温度控制系统硬件电路框图
- 格式:docx
- 大小:111.65 KB
- 文档页数:2
温度控制系统设计目录第一章系统方案论证 (3)1.1总体方案设计 (3)1.2温度传感系统 (3)1.3温度控制系统及系统电源 (4)1.4单片机处理系统(包括数字部分)及温控箱设计 (4)1.5PID 算法原理 (5)第二章重要电路设计 (7)2.1温度采集 (7)2.2温度控制 (7)第三章软件流程 (8)3.1基本控制 (8)3.2PID 控制 (9)3.3时间最优的 PID 控制流程图 (10)第四章系统功能及使用方法 (11)4.1温度控制系统的功能 (11)4.2温度控制系统的使用方法 (11)第五章系统测试及结果分析 (11)5.1 硬件测试 (11)5.2软件调试 (12)第六章进一步讨论 (12)参考文献 (13)致谢........................................... 错误 !未定义书签。
摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。
关键词:温度控制系统PID 控制单片机Abstract: This paper introduces a temperature control system that is based on the single-chip microcomputer.The hard ware compositionand software design are descried indetail combined with the projectComtrol System of Temperature.PID control Keywords: Control system of temperatureSingle-chip Microcomputer引言:温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。
基于51单片机的温度控制系统0引言在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。
因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。
本文以它为例进行介绍,希望能收到举一反三和触类旁通的效果。
1硬件电路设计以热电偶为检测元件的单片机温度控制系统电路原理图如图1所示。
1.1 温度检测和变送器温度检测元件和变送器的类型选择与被控温度的范围和精度等级有关。
镍铬/镍铝热电偶适用于0℃-1000℃的温度检测范围,相应输出电压为0mV-41.32mV。
变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于把热电偶输出的0mV-41.32mV变换成4mA-20mA的电流;电流/电压变送器用于把毫伏变送器输出的4mA-20mA电流变换成0-5V的电压。
为了提高测量精度,变送器可以进行零点迁移。
例如:若温度测量范围为500℃-1000℃,则热电偶输出为20.6mV-41.32mV,毫伏变送器零点迁移后输出4mA-20mA范围电流。
这样,采用8位A/D转换器就可使量化温度达到1.96℃以内。
1.2接口电路接口电路采用MCS-51系列单片机8031,外围扩展并行接口8155,程序存储器EPROM2764,模数转换器ADC0809等芯片。
由图1可见,在P2.0=0和P2.1=0时,8155选中它内部的RAM工作;在P2.0=1和P2.1=0时,8155选中它内部的三个I/O端口工作。
相应的地址分配为:0000H - 00FFH 8155内部RAM0100H 命令/状态口0101H A 口0102H B 口0103H C 口0104H 定时器低8位口0105H 定时器高8位口8155用作键盘/LED显示器接口电路。
课程设计课题:单片机培养箱温控系统设计本课程设计要求:温度控制系统基于单片机,实现对温度的实时监控,实现控制的智能化。
设计了培养箱温度控制系统,配备温度传感器,采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数字传输,采用PID控制技术,可保持温度在要求的恒定范围内,配备键盘输入设定温度;配备数码管L ED显示温度。
技术参数及设计任务:1、使用单片机AT89C2051控制温度,使培养箱保持最高温度110 ℃ 。
2、培养箱温度可预设,干燥过程恒温控制,控温误差小于± 2℃.3、预设时显示设定温度,恒温时显示实时温度。
采用PID控制算法,显示精确到0.1℃ 。
4、当温度超过预设温度±5℃时,会发出声音报警。
和冷却过程没有线性要求。
6、温度检测部分采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数传7 、人机对话部分由键盘、显示器、报警三部分组成,实现温度显示和报警。
本课程设计系统概述一、系统原理选用AT89C2051单片机作为中央处理器,通过温度传感器DS18B20采集培养箱的温度,并将采集的信号传送给单片机。
驱动培养箱的加热或冷却。
2、系统整体结构总体设计应综合考虑系统的总体目标,进行初步的硬件选型,然后确定系统的草案,同时考虑软硬件实现的可行性。
经过反复推敲,总体方案确定以爱特梅尔公司推出的51系列单片机为温度智能控制系统核心,选用低功耗、低成本的存储器、数显等元器件。
总体规划如下:图1 系统总体框图2、硬件单元设计一、单片机最小系统电路Atmel公司的AT2051作为89C单片机,完全可以满足本系统所需的采集、控制和数据处理的需要。
单片机的选择在整个系统设计中非常重要。
该单片机具有与MCS-51系列单片机兼容性高、功耗低、可在接近零频率下工作等诸多优点。
广泛应用于各种计算机系统、工业控制、消费类产品中。
