《第十二章 数的开方无理数与实数》PPT教学课件
- 格式:ppt
- 大小:197.50 KB
- 文档页数:10
平方根的定义:如果一个数的平方等于a,那么这个数就叫做a的平方根。
平方根的基本性质一个数的平方根分为三种情况:正数有两个个平方根,它们互为相反数;0的平方根是0_;负数没有平方根。
算术平方根正数的正的平方根称为算术平方根。
而0的算术平方根是0开平方运算求一个非负数的平方根的运算,叫做开平方。
开平方是一种运算,它与平方互为逆运算,计算器求一个数的平方根时要特别注意按键顺序。
平方根与算术平方根的联系与区别:联系:具有包含关系,平方根包含算术平方根,算术平方根是平方根的一种。
存在条件相同:平方根和算术平方根都只有非负数才有。
0的平方根和算术平方根都为零。
区别:定义不同个数不同表示方法不同取值范围不同几个非负数之和为零,则它们分别为零。
立方根的定义:一个数的立方等于a,则这个数叫a的立方根。
立方根的性质正数的立方根是正数,负数的立方根是负数,0的立方根是0。
平方根与立方根的联系与区别联系:都与相应的乘方运算互为逆运算,开平方与平方互为逆运算,开立方与立方互为逆运算。
都可以归结为非负数的非负根来研究零的平方根和立方根都是它本身区别:符号不同,根指数2可以省略而根指数3不可以省略平方根只有非负数才有而立方根任何数都有正数的平方根有两个,而正数的立方根只有一个实数与数轴开立方的运算:求一个数立方根的运算叫做开立方,=__________无理数无限不循环小数叫做无理数。
一看是否是无限小数;二看是否是不循环小数。
无理数的常见形式含开平方不尽的式子;含π的式子;定义本身的形式。
实数有理数与实数统称为实数实数与数轴上的点一一对应分类⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎧⎪⎪⎨⎪⎪⎨⎨⎪⎪⎪⎪⎩⎩⎪⎪⎩正有理数正实数正无理数实数负有理数负实数负无理数正有理数有理数负有理数实数正无理数无理数负无理数分数正整数有理数实数整数负整数无理数实数的运算顺序先算乘方开方、再算乘除、最后算加减,如果有扩号,则先算括号里面的。
第12章数的开方§12.1平方根与立方根一、平方根1、平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。
(也叫做二次方根)即:若x2=a,则x叫做a的平方根。
2、平方根的性质:(1)一个正数有两个平方根。
它们互为相反数;(2)零的平方根是零;(3)负数没有平方根。
二、算术平方根1、算术平方根的定义:正数a的正的平方根,叫做a的算术平方根。
2、算术平方根的性质:(1)一个正数的算术平方根只有一个为正;(2)零的算术平方根是零;(3)负数没有算术平方根;(4)算术平方根的非负性:a≥0。
三、平方根和算术平方根是记号:平方根±a(读作:正负根号a);算术平方根a(读作根号a)即:“±a”表示a的平方根,或者表示求a的平方根;“a”表示a的算术平方根,或者表示求a的算术平方根。
其中a叫做被开方数。
∵负数没有平方根,∴被开方数a必须为非负数,即:a≥0。
四、开平方:求一个非负数的平方根的运算,叫做开平方。
其实质就是:已知指数和二次幂求底数的运算。
五、立方根1、立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根。
(也叫做三次方根)即:若x3=a,则x叫做a的立方根。
2、立方根的性质:(1)一个正数的立方根为正; (2)一个负数的立方根为负; (3)零的立方根是零。
3、立方根的记号:3a (读作:三次根号a ),a 称为被开方数,“3”称为根指数。
3a 中的被开方数a 的取值范围是:a 为全体实数。
六、开立方:求一个数的立方根的运算,叫做开立方。
其实质就是:已知指数和三次幂求底数的运算。
七、注意事项:1、“±a ”、“a ”、“3a ”的实质意义:“±a ”→问:哪个数的平方是a ; “a ”→问:哪个非负数的平方是a ; “3a ”→问:哪个数的立方是a 。
2、注意a 和3a 中的a 的取值范围的应用。
如:若3-x 有意义,则x 取值范围是 。
