人教版八年级数学下期中专题培优复习
- 格式:doc
- 大小:239.08 KB
- 文档页数:11
根据部编人教版八年级数学下学期期中复
习资料
一、整数与分数
1. 整数的概念
整数是由正整数、负整数和0组成的数集。
2. 整数的运算
- 加法:同号相加,异号相减,并且符号取绝对值较大的数的符号。
- 减法:加上被减数的相反数。
- 乘法:同号得正,异号得负。
- 除法:除法的商具有和被除数相同的符号。
3. 分数的概念
分数是指一个数除以另一个不为零的数所得的结果。
4. 分数的运算
- 加法:通分后,分子相加,分母保持不变。
- 减法:通分后,分子相减,分母保持不变。
- 乘法:分子相乘得分子,分母相乘得分母。
- 除法:被除数乘以除数的倒数。
二、代数式与方程式
1. 代数式的定义
代数式是由数和字母按照一定规则连接而成的式子。
2. 代数式的运算
- 合并同类项:将具有相同字母部分的项合并在一起。
- 拆分因式:将一个代数式按照公因式拆分成几个因式的乘积。
- 展开:将括号内的代数式依次与括号外的每一项相乘,并将
结果合并。
3. 方程式的定义
方程式是含有未知数的等式。
4. 解方程的方法
- 通过加减法消去项实现等式两边平衡。
- 通过乘除法消去项实现等式两边平衡。
- 通过整理方程,使等式两边形式相同,然后通过比较解出未
知数的值。
以上是根据部编人教版八年级数学下学期期中复习资料的内容
概述。
详细内容请参考教材,练习题可以帮助加深理解和熟练运用。
人教版八年级下册期中培优训练一.选择题1.已知二次根式32a-与8化成最简二次根式后,被开方数相同,则符合条件的正整数a有()A.1个B.2个C.3个D.4个2.已知ΔABC的三边分别长为a,b,c,且满足2a17-()+|b-15|+2c-16c+64=0,则ΔABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形3.已知n是正整数,20n是整数,则n的最小值为()A.2 B.3 C.4 D.54.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是( )A.10B.8C.7D.65.在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,且AE=3cm,AF=4cm.若▱ABCD的周长为28cm,则▱ABCD的面积为()A.21cm2B.24cm2C.49cm2D.98cm26.已知2121x y=,,则11x y+的值为().A.﹣2B.2C.2 D.-2 7.下列各式正确的是 ( )A156=10B.2)2=8C 32118D2(437)-7-38.如图,为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,然后向右拉动框架,给出如下的判断:①四边形ABCD为平行四边形;②对角线BD的长度不变;③四边形ABCD的面积不变;④四边形ABCD的周长不变,其中所有正确的结论是( )A .①②B .①④C .①②④D .①③④9.如图,正方体盒子的棱长为2,M 为BC 的中点,则一只蚂蚁从A 点沿盒子的表面爬行到M 点的最短距离为( )A .B .C .D .10.如图,在直角△ABC 中,∠C =90°,BD 平分∠ABC ,AP ,过点O 作OM ⊥AC ,若△ABC 的周长为30( )A .30B .15C .60D .120二.填空题 11.比较大小:53-______75-.12.若31x =-,则代数式225x x ++的值为________.13.如图,在四边形ABCD 中,AD=,AB=,BC=10,CD=8,∠BAD=90°,那么四边形ABCD 的面积是___________.14.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60,∠BAC=80°,则∠1的度数为______.15.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为______.16.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了________ 米.三.解答题17.计算:(1)818162+-;(2)()2154232⨯+-.18.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.19.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF BE=,连接EC并延长,使CG CE=,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB CE =,80BAE ∠=︒,30DCE ∠=︒,求CBE ∠的度数.20.聊城市在创建“全国文明城市”期间,某小区在临街的拐角清理出了一块可以绿化的空地.如图,经技术人员的测量,已知AB =9m ,BC =12m ,CD =17m ,AD =8m ,∠ABC =90°.若平均每平方米空地的绿化费用为150元,试计算绿化这片空地共需花费多少元?21.已知△ABC 中,∠B =90°,AB =8cm ,BC =6cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,在BC 边上的运动速度是每秒2cm ,在AC 边上的运动速度是每秒1.5cm ,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t 秒.(1)出发2秒后,求PQ 的长;(2)当点Q 在边BC 上运动时,t 为何值时,△ACQ 的面积是△ABC 面积的;(3)当点Q 在边CA 上运动时,t 为何值时,PQ 将△ABC 周长分为23:25两部分.。
人教版2020八年级数学下册期中综合复习培优训练(附答案详解) 1.若01x <<,则下列各式中,是二次根式的是( ) A .1x - B .2x -C .21xx - D .1x --2.下列二次根式中与是同类二次根式的是( )A .B .C .D .3.如图,▱ABCD 的对角线AC ,BD 相交于O ,EF 经过点O ,分别交AD ,BC 于E ,F ,已知▱ABCD 的面积是220cm ,则图中阴影部分的面积是( )A .12 2cmB .10 2cmC .28cmD .25cm4.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是( )A .5米B .6米C .7米D .8米5.以下列长度的线段为边,能构成直角三角形的是( ) A .1,2,3B .3,4,5C .5,6,7D .7,8,96.如图,在矩形ABCD 中,AB=a ,AD=b ,分别延长AB 至E ,AD 至F ,使得AF=AE=c (b <a <c ).连结EF ,交BC 于M ,交CD 于N ,则△AMN 的面积为( )A .12c (a+b ﹣c ) B .12c (b+c ﹣a ) 117.如图,在矩形ABCD 中,2BC AB =,ADC ∠的平分线交边BC 于点E ,AH DE ⊥于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O .给出下列命题:①AEB AEH ∠=∠;②22DH EH =;③12HO AE =;④2BC BF EH -=.其中正确命题为( )A .①②B .①③C .①③④D .①②③④8.已知231,3a b ab -=-=,则()1(1)a b +-的值为( ) A .3-B .33 C .321- D .31-9.在直角坐标系中,以坐标原点为圆心的⊙O 的半径为1,则直线y=-2x+5与⊙O 的位置关系是( ) A .相离B .相交C .相切D .无法确定10.下列计算错误的是 A .22--=-B .(a 2)3=a 5C .2x 2+3x 2=5x 2D .822=11.如图,矩形OABC 的边OC 在y 轴上,边OA 在x 轴上,C 点坐标为(0,3),点D 是线段OA 的一个动点,连接CD ,以CD 为边作矩形CDEF ,使边EF 过点B ,已知所作矩形CDEF 的面积为12,连接OF ,则在点D 的运动过程中,线段OF 的最大值为__.12.