例6 (1)实数a 、b 、c 在数轴上的位置如下图,化简a b b c c a -+---(2)当01x <<时,2x 、x 、1x的大小顺序是( )A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<<例7 (1)已知a 、b 为实数,且224250a b a b +--+=(2)若210x -=,求20012002x y +的值。
有理数,无理数,实数的区别
实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数;整数按照能否被2整除又可以分为奇数(不能被2整除的整数)和偶数(能被2整除的整数)。
1
1、性质不同
有理数:有理数为整数(正整数、0、负整数)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。
实数:实数是有理数和无理数的总称。
数学上,实数定义为与数轴上的实数,点相对应的数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
2、所属不同
有理数:有理数属于实数,有理数包括正整数、0、负整数,又包括正整数和正分数,负整数和负分数。
实数:实属包括有理数,实数可以分为有理数和无理数两类,或代数数和超越数两类。
2
1、同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两数相加得0。
4、一个数同0相加仍得这个数。
5、互为相反数的两个数,可以先相加。
6、符号相同的数可以先相加。
7、分母相同的数可以先相加。
8、几个数相加能得整数的可以先相加。
人教版数学七年级下册《无理数、实数概念》教案1一. 教材分析人教版数学七年级下册《无理数、实数概念》这部分内容,主要让学生了解无理数和实数的概念,理解无理数和实数在数轴上的位置关系,以及它们在数学中的应用。
这部分内容是初中的重要知识,也是高中数学的基础。
二. 学情分析初中的学生已经有了一定的数学基础,但是对于无理数和实数这样的抽象概念,可能还比较难以理解。
因此,在教学过程中,需要引导学生从实际问题中抽象出无理数和实数的概念,并通过具体的例子,让学生感受无理数和实数在生活中的应用。
三. 教学目标1.让学生了解无理数和实数的概念,理解它们在数轴上的位置关系。
2.让学生能够运用无理数和实数的知识,解决实际问题。
3.培养学生抽象思维的能力,提高学生解决问题的能力。
四. 教学重难点1.重难点:无理数和实数的概念,无理数和实数在数轴上的位置关系。
2.难点:无理数和实数在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出无理数和实数的概念。
2.使用多媒体教学,通过动画、图片等形式,让学生更直观地理解无理数和实数。
3.采用小组合作学习的方式,让学生在讨论中巩固无理数和实数的知识。
六. 教学准备1.多媒体教学设备。
2.无理数和实数的教学素材。
3.小组合作学习的指导手册。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出无理数和实数的概念。
问题:如果一个正方形的边长是2,那么它的对角线的长度是多少?2.呈现(10分钟)通过多媒体教学,呈现无理数和实数的定义,以及它们在数轴上的位置关系。
3.操练(10分钟)让学生通过小组合作学习的方式,解决一些与无理数和实数有关的问题。
4.巩固(10分钟)让学生回答一些关于无理数和实数的问题,以巩固他们刚刚学到的知识。
5.拓展(10分钟)让学生通过一些实际的例子,了解无理数和实数在生活中的应用。
6.小结(5分钟)对本节课的内容进行小结,让学生了解他们今天学到了什么。
《认识无理数》实数精品课件汇报人:日期:•引言•无理数定义与性质•无理数与实数关系目录•无理数运算与估算•无理数在实际生活中的应用•总结与展望01引言无理数的概念和表示方法在数学中具有重要地位,是数学基础的一部分。
无理数在现实生活中有着广泛的应用,例如测量、计算和科学研究中。
学生对于无理数的认识往往存在困惑和误解,需要有针对性的教学。
课程背景课程目标掌握无理数的表示方法和运算规则。
通过实例和应用,培养学生的数学思维和应用能力。
帮助学生理解无理数的概念和特点。
02无理数定义与性质无理数定义不能表示为两个整数的比值无限不循环小数是无理数不能表示为有限小数或无限循环小数不能用分数形式表示无理数性质非有理数性质不能表示为两个有理数的比值具有连续、光滑、没有明显的界线等特征在有理数域外无限延伸无法表示为整系数多项式开方根的数,如$\pi$和$\sqrt{2}$等。
代数无理数超越无理数几何无理数无法表示为有理系数多项式方程的解的数,如$e$和$\ln$等。