AT 89C2051 是 AT89 系列微控制器中的精简产品。
电阻炉温度控制系统1. 确定总体方案在某煤气/焦碳生产企业中,为了把握工艺规律和控制参数,按比例制作了一台模拟炼焦炉,其中的煤炭采用电阻丝进行加热。
要求控制电阻炉中A点的温度按预定的规律变化,同时监测B点的温度,一旦B点温度超过允许值,就应该发出报警信息、并停止加热。
根据设计任务的要求,采用8031单片机系统组成的数字控制器代替常规模拟调节器。
整个系统在规定的采样时刻经过A/D转换采集由温度传感器反馈回来的温度反馈测量值,并和给定值进行比较,将经过控制运算后的控制量输出给执行元件控制电阻丝的加热过程。
此外,系统还应实现人机接口功能。
系统总体框图如图1所示。
图1 模拟炼焦炉温度控制系统总体框图2. 系统硬件设计按前面的总体设计方案,该系统硬件的设计包括以下几个部分。
⑴人机接口电路本系统允许用户根据需要随时改变系统的工作状态和控制参数,为此设置了4位LED显示和相应的操作键盘,并由专用控制芯片8279实现与CPU的接口。
采用8279后,可以节省CPU用于查询键盘输入和管理显示输出的时间,降低了对CPU处理速度的要求,同时也减少了软件工作量。
⑵温度测量电路热电偶用来检测炉温,将温度值转换为毫伏级的电压信号。
为便于信号远距离传送,采用温度变送器,把热电偶输出信号转换为4~20毫安的电流信号,在接收端再经I/V变换使之变成适于A/D转换的电压信号。
在系统中,采用多路复用方式对两路热电偶信号、冷端补偿信号和标准电压信号进行A/D转换。
系统运行过程中,定期对标准电压进行采样,以修正A/D转换器的灵敏度、保证测控精度。
为提高系统抗干扰能力,在多路转换开关的控制电路A/D转换电路的数字部分中还采用了光电隔离措施。
⑶温度控制电路电阻丝由过零触发型的双向可控硅整流电路驱动,通过调节加热阻丝上的平均电压来控制加热功率,最终达到控制炉温的目的,其原理见图2。
MOC3021是可控硅型光电隔离器件,它只能触发小功率可控硅。
因此,本系统中通过MOC3021控制双向可控硅BCR1,再由BCR1控制主电路的双向可控硅BCR2。
蔬菜大棚温度控制系统目录一、引言 (3)(一)选题的背景 (3)(二)国内温室大棚发展状况 (3)(三)选题目的 (2)二、控制系统的总体设计 (4)(一)控制系统具体功能 (4)(二)控制系统整体结构 (4)(三)硬件设备的选择 (5)1.控制芯片的选择 (3)2.温度传感器的选择 (6)3.显示器件的选择 (6)(四)系统工作原理 (7)三、温度控制系统电路设计 (8)(一)控制模块电路 (8)(二)控制模块输入电路 (11)1. DS18B20温度传感器设计 (11)2. 外部控制电路的设计 (15)(三)输出控制控温设备电路 (16)1.蜂鸣器电路的设计 (16)2. 继电器驱动电路设计 (17)(四)系统硬件测试 (18)四、系统软件部分设计 (18)(一)主函数 (18)(二)数码管显示函数的设计 (19)(三) DS18B20温度采集函数的设计 (20)(四)系统单片机程序调试 (21)五、结论 (21)参考文献 (23)致谢 (23)一、引言(一)选题的背景从本世纪处开始,随着中国经济的快速发展,人民对于生活质量和身体健康越来越重视,在北方寒冷的冬季吃上新鲜可口的蔬菜成为了生活的需要。
因此造成了冬季反季节蔬菜的需求逐年扩大,尤其是在北方寒冷地区。
温室蔬菜栽培大棚远比比南方蔬菜的长途运输更加具有明显优势。
出于经济上的价值。
长江以南从南到北菜长途运输不仅成本高,而且长途运输的蔬菜大多为冷冻脱水蔬菜不再新鲜。
因此,依靠现代数字温度控制系统,推广性价比高的大棚种菜能更好地满足人民群众生活的需要。
由于不同蔬菜作物及其不同生育期所需要的温度不同且要求稳定在一定的温度范围内。
仅仅是依靠人工管理存在温度调节不及时、不准确,影响作物生长及人力资源浪费等问题。
因此要求有一种能对温室温度的检测具有足够精度和实时控制的温度控制系统来代替人工操作,并尽可能具有较低成本,这样的产品才有实用价值。
蔬菜大棚的温室环境控制自动调节的环境条件在温室中,以实现对植物生长发育的最佳环境。
温度控制系统摘要 : 随着微机测量和控制技术的迅速开展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。
本设计论述了一种以STC89C52单片机为主控制单元,以 DS18B20为温度传感器的温度控制系统。
该控制系统可以实时存储相关的温度数据并记录当前的时间。
系统设计了相关的硬件电路和相关应用程序。
硬件电路主要包括STC89C52单片机最小系统,测温电路、实时时钟电路、 LCD 液晶显示电路以及通讯模块电路等。
系统程序主要包括主程序,读出温度子程序,计算温度子程序、 LCD 显示程序以及数据存储程序等。
关键词:STC89C52, DS18B20,LCDAbstract:Along with the computer measurement and control technology of the rapid development and wide application,based on singlechip temperature gathering and control system development and application greatly improve the production of temperature in life level of control. This design STC89C52 describes a kind ofmainly by MCU control unit, for temperature sensor DS18B20 temperature control system. The control system can real-time