比较大小:2______5(填“>,<,=”).13.菱形的一个内角是60°,边长为5cm ,则这个菱形较短的对角线长是_____cm . 14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=2222221[()]42a b ca b+--.现已知△ABC的三边长分别为1,2,5,则△ABC的面积为______.15.化简:32(0)4a bb≥的结果是____.16.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=5,则BC=_____.17.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将ΔEBF沿EF所在直线折叠得到ΔEB' F,连接B' D,则B' D的最小值是_____.18.如图,在△ABC中,∠BAC=90°,AB=4,tan∠ACB=23,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于点F,则四边形AFBD的面积为______.19.如果43x=,那么x=________.20.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的长为_____.21.计算: ()42112-++-22.计算 (1)124336÷+⨯; (2)2760253-+; (3)2(23)(23)(2233)+-++; (4)(32126)2352--⨯+.23.如图,在平面直角坐标系中,点A (0,4)、B (﹣3,0),将线段AB 沿x 轴正方向平移n 个单位得到菱形ABCD .(1)画出菱形ABCD ,并直接写出n 的值及点D 的坐标; (2)已知反比例函数y =k x 的图象经过点D ,▱ABMN 的顶点M 在y 轴上,N 在y =kx的图象上,求点M 的坐标;(3)若点A 、C 、D 到某直线l 的距离都相等,直接写出满足条件的直线解析式.24.如图,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,求证:∠BAE=∠DCF .25.如图,在正方形ABCD 中,点E 在射线AB 上,点F 在射线AD 上.(1)若CE CF ⊥,求证:CE CF =;(2)若CE CF =,则CE CF ⊥是否成立?若成立,请给出证明,若不成立,请画图说明.26.如图,边长为1的菱形中,,连结对角线,以为边作第二个菱形,使,连结,再以为边作第三个菱形使…按此规律所作的第2019个菱形的边长是__________.27.阅读理解:如图1,如果四边形ABCD 满足AB =AD ,CB =CD ,∠B =∠D =90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图1所示的“完美筝形”纸片ABCD 先折叠成如图2所示形状,再展开得到图3,其中CE ,CF 为折痕,∠BCE =∠ECF =∠FCD ,点B′为点B 的对应点,点D′为点D 的对应点,连接EB′,FD′相交于点O. 简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是 ; (2)当图3中的∠BCD =120°时,∠AEB′= ; 拓展提升:(3)当图2中的四边形AECF 为菱形时,对应图3中的四边形CD′OB′是否是“完美筝形”?请说明理由.28.如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm .求AC 的长.29.先化简,再求值:(1111x x++-)÷2221x xx x--+,其中21.30.(12分)若三角形的三个内角的比是1:2:3,最短边长为1,最长边长为2.求:(1)这个三角形各内角的度数;(2)另外一条边长的平方.参考答案1.C 【解析】 【分析】根据二次根式的定义(根指数是2,被开方数是非负数)判断即可. 【详解】∵形如a (a≥0)的式子叫二次根式, ∵01x <<, ∴x-1<0,∴1x -不是二次根式,故选项A 错误; ∵01x <<, ∴x-2<0,∴2x -不是二次根式,故选项B 错误; ∵01x <<, ∴210>xx-, ∴21xx-是二次根式,故选项C 正确; ∵01x <<, ∴-210<<x --,1x --不是二次根式,故选项D 错误;故选C . 【点睛】本题考查了对二次根式的定义的应用,能根据二次根式的定义得出关于x 的不等式是解此题的关键,形如a (a≥0)的式子叫二次根式. 2.B 【解析】试题分析:分别化简后找到被开方数是2的二次根式即可. 解:A 、化简得:2,故与不是同类二次根式;B 、化简得:3,故与是同类二次根式;C 、化简得:,故与不是同类二次根式;D 、化简得:,故与不是同类二次根式;故选B .考点:同类二次根式. 3.D 【解析】 【分析】利用□ABCD 的性质得到AD ∥BC ,OA=OC ,且∠EAC=∠ACB (或∠AEO=∠CFO ),又∠AOE=∠COF ,然后利用全等三角形的判定方法即可证明△AOE ≌△COF ,再利用全等三角形的性质即可证明结论. 【详解】∵四边形ABCD 是平行四边形, ∴AD ∥BC ,OA=OC ,∴∠EAC=∠ACB (或∠AEO=∠CFO ), 又∵∠AOE=∠COF , 在△AOE 和△COF 中,AOE COF OA OCEAC ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF , ∴S △AOE =S △COF,∴阴影部分的面积= S △BOC =14×S □ABCD =14×20=52 c m . 故选:D 【点睛】此题把全等三角形放在平行四边形的背景中,利用平行四边形的性质来证明三角形全等,最后利用全等三角形的性质解决问题. 4.D 【解析】【分析】由题意得:在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度. 【详解】∵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处,∴折断的部分=5,∴折断前高度为5+3=8(米). 故选D . 【点睛】本题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力. 5.B 【解析】 【分析】根据勾股定理的逆定理对每个选项进行判断即可. 【详解】解:A.1+2=3,不能构成三角形,故选项错误; B.32+42=52,能构成直接三角形,故选项正确; C.52+62≠72,不能构成直角三角形,故选项错误; D.72+82≠92,不能构成直接三角形,故选项错误. 故选B. 【点睛】本题考点:勾股定理的逆定理. 6.A 【解析】试题分析:根据题意求出FN=(c ﹣a ),(c ﹣b ),c (c ﹣a (c ﹣b )b c 与Rt △EAF 的斜边上的高h=2c ,代入三角形面积公式AMN S V =12MN•h=12b c )c=12c (a+b﹣c ). 故选A考点:1、矩形的性质;2、三角形的面积 7.B 【解析】在矩形ABCD 中,AD BC ===,∵DE 平分∠ADC ,∴∠ADE =∠CDE =45°,∵AD ⊥DE ,∴△ADH 是等腰直角三角形,AD ∴= ,∴AH =AB =CD .∵△DEC 是等腰直角三角形,DE ∴=,∴AD =DE ,∴∠AED =67.5°, ∴∠AEB =180°−45°−67.5°=67.5°,∴∠AED =∠AEB . 故①正确; 设DH =1,则AH =DH =1,AD DE ==,1HE ∴= ,)11∴=≠ ,故②错误;∵∠AEH =67.5°,∴∠EAH =22.5°. ∵DH =CD ,∠EDC =45°,∴∠DHC =67.5°,∴∠OHA =22.5°,∴∠OAH =∠OHA ,∴OA =OH ,∴∠AEH =∠OHE =67.5°,∴OH =OE ,12OH AE ∴=,故③正确; ∵AH =DH ,CD =CE , 在△AFH 与△CHE 中,∵∠AHF =∠HCE =22.5°,∠F AH =∠HEC =45°,AH =CE ,∴△AFH ≌△CHE ,∴AF =EH . 