无法用有理数逼近的数,如无理线段长度、无理面积等。
03无理数分类020103无理数与实数关系实数分类可以表示为有限小数或无限循环小数的实数,例如2.5、3.14等。
代数数无法表示为有理数的实数,例如π(圆周率)、e(自然对数的底数)等。
超越数既不是正数也不是负数的实数,具有特殊的性质和意义。
零无限不循环小数,例如√2(根号2)、√3(根号3)等。
无理数无理数在实数中的地位无理数是实数的重要组成部分,它们在数学中有着广泛的应用。
无理数的出现是数学发展史上的一个里程碑,对于数学的发展和人类的认识都具有重要意义。
无理数在几何学、物理学、工程学等领域中都有广泛的应用,对于推动人类科技进步具有不可替代的作用。
无理数与有理数的区别和联系有理数和无理数在性质和形态上有着根本的区别。
有理数是可数的,而无理数是不可数的,因此它们在数学中的处理方法和性质也有很大的不同。
有理数和无理数之间存在着紧密的联系,它们共同构成了实数的完整体系。
代数(二)根式计算(二)——无理数与实数【知识要点】1.无理数:定义:无限不循环小数叫做无理数,如π=3.14159261.414213= ,-1.010010001…,都是无理数。
注意:①既是无限小数,又是不循环小数,这两点必须同时满足;②无限不循环小数与有限小数、无限循环小数的本质区别是:前者不能化成分数,而后两者都可以化成分数;2.实数:有理数和无理数统称为实数。
⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 3.实数的几个有关概念:①相反数:a 与-a 互为相反数,0的相反数是0。
a+b=0⇔a 、b 互为相反数。
②倒 数:若0a ≠,则1a称为a 的倒数,0没有倒数。
1ab a =⇔、b 互为倒数。
③绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。
即()()()0000a a a a a a >⎧⎪==⎨⎪-<⎩【典型例题】例1 在实数3.14,25,3.33330.412⋅⋅,0.10110111011110…,π, 中,哪些是有理数,哪些是无理数?例2 (1)下列说法中,正确的是( )A .带根号的数是无理数B .无理数都是开不尽方的数C .无限小数都是无理数D .无限不循环小数是无理数(2)下列说法正确的是( )A .若a 为实数,则a 大于-aB .实数m 的倒数一定是1mC .若实数x 、y ,有x y =,则x =yD .任何负数的倒数都小于它的相反数例的相反数之和的倒数的平方为 。
例4 设a 、b 互为相反数,但不为0,c 、d 互为倒数,m 的倒数等于它本身,化简111c m m m d a b ⎛⎫÷++- ⎪⎝⎭的结果是 。
例5 试比较下列各组数的大小;①②,1π-,310-例6 (1)实数a 、b 、c 在数轴上的位置如下图,化简a b b c c a -+---(2)当01x <<时,2x 、x 、1x的大小顺序是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x << 例7 (1)已知a 、b 为实数,且224250a b a b +--+=(2)若210x -+=,求20012002x y +的值。
例8 已知12a +=,31b +=,求a+b 的最小值。
【练 习】A 组1. 小数,叫做无理数。
2.大于的负整数是 。
3.1的相反数是 ,绝对值是 ,倒数是 。
4.比较大小:-7 -,“<”或“=”)5(2,1.23⋅,913,3π,0.232232223…(两个3之间依次多一个2)中无理数的个数有( )A .3个B .4个C .5个D .6个6.下列命题中,正确的个数是( )①两个有理数的和是有理数; ②两个无理数的和是无理数;③两个无理数的积是无理数; ④无理数乘以有理数是无理数;⑤无理数除以有理数是无理数; ⑥有理数除以无理数是无理数。
A .0个B .2个C .4个D .6个7.判断(正确的打“√”,错误的打“×”)①带根号的数是无理数;( )( )③绝对值最小的实数是0;( )④平方等于3( )⑤有理数、无理数统称为实数;( )⑥1的平方根与1的立方根相等;( )⑦无理数与有理数的和为无理数;( )⑧无理数中没有最小的数,也没有最大的数。