storage temperature data and recordrelated to the current time. System design related hardware circuit and related applications. STC89C52 microcontroller hardware circuit include temperaturedetection circuit smallest system, and real-time clock circuit, LCD displaycircuit, communication module circuit, etc. System programming mainly includemain program,read temperature subroutine,the calculation of temperature subroutines, LCD display procedures and data storage procedures, etc.Keywords: STC89C52, DS18B20,LCD目录1前言 (1)2总体方案设计 (2)方案设计 (2)方案论证 (3)方案选择 (3)3单元模块的设计 (4)单片机模块 . (4)18B20 温度模块 (5)显示器模块 . (6)4软件设计 (7)系统总框图 (7)温度采集子程序 (8)5系统功能与调试方法介绍 (9)系统功能 (9)系统指标 (9)系统调试 (9)6参考文献 (10)附录 1:相关设计图 (11)附录 2:元器件清单 (13)附录 3:源程序 (14)1前言工业控制是计算机的一个重要应用领域,计算机控制系统正是为了适应这一领域的需要而开展起来的一门专业技术,它主要研究如何将计算机技术、通过信息技术和自动控制理论应用于工业生产过程,并设计出所需要的计算机控制系统。
温度控制系统毕业设计•相关推荐温度控制系统毕业设计摘要在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。
因此,对数字显示温度计的设计有着实际意义和广泛的应用。
本文介绍一种利用单片机实现对温度只能控制及显示方案。
本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。
测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。
高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。
该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。
数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。
关键词:单片机:ds18b20:LED显示:数字温度.AbstractIn our daily life and industrial and agricultural production, the detection and control ofthe temperature, the digital thermometer has practical significance and a wide rangeof applications .This article describes a programmer which use a microcontroller toachieve and display the right temperature by intelligent control .This programmermainly consists by temperature control sensors, MCU, LED display modules circuit.The main aim of this thesis is to design high-precision digital thermometer and thenrealize the object temperature measurement. Temperature measurement systemincludes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit,board with a microcontroller circuit is the key to the whole system. The temperatureprocess of high-precision digital thermometer, from collecting the temperature of theobject by the digital temperature sensor and the temperature transmit ted to themicrocontroller, and ultimately display temperature by the LED. The digitalthermometer requires the high degree is positive 125and the low degree is negative 55,the error is less than 0.5, LED can read the number. This digital thermometer couldreplace the traditional mercurial thermometer, can be used in family or industrial andproduction, it has a great value.Key words: MCU: DS18B20 : LED display: Digital thermometer。