在△ABE 与△AHE 中,∵AB =AH ,∠BEA =∠HEA ,AE =AE ,∴△ABE ≌△AHE ,∴BE =EH , ∴BC −BF =(BE +CE )−(AB −AF )=(CD +EH )−(CD −EH )=2EH , 故④错误,所以①,③正确,故选B【点睛】本题考查了相似三角形的判定与性质, 角平分线的性质, 等腰三角形的判定与性质, 等腰直角三角形, 矩形的性质.根据矩形的性质得到AD BC ===,由DE 平分∠ADC ,得到△ADH 是等腰直角三角形,△DEC 是等腰直角三角形,得到2DE CD =,得到等腰三角形求出 ∠AED=67.5°,∠AEB=180°-45°-67.5°=67.5°,得到①正确;设DH=1,则AH=DH=1,2AD DE == ,求出21HE =-,得到()2222211HE =-≠,故②错误;通过角的度数求出△AOH 和△OEH 是等腰三角形,从而得到③正确;由△AFH ≌△CHE ,到AF=EH ,由△ABE ≌△AHE ,得到BE=EH ,于是得到BC-BF=(BE+CE )-(AB-AF )=(CD+EH )-(CD-EH )=2EH ,从而得到④错误.8.A【解析】【分析】把原式化简为含ab 、a-b 的形式,再整体代入计算.【详解】∵231,3a b ab -=-=,∴(a+1)(b−1)=ab−a+b−1=ab−(a−b)−1=3 −(23−1)−1=−3.故选:A.【点睛】此题考查二次根式的化简求值,解题关键在于掌握运算法则.9.C【解析】如图所示,过O 作OC ⊥直线AB ,垂足为C ,对应直线5令x=0,解得:5y=0,解得:5, ∴A 5,0),B (05,即5,5在Rt △AOB 中,根据勾股定理得:52=, 又S △AOB =12AB•OC=12OA•OB , ∴OC=2152OA OB AB⋅==, 又圆O 的半径为1,则直线与圆O 的位置关系是相切.故选C点睛:本题考查了直线与圆的位置关系与数量之间的联系.设圆的半径为r,圆心到直线的距离为d,(1)直线与圆相交,则有d<r ,直线与圆相切,d=r 则有,直线与圆相离,则有d>r ,反之也成立.10.B【解析】根据绝对值,幂的乘方,合并同类项,二次根式化简运算法则逐一计算作出判断: A 、22--=-,本选项计算正确;B 、(a 2)3=a 6,本选项计算错误;C 、2x 2+3x 2=5x 2,本选项计算正确;D=故选B .11.【解析】【分析】连接BD ,由矩形的性质得出S 矩形CDEF =2S △CBD =12,S 矩形OABC =2S △CBD ,得出S 矩形OABC =12,可求OA=4=BC ,由∠CFB=90°,C 、B 均为定点,F 可以看作是在以BC 为直径的圆上,取BC 的中点M ,则OF 的最大值=OM+12. 【详解】连接BD,取BC中点M,连接OM,FM,∵S矩形CDEF=2S△CBD=12,S矩形OABC=2S△CBD,∴S矩形OABC=12,∵C点坐标为(0,3),∴OC=3,∴BC=4,∵∠CFB=90°,C、B均为定点,∴F可以看作是在以BC为直径的圆上,且点M是BC中点,则MF=12BC=CM=2,OM22+CM9+4OC===13,当点O,点F,点M三点共线时,OF的值最大.∴OF的最大值=OM+12BC=13+2,故答案为:13+2【点睛】本题考查了矩形的性质、坐标与图形性质、勾股定理、直角三角形的性质以及最值问题等知识;熟练掌握矩形的性质,求出矩形OABC的面积是解题的关键.12.>【解析】因为,52=25,28>25,所以2>5.13.5【解析】菱形的一个内角是60°,根据菱形的性质得,60°角所对的对角线与菱形的两边构成的三角形是一等边三角形,故这个菱形较短的对角线长是5cm.故答案为5.14.1【解析】【分析】把题中的三角形三边长代入公式求解.【详解】∵S∴△ABC 的三边长分别为1,2△ABC 的面积为:S, 故答案为1.【点睛】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答. 15 【解析】【分析】根据二次根式的性质即可化简.【详解】∵0b ≥,∴a>02 【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质.16.;【解析】【分析】根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,利用勾股定理即可得出答案.【详解】∵四边形ABCD是矩形,∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,∴AO=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2 AO=10,在Rt△ABC中,由勾股定理得,BC=.故答案为:【点睛】本题考查了矩形的性质及勾股定理.根据矩形的性质及∠AOB=60°得出△AOB是等边三角形是解题的关键.17.2.【解析】【分析】如图所示,点B'在以E为圆心EA为半径的圆上运动,当D、B'、E共线时,B'D的值最小,根据勾股定理求出DE,根据折叠的性质可知B'E=BE=2,即可求出B'D.【详解】如图所示点B'在以E为圆心EA为半径的圆上运动,当D、B'、E共线时,B'D的值最小,根据折叠的性质,△EBF≌△EB'F,∴∠B=∠EB'F,EB'=EB.∵E是AB边的中点,AB=4,∴AE=EB'=2.∵AD=6,∴DE=,∴B'D2.故答案为102.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B'在何位置时,B'D的值最小是解决问题的关键.18.12【解析】分析:根据AF∥BC,证明△AEF≌△DEC(AAS),得到AF=CD,可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.详解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,AFC FCDAEF DEC AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,tan∠ACB=23,AB=4,∴AC=tan ABACB∠=6,∴S △ABC =12AB•AC=12×4×6=12, ∴S 四边形AFBD =12.故答案为12.点睛:本题考查平行四边形的性质与判定,掌握全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识是解题的关键.19.81【解析】【分析】根据已知43x =得到4x 3=,求出即可【详解】∵43x =所以4x 381==故填81【点睛】本题考查了四次方根的定义,熟练掌握定义是解题关键20.2【解析】【分析】根据三角形中位线定理得MN=12AD ,根据直角三角形斜边中线定理得BM=12AC ,由此即可证明BM=MN .再证明∠BMN=90°,根据BN 2=BM 2+MN 2即可解决问题.【详解】在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,MN =12AD , 在Rt △ABC 中,∵M 是AC 中点,∴BM =12AC , ∵AC =AD ,∴MN =BM ,∵∠BAD =60°,AC 平分∠BAD ,∴∠BAC =∠DAC =30°,∴BM =12AC =AM =MC , ∴∠BMC =∠BAM +∠ABM =2∠BAM =60°,∵MN ∥AD ,∴∠NMC =∠DAC =30°,∴∠BMN =∠BMC +∠NMC =90°,∴222BN BM MN =+,∴MN =BM = 12AC =1,∴BN = ..【点睛】本题主要考查三角形中位线定理,直角三角形斜边上的中线是斜边的一半,灵活运用是关键.21.5-【解析】试题分析:分别计算绝对值、零次幂和算术平方根,然后再进行加减运算即可.试题解析:原式==5-22.(1)2;(2)3;(3)34+(4)18-.