第12章数的开方§12.1平方根与立方根1.平方根2.立方根§12.2实数与数轴阅读材料为什么说2不是有理数小结复习题第12章数的开方要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?()2=25§12.1 平方根与立方根1. 平方根本章导图中提出的问题,就是已知正方形的面积为25cm2,求这个正方形的边长.容易知道,这个正方形的边长是5cm.这个问题实质上就是要找一个数,这个数的平方等于25.概括如果一个数的平方等于a,那么这个数叫做a的平方根(square root).在上述问题中,因为52=25,所以5是25的一个平方根.又因为(-5)2=52=25,所以-5也是25的一个平方根.这就是说,5与-5都是25的平方根.根据平方根的意义,我们可以利用平方来检验或寻找一个数的平方根.例1 求100的平方根.解 因为102=100, (-10)2=100,除了10和-10以外,任何数的平方都不等于100,所以100的平方根是10和-10,也可以说,100的平方根是±10.试一试(1) 144的平方根是什么?(2) 0的平方根是什么?(3)254的平方根是什么?(4) -4有没有平方根?为什么?请你自己也编三道求平方根的题目,并给出解答.概 括一个正数如果有平方根数的范围从有理数扩充到实数以后(本章第2节),每一个正实数必定有两个平方根.,那么必定有两个,它们互为相反数.显然,如果我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根.正数a 的正的平方根,叫做a 的算术平方根,记作a ,读作“根号a”;另一个平方根是它的相反数,即-a.因此正数a的平方根可以记作±a.a称为被开方数.因为0的平方等于0,而其他任何数的平方都不等于0,所以0的平方根只有一个,就是0.通常也记作0=0.思考负数有平方根吗?求一个非负数的平方根的运算,叫做开平方.将一个正数开平方,关键是找出它的一个算术平方根.在例1中,100的算术平方根是100=10,100的平方根是±100=±10.例2将下列各数开平方:(1)49;(2)1.69解(1)因为72=49,所以49=7,因此49的平方根为±7;(2)在例1、例2中,我们是通过观察,利用开方与平方的关系来开平方的.如果被开方数比较复杂,我们常用计算器直接得出一个正数的算术平方根(有时得到的是近似值).例3用计算器求下列各数的算术平方根:(1)529;(2)1225;(3)4481.分析用计算器求一个非负数的算术平方根,只需直接按书写顺序按键即可.解(1)在计算器上依次键入■ 5 2 9=,显示结果为23,所以529的算术平方根为529=23.(2)在计算器上依次键入■ 1 2 2 5 =,显示结果为,所以1225的算术平方根为1225=.(3)在计算器上依次键入■ 4 4 ·8 1 =,显示结果为,如果要求精确到0.01,那么44≈..81练习1. 说出下列各数的平方根:(1)64;(2)025;(3)49〖〗81.2. 用计算器计算:(1)676;(2)278784;(3)4225 (精确到0.01).3. 下列说法正确吗?为什么?如果不正确,那么请你写出正确答案.(1)0.09的平方根是0.3;(2)25=±5.2. 立方根问题现有一只体积为216cm3的正方体纸盒,它的棱长是多少?思 考这个实际问题,在数学上可以提出怎样的一个计算问题?从这里可以抽象出一个什么数学概念?概 括上面所提出的问题,实质上就是要找一个数,这个数的立方等于216.容易验证,63=216,除6 以外,任何数的立方都不等于216,所以正方体的棱长应为6cm .如果一个数的立方等于a ,那么这个数叫做a 的立方根(cube root ).试一试(1) 27的立方根是什么?(2) -27的立方根是什么?(3) 0的立方根是什么?请你自己也编三道求立方根的题目,并给出解答.概 括任何数(正数、负数或零)的立方根如果存在的话,必定只有一个.数a 的立方根,记作3a ,读作“三次根号a ”.a 称为被开方数,3称为根指数.求一个数的立方根的运算,叫做开立方.例4求下列各数的立方根:(1)278; (2) -125; (3) -0.008.解(1) 因为(32)3,所以.322783=(2) 因为(-5)3=-125,所以3125-=-5.(3) 。
第12章 数的开方知识网络图示基本知识要点总结(一)主要概念1.平方根如果一个数的平方等于a ,那么这个数叫做a 的平方根.用符号表示:a 的平方根为 (0).a a ≥2.立方根如果一个数的立方等于a ,那么这个数叫做a 的立方根.用符号表示:a 的立方根为 a (a 为任意数).3.无理数 无限不循环小数叫做无理数.4.实 数 有理数与无理数统称为实数.(二)主要性质1.平方根的性质(1)正数有两个平方根,它们互为相反数;(2)零的平方根是零;(3)负数没有平方根.2.立方根的性质(1)正数有一个正的立方根;(2)零的立方根是零;(3)负数有一个负的立方根.3.