基于51单片机的水温自动控制系统沈统摘要:在现代化的工业生产中,温度是常用的测量机被控参数。
本水温控制系统采用AT89C51为核心控制器件,实现对水温在30℃到96℃的自动控制。
由精密摄氏温度传感器LM35D构成前置信号采集和调理电路,过零检测双向可控硅输出光电耦合器MOC3041构成后向控制电路,由74LS164和LED数码管构成两位静态显示用于显示实时温度值。
关键词:89C51单片机;LM35D温度传感器;ADC0809;MOC3041光电藕耦合器;水温自动控制0 引言在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。
而智能化的控制系统成为一种发展的趋势。
本文所阐述的就是一种基于89C51单片机的温度控制系统。
本温控系统可应用于温度范围30℃到96℃。
1 设计任务、要求和技术指标1.1任务设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。
1.2要求(1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。
(2)当液位低于某一值时,停止加热。
(3)用AD转换器把采集到的模拟温度值送入单片机。
(4)无竞争-冒险,无抖动。
1.3技术指标(1)温度显示误差不超过1℃。
(2)温度显示范围为0℃—99℃。
(3)程序部分用PID算法实现温度自动控制。
(4)检测信号为电压信号。
2 方案分析与论证2.1主控系统分析与论证根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。
AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。
其引脚图如图1所示。
2.2显示系统分析与论证显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。
在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。
水温控制系统摘要:该水温控制系统采用单片机进行温度实时采集与控制。
温度信号由“一线总线”数字化温度传感器DS18B20提供,DS18B20在-10~+85°C范围内, 固有测温分辨率为0.5 ℃。
水温实时控制采用继电器控制电热丝和风扇进行升温、降温控制。
系统具备较高的测量精度和控制精度,能完成升温和降温控制。
关键字: AT89C51 DS18B20 水温控制Abstract: This water temperature control system uses the Single Chip Microcomputer to carry on temperature real-time gathering and controling. DS18B20, digitized temperature sensor, provides the temperature signal by "a main line". In -10~+85℃the scope, DS18B20’s inherent measuring accuracy is 0.5 ℃. The water temperature real-time control system uses the electricity nichrome wire carring on temperature increiseament and operates the electric fan to realize the temperature decrease control. The system has the higher measuring accuracy and the control precision, it also can complete the elevation of temperature and the temperature decrease control.Key Words:AT89C51 DS18B20 Water temperature control目录1. 系统方案选择和论证 (2)1.1 题目要求 (2)1.1.1 基本要求 (2)1.1.2 发挥部分 (2)1.1.3 说明 (2)1.2 系统基本方案 (2)1.2.1 各模块电路的方案选择及论证 (2)1.2.2 系统各模块的最终方案 (5)2. 硬件设计与实现 (6)2.1系统硬件模块关系 (6)2.2 主要单元电路的设计 (6)2.2.1 温度采集部分设计 (6)2.2.2 加热控制部分 (8)2.2.3 键盘、显示、控制器部分 (8)3. 系统软件设计 (10)3.1 读取DS18B20温度模块子程序 (10)3.2 数据处理子程序 (10)3.3 键盘扫描子程序 (12)3.4 主程序流程图 (13)4. 系统测试 (14)4.1 静态温度测试 (14)4.2动态温控测量 (14)4.3结果分析 (14)附录1:产品使用说明 (15)附录2:元件清单 (15)附录3:系统硬件原理图 (16)附录4:软件程序清单 (17)参考文献 (26)1.系统方案选择和论证1.1题目要求设计并制作一个水温自动控制系统,控制对象为1L净水,容器为搪瓷器皿。