【解析】【分析】(1)根据二次根式的乘、除法公式和合并同类二次根式法则计算即可;(2)根据二次根式的乘、除法公式和合并同类二次根式法则计算即可;(3)根据平方差公式、完全平方公式、二次根式的乘法公式和合并同类二次根式法则计算即可;(4)根据乘法分配律、二次根式的乘法公式和合并同类二次根式法则计算即可;【详解】解:(1)原式==+2=(2)原式=3=-3=(3)原式()23827=-++135=-++34=+(4)原式(=-⨯+63=-⨯-18=--【点睛】此题考查的是二次根式的混合运算,掌握平方差公式、完全平方公式、二次根式的乘、除法公式和合并同类二次根式法则是解决此题的关键.23.(1)n =5,点D 坐标为(5,4);(2)M (0,83);(3)y =﹣2x +9. 【解析】【分析】 (1)由勾股定理和菱形的性质可得AB =BC =CD =AD =5,即可求n 的值及点D 的坐标;(2)过点N 作NH ⊥OA 于点H ,由平行四边形的性质可得AN =BM ,AN ∥BM ,可得∠BMO=∠NAH ,由“AAS”可证△ANH ≌△MBO ,可得HN =BO =3,MO =AH ,即可求点M 坐标;(3)由点A 、C 、D 到某直线l 的距离都相等,可得直线l 是△ACD 的中位线所在直线,由待定系数法可求直线解析式.【详解】解:(1)如图,∵点A (0,4)、B (﹣3,0),∴AO =4,BO =3,∴AB 22AO BO =5,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5,∵将线段AB 沿x 轴正方向平移n 个单位得到菱形ABCD ,∴n =5,点C 坐标为(2,0),点D 坐标为(5,4);(2)∵反比例函数y =k x的图象经过点D , ∴k =4×5=20, ∵N 在y =x20的图象上, ∴设点N (a ,20a ), 如图,过点N 作NH ⊥OA 于点H ,∵四边形ABMN是平行四边形∴AN=BM,AN∥BM,∴∠BMA=∠NAM,∴∠BMO=∠NAH,且AN=BM,∠BOM=∠NHA=90°,∴△ANH≌△MBO(AAS),∴HN=BO=3,MO=AH,∴HN=a=3,HO=20203a,∴OM=AH=HO﹣AO=83,∴点M(0,83);(3)∵点A、C、D到某直线l的距离都相等,∴直线l是△ACD的中位线所在直线,如图所示:若直线l过线段AC,CD中点,∴直线l的解析式为:y=2,若直线l过线段AD,AC中点,即直线l过点(52,4),点(1,2),设直线l的解析式为:y=mx+n∴54=22m nm n⎧+⎪⎨⎪=+⎩,解得:m=43,n=23,∴直线l的解析式为:y=42 33x+,若直线l过线段AD,CD中点,即直线l过点(52,4),点(2,2),设直线l解析式为:y=kx+b∴54=2722k bk b ⎧+⎪⎪⎨⎪=+⎪⎩,解得:k=﹣2,b=9,∴直线l的解析式为:y=﹣2x+9.【点睛】本题为函数与四边形综合题,考查了菱形的性质,全等三角形的判定和性质,平行四边形的性质,待定系数法求解析式,熟练运用这些性质进行推理是解题的关键.24.见解析【解析】【详解】证明:∵四边形ABCD是平行四边形∴AB∥CD且AB=CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=900∴Rt△ABE≌Rt△CDF∴∠BAE=∠DCF25.(1)证明见解析(2)答案见解析【解析】【分析】(1)首先由正方形的性质得CB=CD ,利用全等三角形的ASA 判定得△BCE 和△DCF 全等,由全等三角形的性质得出结论;(2)根据正方形的性质和全等三角形的判定和性质进行证明即可.【详解】(1)证明:∵四边形ABCD 是正方形∴CB CD =,90ABC BCD D ∠=∠=∠=︒,∴90EBC ∠=︒∵CE CF ⊥∴90ECF ∠=︒∴90BCE DCF BCF ∠=∠=︒-∠∴BCE DCF ∆≅∆,∴CE CF =.(2)若CE CF =,则CE CF ⊥不一定成立当点E 在线段AB 上,且点F 在AD 延长线上或当点E 在AB 延长线上,且点F 在线段AD 上时CE CF ⊥成立.证明如下:∵四边形ABCD 是正方形∴CB CD =,90ABC BCD D ∠=∠=∠=︒,∴90EBC ∠=︒∵CE CF =∴Rt Rt BCE DCF ∆≅∆,∴BCE DCF ∠=∠,90ECF BCD ∠=∠=︒∴CE CF ⊥当点E 在线段AB 上,且点F 在线段AD 上或当点E 在线段AB 延长线上,且点F 在AD 延长线上时,CE CF ⊥不成立,如下图所示【点睛】此题考查全等三角形的判定与性质、正方形的性质,解题关键在于利用全等三角形的ASA 判定与正方形的性质.26.【解析】【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第2015个菱形的边长.【详解】:连接DB,如图所示:∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为,则所作的第2019个菱形的边长为.故答案为:.【点睛】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力,解决本题的关键是发现规律.27.(1)正方形;(2)80°;(3)四边形CD′OB′是“完美筝形”,理由详见解析.【解析】【分析】(1)根据“完美风筝”的定义判断即可得到结果;(2)根据根据∠BCE=∠ECF=∠FCD,可得到∠BCE=13∠BCD=40°,由三角形的内角和可得∠BEC=50°,根据对折得到∠BEC=∠B′EC,根据邻补角即可求解;(3)根据“完美筝形”的定义得出线段、角相等,转化到四边形ODCB中,即可.【详解】解:(1)∵若四边形ABCD是正方形,∴AB=AD,CB=CD,∠B=∠D=90°,∴正边形一定是“完美筝形”(2)由对折有,∠BEC=∠B′EC,∵∠BCE=∠ECF=∠FCD,且∠BCD=120°,∴∠BCE=13∠BCD=40°,∴∠BEC=90°﹣∠BCE=50°,∴∠BEB′=100°∴∠AEB′=80°,(3)四边形CD′OB′是“完美筝形”.理由:∵四边形ABCD是“完美筝形”,∴CB=CD,∠B=∠D=90°.由折叠可知,CD′=CD,CB′=CD,∠CD′O=∠CB′O=90°,∴CD′=CB′,∠OD′E=∠OB′F=90°.∵四边形AECF为菱形, ∴CE=CF,∴D′E=B′F,在△OED′和△OFB′中,,,.OD E OB FEOD FOBD E B F∠=∠⎧⎪∠=∠'''''⎨='⎪⎩∴△OED′≌△OFB′(AAS ),∴OD′=OB′,∴四边形CD′OB′是“完美筝形”.故答案为(1)正方形;(2)80°;(3)四边形CD′OB′是“完美筝形”,理由详见解析.【点睛】此题是四边形的综合题,主要考查了特殊平行四边形的性质和判定,解本题的关键是“完美筝形”的定义的条件,难点是对折中找出相等量.28.【解析】【分析】如图,连接AD,根据垂直平分线的性质可得BD=AD,进而得到∠DAC的度数和DC的长,再根据勾股定理求出AC的长即可.【详解】如图,连接AD,∵ED是AB的垂直平分线,∴AD=BD=4,∴∠BAD=∠B=30°,∴∠DAC=30°,∵DC=AD=2,∴AC=.故答案是.【点睛】 本题主要考查垂直平分线的性质以及三角函数,求出∠DAC 的大小是解题的关键. 29.21x +,2. 【解析】【分析】先将括号里的分式进行通分进行加法计算,再进行分式除法计算进行化简 ,将x 的值代入即可求解.【详解】原式=(()()()()111111x x x x x x -+++-+-)÷()()211x x x --, =()()211x x x +-×()1x x-, =21x +, 当x =2﹣1,时,原式=2.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式通分和分式加减乘除运算法则.30.(1)三个内角的度数分别为30°,60°,90°;(2)另外一条边长的平方为3【解析】解:(1)因为三个内角的比是, 所以设三个内角的度数分别为. 由,得,所以三个内角的度数分别为.(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2. 设另外一条直角边长为,则,即.所以另外一条边长的平方为3.。