实数的性质(1)绝对值:⎩⎨⎧<-≥=);0(),0(||a a a a a (2)相反数:a 的相反数为-a ;(3)倒数:a 的倒数为).0(1=/a a(三)主要运算1.平方根和立方根的运算平方根和立方根的运算依据是:(1)定义; (2)开平方和开立方分别与平方和立方互为逆运算.2.2a 的化简2(0),||(0).a a a a a a ≥⎧==⎨-<⎩ 33.3a 的化简 33(a a a =为任意数).解题方法指导(一)思维方法——逆向思维本章第三节内容中对“无理数2的引入”的探究,及教材复习题中对正方形剪拼的探究,都用到了逆向思维的方法.例1 有一个十字形,它由五个边长为l 的正方形组成(如图12—1),你能把它切成三块,拼成一个长是宽的两倍的长方形吗?解析 直接切拼显然比较困难,我们从反面去思考:假设切成三块,能拼成一个长是宽的两倍的长方形.由此去寻找规律,并通过计算长方形的长与宽的值确定切拼的方法.答案 设拼成的长方形的长为x ,则宽为.21x 由切拼前后图形面积相等得 .10,5212==x x 通过本章的学习,我们知道长方形的长恰为中间一排三个正方形所组成的长方形的对角线AB 的长.由图形的对称性可知,图中十字形的一角顶点M 与A ,B 是一等腰直角三角形的顶点,则AB 的中点N 到A ,B ,M 三点的距离都等于,21AB 所以沿AB ,MN 将十字形切成三块,并将图中I 与Ⅱ这两块,分别移到l '与Ⅱ'处,就拼成了一个长是宽的两倍的长方形.点评 像这种拼图问题,若直接切拼则往往无从下手,所以应从反面思考,即从已经切拼好的图形入手,分析数量关系和各部分的联系,寻求解题的方法及途径,这样做的确会另辟蹊径,开阔我们的思路,使问题得到巧妙解决.(二)解题方法——定义法本章涉及的重要概念有平方根、算术平方根、立方根、无理数、实数,掌握它们的概念,利用它们的定义解题是一种重要的解题方法.例2 (1)下列实数中为无理数的是 ( )722.A 9.B π.C D .1.732 (2)若a ,b 是无理数,a+b =2,则a ,b 的值可以是 .(填上一组满足条件的值即可) 解析 (1)判断一个实数是否为无理数,主要应根据无理数的定义:无限不循环小数是无理数.因为722是一个分数,所以是有理数;39=是有理数;1.732是有限小数,所以是有理数;π是无限不循环小数,所以是无理数. (2)本题是一道开放题,答案不唯一.解决本题一定要注意所应满足的条件.答案 (1)C (2)答案不唯一,如2,22-=+=b a 等.例3 (1)9的平方根是 ,16-的算术平方根是 .(2)若2m -4与3m -1是同一个数的平方根,则m= .(3)已知(2x -1)3=-27,则x .解析 (1)本题可根据平方根及算术平方根的定义求解,要注意平方根与平方的区别以及平方根与算术平方根的区别.(2)本题可能存在两种情况:①2m -4和3m -1表示同一个平方根,则2m -4=3m -1,m =-3;②2m -4和3m -1表示两个不同的平方根,则它们互为相反数,所以2m -4+3m -1=0,m =1.(3)因为(2x -1)3=-27,所以2x -1是-27的立方根,又-27的立方根是-3,所以2x -1=-3,x =-l .答案 (1)±3;4 (2)-3或 1 (3)-1点评 波利亚在《怎样解题》中提到解题的最基本方法——回到定义中去,即根据定义来解决问题,这种方法是解决与概念有关的问题的最根本、最普遍的方法.(三)思想方法——从特殊到一般许多特例中往往蕴含着一般性规律和结论,数学史上很多重要的结论就是在观察特例的基础上,猜想归纳出一般性结论,然后通过严格的论证得到的.例4(1)(填“>”、“<”或“一”); (2)由此你可发现什么规律?把你所发现的规律用含n 的式子(n 为大于1的整数)表示出来.解析 借助计算器可知,15151414131312122222-->-⋅->-->--根据这一结果,可猜测⋅-->--1200612006120051200522在观察这些特例的基础上,可猜想出一般性n >为大于1的整数).答案 见解析.点评 运用“从特殊到一般”这一思想方法,可帮助我们类比猜想出许多重要的结论,但所得到的结论仅仅只是一种猜想,不一定正确,因此运用这一思想方法时,还需对所得结论进行理论上的论证.◆综合探究案例小强同学在学习了本章的内容后设计了如下问题:定义:把形如,a a a b +-为有理数,优为正整数且开方开不尽)的两个实数称为共轭实数.(1)请你举出一对共轭实数: .在与? ;32-与? .(填“是”或“不是”)(3)共轭实数b a m b a -+,有理数还是无理数? .(4)你发现共轭实数m b a +与m b a -的和、差有什么规律? 。