计算机控制技术课程设计计算机控制技术课程设计课程设计名称:电脑机箱温度控制系统设计专业班级:学生姓名:学号:指导教师:课程设计地点:课程设计时间:计算机控制技术课程设计任务书引言......................................................................2 总体方案设计 (4)2.1硬件组成 ............................................................ 4.2.2方案论证 ............................................................ 5.2.3总体方案 ............................................................ 6. 3硬件电路设计.............................................................. Z.3.1 DS18B20数字温度传感器 (7)3.2达林顿反向驱动器ULN2803 (8)3.3 AT89C52 单片机 .................................................... 8.3.4 LED数码管 (10)3.5各部分电路设计 .................................................... 1.1 4系统软件设计. (16)4.1主程序设计 (17)4.2中断服务程序设计 (17)4.3部分主要子程序的设计 (18)5总结 (18)参考文献 (19)附录1电路总图 (20)踵加r齒)疽衣厚计算机控制技术课程设计i引言在现代社会中,工业生产中大型机械中的散热风扇以及现在笔记本电脑上广泛使用的智能CPU风扇等被广泛的应用。
单片机课程设计报告题目:温度监控系统设计学院:通信与信息工程学院专业:电子信息工程专业班级:电信xxxx班成员: XXXXXXXXX二〇一一年七月十二日一、引言温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。
对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而,对温度的测控方法多种多样。
随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。
利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。
作为获取信息的手段——传感器技术得到了显著的进步,其应用领域较广泛。
传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。
因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。
为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。
本系统利用传感器与单片机相结合,应用性比较强,本系统可以作为仓库温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统,以及构成智能电饭煲等等。
课题主要任务是完成环境温度监测,利用单片机实现温度监测并通过报警信号提示温度异常。
本设计具有操作方便,控制灵活等优点。
本设计系统包括单片机,温度采集模块,显示模块,按键控制模块,报警和指示模块五个部分。
文中对每个部分功能、实现过程作了详细介绍。
整个系统的核心是进行温度监控,完成了课题所有要求。
二、实验目的和要求2.1学习DS18B20温度传感芯片的结构和工作原理。
2.2掌握LED数码管显示的原理及编程方法。
2.3掌握独立式键盘的原理及使用方法。
2.4掌握51系列单片机数据采集及处理的方法。
温度控制系统硬件电路框图
本研究能够实现单片机对密闭空间内温度的有效控制的功能,通过单片机对温度的智能控制,从而实现温度智能化控制的目的
温度控制部分程序的设计
在此部分主要功能是将X T 和L T 两个采集的温度值互相比较,若X T ≤L T 蜂鸣器报警,此时将1.3P 端口置为低电平,通过光耦合器打开可控硅,这样可以控制加热器加热,液晶显示器上显示888;若X T ≥H T 蜂鸣器报警,此时将1.3P 端口置为高电平,通过光耦合器关闭可控硅,这样便可停止加热器加热,液晶显示器上显
AT89C51
控制器 液晶显示电路 键盘电路 信号处理电路 蜂鸣器警报模块 温度信号采集
示888.
如果L T ≤X T ≤H T ,此温度在正常的范围内,液晶显示器上显示X T 温度。
温度控制部分的流程图如图4—2所示。
AT89C51蜂鸣器警报模块
键盘电路
控制器
rm
KT^-L-E
FBEH
A.LE
H.TFT3曰乓
KJ
t
〒
n
*T
l'
・
r>L>
・
■
!
■
['
non
UODQa
尸
p
p
r
F
p
F
r
IPN n/x^s "J
和畑
LN^OQ". IU
P^^l.11
PEJh^ IS
r^jar.«. i •
P'S.TMi 1*
PH寸剧僵
r -j.irr^p
F*3m・~r ■■
na-iiTTD
B-JJW r i FT
Afi'ilP
P N T AIW
二+
温度控制系统硬件电路框图
本研究能够实现单片机对密闭空间内温度的有效控制的功能,通过单片机对 温度的智能控制,从而实现温度智能化控制的 温度信号采集 匚〉
信号处理电路
温度控制部分程序的设计
在此部分主要功能是将T X 和T L 两个采集的温度值互相比较,若T X < T L 蜂鸣 器报警,此时将P3.1端口置为低电平,通过光耦合器打开可控硅,这样可以控 制加热器加热,液晶显示器上显示 888;若T X > J 蜂鸣器报警,此时将P3.1端 口置为高电平,通过光耦合器关闭可控硅,这样便可停止加热器加热,液晶显示 器上显示888。
如果T L < T x < T H ,此温度在正常的范围内,液晶显示器上显示T x 温度。
温 度控制部分的流程图如图4-2所示。
返回
液晶显示电路。