1.求证:B 、M 关于AE 对称【解析】连AM ,证△ABE ≌△AME【解析】证∠EAF =45°,又AF 、FG 平分,则∠AFG =90°3.连CG ,在2的条件下,求证CG 【解析】在AD 上取AN =CF ,证△ANF ≌△FCG4.若F 为CD 的中点,求CEBE的值【解析】连EF ,设DF =CF =x ,BE =y ,则EF =y x +,CE =y x -2,∴()()2222y x y x x +=-+,21= 5.连DM 并延长交AE 的延长线于N ,求证:∠AND =45° 【解析】证AF ⊥DM ,∠EAF =45°,则∠AND =45° 6.连CN ,探究AN 、DN 、CN 之间的数量关系,并证明【解析】作DG ⊥DN 交NA 的延长线于G ,△DNG 为等腰直角三角形, △DAG ≌△7.求证:ADCN 的面积等于21DNCE GA GANN期中专题(七)动态问题---点的运动1.已知菱形ABCD 中,∠ABC =60°,点O 为对角线AC 的中点,点P 为直线AC 上一点, 且CM =AP .⑴如图1,当点P 在OC 上(不与O ,C 重合)移动时,①求证:PD =PM ;②问:∠DPM 的度数是否发生变化?试证明你的结论;⑵如图2,当P 在OC 延长线上时,⑴中的两个结论是否仍成立?请自己画图证明2.(2008.武汉.中考)正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F .如图1,当点P 与点O 重合时,显然有DF =CF . ⑴如图2,若点P 在线段AO 上(不与点A 、O 重合),PE ⊥PB 且PE 交CD 于点E . ①求证:DF =EF ;②写出线段PC 、PA 、CE 之间的一个等量关系,并证明你的结论; ⑵若点P 在线段OC 上(不与点O 、C 重合),PE ⊥PB 且PE 交直线CD 于点E .请完成图3并判断⑴中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明)【解析】⑴正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上的一动点,过点P 作PF 垂直CD 于点F ,如图1,当点P 与O 重合时,DF =CF .MEFBA⑵1.图连接BE、PD,过点P作AD的垂线,垂足为G 因为点O为正方形ABCD对角线AC中点所以,点O为正方形中心且,AC平分∠DAB和∠DCB已知PE⊥PB,BC⊥CE所以,B、C、E、P四点共圆所以,∠PEB=∠PCB=45°,∠PBE=∠PCE=45°所以,∠PBE=∠PE B=45°所以,△PBE为等腰直角三角形所以,PB=PE而,在△PAB和△PAD中:AB=A D∠BAP=∠DAP=45°)△PAB≌△PAD所以,PB=PD 所以:PE=PD又PF⊥CD所以,D F=EF 因为PF⊥CD,PG⊥AD且,∠PCF=∠PAG=45°所以,△PCF和△PAG均为等腰直2 因为PB⊥PE,BC⊥CE所以,B、P、C、E四点共圆所以,∠PEC=∠PBC而,在△PBC 和△PDC中:BC=DC(已知)∠PCB=∠PCD=45°(已证)PC边公共所以,△PBC≌△PDC(SAS)所以,∠PBC=∠PDC所以,∠PEC=∠PDC而PF⊥DE所以,DF=EF同上期中专题(八)坐标系中的正方形1.如图1,在平面直角坐标系中,A(a,b)在第一象限内,且a、b满足条件:⑶延长BP交AC的延长线与G,连KG,作KM⊥AB于M,KN⊥AC于N,△BEP≌△2.已知,在平面直角坐标中,正方形ABOC的顶点在原点(1)如图1,若点C 的坐标为(-1,3),求A的坐标(2)如图2,点F在AC上,AB交x轴于E,EF.OC的延长线交于G,若EG=OC,求角EOF的大小;(3)如图3,将正方形ABCD绕O点旋转时,过C点作CN⊥于N,M为AO的中点,问角MNO大小是否发生变化?请说明理由.。
人教版2020八年级数学下册期中综合复习培优训练题3(附答案详解)1.计算:9﹣|﹣5|+20190的结果为( ) A .﹣1 B .﹣3 C .0 D .9 2.如图,平行四边形ABCD 中,CE ⊥AB 于E ,如果∠A=125°,则∠BCE 度数是( )A .35°B .45°C .55°D .60°3.有下列六个命题:①两条直线被第三条直线所截,同位角相等;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③从直线外一点到这条直线的垂线段,叫做这点到直线的距离;④负数没有平方根;⑤无限小数都是无理数;⑥算术平方根等于它本身的数只有0.其中正确的命题有( )A .2个B .3个C .4个D .5个4.如图,正方形ABCD 的边长为2,点E 在对角线BD 上,且225BAE ∠︒=.,EF AB ⊥,垂足为F ,EF AB ⊥,则EF 的长为( )A .2B .22-C .222-D .422- 5.E ,F ,G ,H 分别为矩形ABCD 四边的中点,则四边形EFGH 一定是( ) A .矩形B .菱形C .正方形D .非特殊的平行四边形6.如图,在ABC ∆中,90ACB ∠=o ,8,10,AC AB CD AB ==⊥于点D ,则CD 的长是( )A .6B .325C .185D .2457.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )A .当AC =BD 时,四边形ABCD 是矩形B .当AC ⊥BD 时,四边形ABCD 是菱形C .当AC 平分∠BAD 时,四边形ABCD 是菱形D .当∠DAB =90°时,四边形ABCD 是正方形8.如图,由于受台风的影响,一颗大树在离地面6 m 处折断,顶端落在离树干底部8 m 处,则这棵树在折断前的高度是( )A .8mB .10mC .16mD .18m9.若321a a a a +=-+,那么实数a 的取值范围是( ).A .1a <-B .0a >C .01a <≤D .10a -≤≤ 10.如图,在矩形ABCD 中,AD =44AB AB -+-+8,点E 在边AD 上,连BE ,BD 平分∠EBC ,则线段AE 的长是( )A .2B .3C .4D .511.梯形两条对角线长分别是6、8且互相垂直,则该梯形的中位线长为_____.12.使32x -有意义的x 的最大整数值是_____.13.如图,在正方形ABCD 中,延长BC 至E ,使CE =CA ,则∠E 的度数是_____.14.在△ABC 中,BC=a .作BC 边的三等分点C 1,使得CC 1:BC 1=1:2,过点C 1作AC 的平行线交AB 于点A 1,过点A 1作BC 的平行线交AC 于点D 1,作BC 1边的三等分点C 2,使得C 1C 2:BC 2=1:2,过点C 2作AC 的平行线交AB 于点A 2,过点A 2作BC的平行线交A 1C 1于点D 2;如此进行下去,则线段A n D n 的长度为______________.15.方程11114(1)(1)(2)(8)(9)x x x x x x ++⋅⋅⋅+=+++++的解是______. 16.如图,在Rt ABC ∆中,90ABC ∠=︒,4AB =,3BC =,点D 是半径为2的A e 上一动点,点M 是CD 的中点,则BM 的最大值是______.17.计算下列各式的值:2222919;99199;9991999;999919999++++观察所得结果,总结存在的规律,应用得到的规律可得2201692016999991999+L L 1444244431442443个个=______. 18.如图,正方ABCD 形和正方形BEFG 的边长分别为1和3,点C 在边BC 上,连接DE ,DG .EG ,则DEG ∆的面积为____.19.小明在数轴上先作边长为1的正方形,再用圆规画出了点A(如图所示),则点A 所表示的数为__________.20.在正方形ABCD 中,P 是对角线AC 上的点,连接BP 、DP .(1)求证:BP DP =;(2)如果AB AP =,求ABP ∠的度数.21.如图,平行四边形ABCD ,以点B 为圆心,BA 长为半径作圆弧,交对角线BD 于点E ,连结AE 并延长交CD 于点F ,求证:DF =DE .22.已知点A (0,3)、B (﹣2,1)、C (2,1),试判断△ABC 的形状.23.