( )8.已知x x 等于( )A .1.414 C .. 1.414±9.已知实数x 满足x x =-,则( )A .0x >B .0x ≥C .0x <D .0x ≤10215的大小关系是( )A 215<B .215<<215<215<B 组11.13,2π,3.1416,0.5227中,有理数的个数是( ) A .1个 B .2个 C .3个 D .4个12.a )A .有理数B .正无理数C .正实数D .正有理数13.下列四个命题中,正确的是( )A .倒数等于本身的数只有1B .绝对值等于本身的数只有0C .相反数等于本身的数只有0D .算术平方根等于本身的数只有114.下列说法不正确的是( )A .有限小数和无限循环小数都能化成分数B .整数可以看成是分母为1的分数C .有理数都可以化为分数D .无理数是开方开不尽的数15.代数式21a +y ,()21a -中一定是正数的有( ) A .1个 B .2个 C .3个 D .4个16 )A .m 是完全平方数B .m 是负有理数C .m 是一个完全平方数的相反数D .m 是一个负整数17.-3的负倒数是( )A .3B .-3C .13D .13- 18.已知2x =,3y =,且0xy <,则x y +的值为( )A .1B .±1C .5D .±519.已知a 为有理数,b 为无理数,则a+b 为( )A .整数B .分数C .有理数D .无理数20.一个数是它的倒数的4倍,则这个数是( )A .4B .±4C .2D .±22110b -=,则33a b -+= 。
22.()02234π-+-= 。
C 组23.一个正数扩大到原来的9倍,则它的算术平方根扩大到原来的 。
24.若a π-=a π-,则4a -= 。
25.若a=5,b=-a -= 。
26.比较下列各组实数的大小:(1)11与; (2)227π--与(3)(4)1127π--与27.已知4y =,求y x28.已知a 、b 互为相反数,c 、d 互为倒数。
求:2222a b a b-+29.化简12+30y x 和()1xy -的值。
D 组31.已知x 、y 是实数,且()21x y +-x y 的负倒数。
32.已知224410260x y x y +-++=,求12x y -的算术平方根。
33.若b a b a b a -≠,,,都是有理数,那么a 和b ( )(A )都是有理数 (B )一个是有理数,另一个是无理数(C )都是无理数 (D )是有理数还是无理数不能确定34.已知实数a 满足a a a =-+-19931992,那么21992-a 的值是() (A )1991 (B )1992 (C )1993 (D )199435.若014)2003(2=++-y x ,则=+--y y x 3)2(102 。
36.如果实数y x ,满足,04496222=+-+-x y xy x 那么x y = 。
【趣数什锦】第一次数学危机公元前五百多年,在古希腊出现了一个毕达哥拉斯学派,那是一个集政治、宗教、学术于一体的组织,它的领导人是毕达哥拉斯(Pythagoras,公元前572~公元前497年)。
毕达哥拉斯学派继承和发展了泰勒斯的数学思想,认识到数学是以演绎推理为特点的,演绎推理所得到的结果常常与由观察得到的结果相符合,并且有些由观察难以得出的结论却可以由演绎推理得出,还注意到有些本质上完全不同的现象却表现出相同的数学性质,毕达哥拉斯学派无法解释这种现象,从而把它神秘化,产生了一种幻觉,认为数是万物的本原,即所谓“万物皆数”。
宇宙中的一切事物,都可以通过数来表达。
不过,他们所说的“数”,指的是整数和分数。
即我们今天所接触的正有理数。
毕达哥拉斯学派据说还发现并证明了勾股定理,勾股定理在我国称为商高定理:“直角三角形两直角边(长的直角边叫股,短的直角边叫勾)的平方和等于斜边的平方”。
这是数学中一个十分重要的定理。
当毕达哥拉斯发现这一定理后,马上预见到它的重要性,欣喜若狂。
当即下令杀了100头牛,举行“百牛大祭”,来感谢神的启示,并庆祝自己的成功。
勾股定理的发现,给毕达哥拉斯学派带来了极大的荣誉,可是乐极生悲,正是这一定理的发现,给毕达哥拉斯学派的信仰带来了致命的打击,原来毕达哥拉斯学派所说的“万物皆数”指是都是整数或分数(两整数之比)。
但是根据勾股定理,如果设一个正方形各边的长度为1,那么它的对角线长的平方就等于2。
什么样的数的平方等于2呢?毕达哥拉斯学派找不到这样的整数和分数,既然如此简单的正方形的对角线之长都不能用数来表示,还谈什么“万物皆数”呢?毕达哥拉斯的一个学生希伯斯指出“这个数不是整数,也不是分数,而是一种人们尚未认识的新数”。
希伯斯一语中的,石破天惊,这一下彻底动摇了“万物皆数”的神秘哲学的基础。
毕达哥拉斯大为震骇,下令封锁这一发现,并声称谁胆敢泄露这一机密给局外人,就要将他处以极刑。
可是,严刑重罚从来就禁锢不住真理,这一事实很快被公之于众,宣布了“万物皆数”的破产,引发了数学史上所谓的“第一次数学危机”,从而导致了实数理论的诞生。
据说,毕达哥拉斯的弟子希伯斯等人因为坚持真理,违背了毕达哥拉斯的禁令,公布了事实的真象,因而遭到同伴的杀害,被抛尸大海,葬身鱼腹。