已知:如图,点D 是△ABC 中BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是点EF ,且BF =CE .(1)求证:Rt △BDF ≌Rt △CDE(2)问:△ABC 满足什么条件时,四边形AEDF 是正方形,并说明理由.24.如图,菱形ABCD 的对角线交于点O ,点E 是菱形外一点,DE ∥AC ,CE ∥BD . (1)求证:四边形DECO 是矩形;(2)连接AE 交BD 于点F ,当∠ADB =30°,DE =2时,求AF 的长度.25.如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC =1m ,NC=43m,BN=53m,AC=4.5m,MC=6m,求MA的长.26.如图,矩形ABCD中,对角线AC、BD相交于点O,点P是线段AD上一动点(不与与点D重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若AB=6cm,AD=8cm,P从点A出发.以1cm/秒的速度向点D匀速运动.设点P运动时间为t秒,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.27.在中,点在对角线上,且.求证:.28.如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.29.如图,已知在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC,求四边形ABCD的面积.参考答案1.A【解析】【分析】根据算术平方根的定义,绝对值的定义,0指数幂进行计算.【详解】原式=3﹣5+1=﹣1.故选A.【点睛】本题考查算术平方根的定义,绝对值的定义,0指数幂,熟练掌握其定义是关键.2.A【解析】【分析】根据平行四边形的性质和已知,可求出∠B,再进一步利用直角三角形的性质求解即可.【详解】解:∵AD∥BC,∴∠A+∠B=180°,∴∠B=180°-125°=55°,∵CE⊥AB,∴在Rt△BCE中,∠BCE=90°-∠B=90°-55°=35°.故答案为:A.【点睛】本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.3.A【解析】【分析】根据平行公理、平行线的性质、点到直线的距离的定义判断即可,【详解】解:①两条平行线被第三条直线所截,同位角相等,错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,错误;④负数没有平方根,正确;⑤无限不循环小数是无理数,错误;⑥算术平方根等于它本身的数有0,1,错误;故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.B【解析】【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再根据225BAE ∠︒=.求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE=∠AED ,再根据等角对等边的性质得到AD=DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于斜边的2倍计算即可得解. 【详解】解:在正方形ABCD 中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°-∠BAE=90°-22.5°=67.5°,在△ADE 中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠AED ,∴AD=DE=2,∵正方形的边长为2,∴ ,∴-2,∵EF ⊥AB ,∠ABD=45°,∴△BEF 是等腰直角三角形,EF=BF,由勾股定理得:EF 2+BF 2=BE 2,即2 EF 2=BE 2,解得:EF=22-.故选B.【点睛】本题考查正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.5.B【解析】【分析】根据菱形判定条件即可求出结果.【详解】如图,连结AC,BD.E Q 、H 、F 、G 分别是AB 、AD 、BC 、DC 中点,1,,2EH BD FG EH FG BD ∴==P P , 1,2EF AC EF EF GH AC ==P P , ,AC BD HE EF FG GH Q =∴===.∴四边形EFGH 是菱形;所以B 选项是正确的.【点睛】本题主要考查菱形的判定条件,熟悉掌握是关键.6.D【解析】【分析】根据勾股定理的应用与性质即可求解.【详解】∵90ACB ∠=o ,8,10,AC AB ==∴6∵CD AB ⊥∴CD=AC BC AB ⋅=8610⨯=245 故选D【点睛】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.7.D【解析】【分析】根据对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形判断即可【详解】A.四边形ABCD 是平行四边形,AC=BD,四边形ABCD 是矩形,正确,故本选项错误B.:四边形ABCD 是菱形,AC ⊥BD ,四边形ABCD 是菱形,正确,故本选项错误;C.四边形ABCD 是菱形,AC 平分∠BAD ,四边形ABCD 是菱形,正确,故本选项错误;D.四边形ABCD 是平行四边形,∠DAB=90°四边形ABCD 是矩形,错误,故本选项正确故选D.【点睛】此题考查平行四边形的性质,正方形的判定和矩形的判定,掌握判定定理是解题关键 8.C【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:由题意得BC=8m ,AC=6m ,在直角三角形ABC 中,根据勾股定理得:=10(米).所以大树的高度是10+6=16(米).故答案为:16.【点睛】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.9.D【解析】【分析】根据二次根式的性质计算即可.【详解】=-∴a≤0且a+1≥0,∴10a -≤≤.故选D.【点睛】 本题考查了二次根式有意义的条件,以及二次根式的性质,熟练掌握性质(0)(0)a a a a a ≥⎧==⎨-<⎩是解答本题的关键. 10.B【解析】【分析】根据二次根式的性质得到AB ,AD 的长,再根据BD 平分∠EBC 与矩形的性质得到∠EBD =∠ADB ,故BE =DE ,再利用勾股定理进行求解.解:∵AD,∴AB=4,AD=8∵BD平分∠EBC∴∠EBD=∠DBC∵AD∥BC∴∠ADB=∠DBC∴∠EBD=∠ADB∴BE=DE在Rt△ABE中,BE2=AE2+AB2,∴(8﹣AE)2=AE2+16∴AE=3故选:B.【点睛】此题主要考查矩形的线段求解,解题的关键是熟知勾股定理的应用.11.5【解析】【分析】过D作DE∥AC交BC的延长线于E,得出平行四边形ACED,得出AD=CE,AC∥DE,AC=DE=8,求出∠BDE=90°,根据勾股定理求出BE,根据梯形的中位线求出即可.【详解】解:过D作DE∥AC交BC的延长线于E,∵AD∥BC,ED∥AC,∴四边形ACED是平行四边形,∴AD=CE,AC∥DE,AC=DE=8,∵AC⊥BD,∴BD⊥DE,即∠BDE=90°,∵在Rt△BDE中,BD=6,DE=8,由勾股定理得:BE=10,即BC+AD=10,∴梯形ABCD的中位线长是12(BC+AD)=5,故答案为5.【点睛】本题考查了梯形的中位线、平行四边形的性质和判定、勾股定理的应用,关键是把梯形转化成平行四边形和三角形.12.1【解析】【分析】先根据二次根式有意义的条件确定出x的取值范围,然后再确定出x的最大整数值即可. 【详解】由题意得:3-2x≥0,解得:x≤32,所以x的最大整数值是1,故答案为:1.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键. 13.22.5°【解析】【分析】根据正方形的性质就有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=∠E=22.5°.【详解】解:∵四边形ABCD是正方形,∴∠ACD=∠ACB=45°.∵∠ACB=∠CAE+∠AEC,∴∠CAE+∠AEC=45°.∵CE=AC,∴∠CAE=∠E=22.5°.故答案为22.5°【点睛】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.14.123nna-【解析】【分析】根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=13a=11123a-,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=29a=21223a-,……∴线段A n D n=123nna-,故答案为:123nna-.【点睛】本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.15.9【解析】【分析】设,由()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设,则原方程变形为()()()()()1111112894y y y y y y ++=+++++L , ∴1111111112894y y y y y y -+-++-=+++++L , 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,,,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 16.72【解析】【分析】如图,取AC 的中点N ,连接MN ,BN .利用直角三角形斜边中线的性质,三角形的中位线定理求出BN ,MN ,再利用三角形的三边关系即可解决问题.【详解】解:如图,取AC的中点N,连接MN,BN.∵∠ABC=90°,AB=4,BC=3,∴2234+,∵AN=NC,∴BN=12AC=52,∵AN=NC,DM=MC,∴MN=12AD=1,∴BM≤BN+NM,∴BM≤1+52,∴BM≤72,∴BM的最大值为72.【点睛】本题考查直角三角形斜边的中线的性质,三角形的中位线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.17.102016.【解析】【分析】直接利用已知数据计算得出结果的变化规律进而得出答案.【详解】291910+=229919910010+==239991999100010+==;41000010==,2016故答案为:102016.【点睛】此题主要考查了二次根式的性质与化简,正确得出结果变化规律是解题关键.18.9 2【解析】【分析】根据题意列出算式,计算即可求出值.【详解】根据题意得:12+32+12×1×(3-1)-12×1×(1+3)-12×32=1+9+1-2-92=92,故答案为:9 2【点睛】此题考查整式的混合运算,熟练掌握运算法则是解本题的关键.19.1【解析】【分析】图中正方形的边长为1,则可根据勾股定理求出正方形对角线的长度.以对角线长度为半径作圆与x轴交于点A,则点A表示的数即为1加上对角线的长度.【详解】=则点A表示的数为1+故答案为1【点睛】本题主要考查勾股定理的知识,还要了解数轴上的点表示数的方法.解题关键是利用勾股定理求出正方形的对角线长度,同时要掌握圆上各点到圆点的距离相等都为半径.20.(1)详见解析;(2)67.5ABP ∠=︒【解析】【分析】(1)证明△ABP ≌△ADP ,可得BP=DP ;(2)证得∠ABP=∠APB ,由∠BAP=45°可得出∠ABP=67.5°.【详解】证明:(1)Q 四边形ABC 是正方形,AD AB ∴=,45DAP BAP ∠=∠=︒,在ABP ∆和ADP ∆中AB AD BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,()ABP ADP SAS ∴∆≅∆,BP DP ∴=,(2)AB AP =Q ,ABP APB ∴∠=∠,又45BAP ∠=︒Q ,67.5ABP ∴∠=︒.【点睛】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练运用图形的性质证明问题.21.见解析.【解析】【分析】欲证明DE=DF ,只要证明∠DEF=∠DFE .【详解】证明:由作图可知:BA =BE ,∴∠BAE =∠BEA ,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠DFE,∵∠AEB=∠DEF,∴∠DEF=∠DFE,∴DE=DF.【点睛】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.22.△ABC是等腰直角三角形.【解析】【分析】如图,根据点的坐标可得出AB、AC、BC的长,接下来根据三边的关系,结合勾股定理的逆定理即可判断三角形的形状.【详解】如图:∵A(0,3)、B(﹣2,1)、C(2,1),∴AB=2,AC=2,BC=4,∴BC2=AB2+AC2,∴∠BAC=90°,∵AB=AC,∴△ABC是等腰直角三角形.故答案为:△ABC是等腰直角三角形.【点睛】本题考查等腰直角三角形的性质, 坐标与图形性质,勾股定理的逆定理.23.(1)见解析;(2)当△ABC满足∠A=90°(答案不唯一)时,四边形AEDF是正方形,理由见解析【解析】【分析】(1)先利用HL判定Rt△BDF≌Rt△CDE即可;(2)由已知可证明四边形AEDF是矩形,由全等三角形的性质得出DE=DF,即可得出结论.【详解】∵DE⊥AC,DF⊥AB,∴∠BDF=∠CED=90°∵点D是△ABC中BC边上的中点,∴BD=CD,在Rt△BDF和Rt△CDF中,BD CD BF CE⎧⎨⎩==,∴Rt△BDF≌Rt△CDE(HL);(2)解:当△ABC满足∠A=90°(答案不唯一)时,四边形AEDF是正方形;理由如下:∵∠BDF=∠CED=90°,∠A=90°,∴四边形AEDF是矩形,∵Rt△BDF≌Rt△CDE,∴DE=DF,∴四边形AEDF是正方形.【点睛】此题考查正方形的判定,全等三角形的判定和性质,矩形的判定,熟练掌握全等三角形的判定方法是解题的关键.24.(1)详见解析;(2【解析】【分析】(1)根据菱形的性质求出∠DOC=90°,根据平行四边形和矩形的判定即可得出结论;(2)求出DF=FO,解直角三角形求出OD,求出OF,根据勾股定理求出AF即可.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,即∠DOC=90°.∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形,∴四边形DECO是矩形;(2)∵四边形ABCD是菱形,∴AO=OC.∵四边形DECO是矩形,∴DE=OC.∵DE=2,∴DE=AO=2.∵DE∥AC,∴∠OAF=∠DEF.在△AFO和△EFD中,∵AFO DFEFAO DEFAO DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFO≌△EFD(AAS),∴OF=DF.在Rt△ADO中,tan∠ADBOADO=,∴23DO=,∴DO3,∴FO3=∴AF2222237AO FO=+=+=()【点睛】本题考查了矩形的判定、菱形的性质、勾股定理、相似三角形的性质和判定等知识点,能综合运用定理进行推理和计算是解答此题的关键.25.MA=7.5m.【解析】【分析】先根据勾股定理的逆定理判断出△BCN的形状,再由勾股定理即可得出结论.【详解】如图,∵BC=1m,NC=43m,BN=53m,∴BC2=1,NC2=169,BN2=259,∴BC2+NC2=BN2,∴△BCN为直角三角形,且AC⊥MC.在Rt △ACM 中,∵AC=4.5m ,MC=6m ,由勾股定理可得MA 2=AC 2+CM 2=56.25,∴MA=7.5m .【点睛】考查勾股定理以及勾股定理的逆定理,熟练掌握以及运用勾股定理以及勾股定理的逆定理是解题的关键.26.(1)详见解析;(2)点P 运动时间为74秒时,四边形PBQD 是菱形. 【解析】【分析】(1)依据矩形的性质和平行线的性质,通过全等三角形的判定定理判定△POD ≌△QOB ,所以OP=OQ ,则四边形PBQD 的对角线互相平分,故四边形PBQD 为平行四边形.(2)点P 从点A 出发运动t 秒时,AP=tcm ,PD=(4-t )cm .当四边形PBQD 是菱形时,PB=PD=(4-t )cm .在直角△ABP 中,根据勾股定理得AP 2+AB 2=PB 2,即t 2+32=(4-t )2,由此可以求得t 的值.【详解】(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠PDO =∠QBO ,在△POD 和△QOB 中, PDO QBO OB 0DPOD B QO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△POD ≌△QOB (ASA ),∴OP =OQ ;又∵OB =OD∴四边形PBQD 为平行四边形;(2)答:能成为菱形;证明:t 秒后AP =t ,PD =8﹣t ,若四边形PBQD 是菱形,∴PD=BP=8﹣t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8﹣t)2,解得:t=74.即点P运动时间为74秒时,四边形PBQD是菱形.【点睛】本题考查了平行四边形的判定、矩形的性质以及菱形的性质.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.27.详见解析.【解析】【分析】利用平行四边形的性质得到△ABF≌△CDE的条件,进而得到.【详解】证明:∵四边形是平行四边形,∴,.∴.∵,∴.在和中∴∴.【点睛】本题考查了平行四边形的性质及全等三角形的判定及性质,难度一般,关键是能够运用其性质解决一些简单的证明问题.28.AE=1,AD=.【解析】【分析】过点B作BF⊥l1,垂足为点F,由正方形的性质可得出∠BAD=90°,AB=AD,再由垂直可得出∠BFA=∠AED=90°,通过角的计算得出∠EAD=∠FBA,由此即可证出△FAB≌△EDA(AAS),根据全等三角形的性质以及勾股定理即可求出AE、AD的长度.【详解】过点B作BF⊥⊥l1,垂足为点F,如图所示.∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD,∵BF⊥l1,DE⊥l1,∴∠FAB+∠EAD=90°,∠FAB+∠FBA=90°,∠BFA=∠AED=90°,∴∠EAD=∠FBA,在△FAB和△EDA中,,∴△FAB≌△EDA(AAS),∴AE=BF=1,∵ED=2,∴AD==.【点睛】本题主要考查了勾股定理以及全等三角形的判定与性质等知识,熟练应用全等三角形的判定方法是解题关键.29.15+【解析】【分析】先根据勾股定理求出AC 的长度,再根据勾股定理的逆定理判断出ACD ∆的形状,再利用三角形的面积公式求解即可.【详解】解:连接AC .90ABC ∠=︒Q ,1AB =,2BC =,2222125AC AB BC ∴=+=+=在ACD ∆中,222549AC CD AD +=+==,ACD ∴∆是直角三角形,1122ABCD S AB BC AC CD ∴=⋅+⋅四边形, 11125222=⨯⨯+, 15=.故四边形ABCD 的面积为15.【点睛】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出ACD ∆的形状是解答此题的关键.。
初二数学人教新课标版(最新版)下学期期中复习一、考点突破在下半学期的期中复习中,我们要紧把握以下内容:(1)进一步熟练把握利用二次根式的性质进行化简和运算,把握勾股定理及其逆定理的内容,把握平行四边形、矩形、菱形、正方形的性质和判定;(2)进一步提高分析实际问题中数量关系的能力,能熟练地利用勾股定理及其逆定明白得决一些实际问题;(3)在推理和运算中,体会和运用数形结合、转化、方程和分类讨论思想。
中考要求:知识点考纲要求题型分值二次根式的运算把握选择题、填空题、解答题6分左右勾股定理及其逆定理综合运用选择题、填空题、解答题6分左右平行四边形的性质和判定综合运用填空题、解答题6分左右专门的平行四边形的性质和判定综合运用选择题、填空题、解答题8分左右二、重难点提示重点:1. 运用二次根式的加、减、乘、除的法则进行二次根式的运算和化简;2. 会灵活运用勾股定理及其逆定理进行运算及解决一些实际问题;3. 明白得和把握平行四边形、矩形、菱形、正方形的性质和判定;4. 把握三角形的中位线定理。
难点:1. 正确明白得二次根式乘、除法公式的成立条件;2. 勾股定理的探究过程及适用范畴;3. 明白得平行四边形、矩形、菱形与正方形之间的区别和联系,能灵活运用其进行推理和论证。
二次根式的运算和化简【考点精讲】 【典例精析】 例题1 运算:133129()2452523÷-⨯ 思路导航:按照从左到右的顺序逐步运算,也能够按照各系数相乘除作为系数,各被开方数相乘除作为被开方数,化为一个二次根式后,再化简。
答案:解法1:原式=313129()2245523÷-÷⨯解法2:原式=31138[9()]224553÷-⨯÷⨯ 点评:本题考查二次根式的乘除混合运算,要注意运算顺序以及符号,当某数是带分数时,运算过程中要化为假分数。
例题2 先化简,再求值:111()x y y x÷--,其中32x =+,32y =-。
人教版2020八年级数学下册期中综合复习培优训练题4(附答案详解)1.平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是( ) A .10和34 B .18和20 C .14和10 D .10和122.下列计算正确的是( )A .5151+22+-=25B .512+﹣512-=2C .515122+-⨯=1D .515122--⨯=3﹣25 3.下列几组数,不能作为直角三角形的三边长的是( )A .8,15,17B .4,6,8C .3,4,5D .6,8,104.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为AB 的中点且CD =4,则OE 等于( )A .1B .2C .3D .45.如图,在边长为4的等边三角形ABC 中,点,D E 分别是边,BC AC 的中点,DF AB ⊥于点F ,连结EF ,则EF 的长为( )A 5B .2.5C 7D .363 )A 5B 18C 24D 137.下列命题中为假命题的是( )A .无限不循环小数是无理数B .代数式 12x x --的最小值是1C .若22x y a a >,则x > y D .有三个角和两条边分别相等的两个三角形一定全等8.如图,将矩形(长方形)ABCD 沿EF 折叠,使点B 与点D 重合,点A 落在G 处,连接BE ,DF ,则下列结论:①DE DF =,②FB FE =,③BE DF =,④B ,E ,G 三点在同一直线上,其中正确的是( )A .①②③B .①③④C .②③④D .①②④9.如图,在ABC V 中,90ABC ∠=︒,1BC =,30A ∠=︒,M 、N 分别是AB 、AC 上的任意一点,求MN NB +的最小值为( )A .1.5B .2C .+334D .3 10.三角形三边分别是下列各组数,能组成直角三角形的是( )A .2,3,4B .2,3,5C .6,8,9D .6,8,1011.已知平行四边形ABCD 中,10AB cm =,8BC cm =,30ABC ∠︒=,则这个平行四边形ABCD 的面积为_____2cm .12.在菱形ABCD 中,对角线AC 、BD 交于点O ,点F 为BC 中点,过点F 作FE ⊥BC 于点F 交BD 于点E ,连接CE ,若∠BDC =34°,则∠ECA =_____°.13.如图,已知在Rt △ABC 中,∠ACB =90°,AB =3,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2的值等于_____.14.如图,//AB CD ,E ,F 分别为AC ,BD 的中点,若5AB =,3CD =,则EF 的长是__.15.如图,在菱形c 中,,,E P Q 分别是边AB ,对角线BD 与边AD 上的动点,连接,EP PQ ,若60,6ABC AB ∠=︒=,则EP PQ +的最小值是___.16.若212111x x x x ++=--,则x 的取值范围是______. 17.如图,在矩形ABCD 中,AB =3,AD =4,连接AC ,O 是AC 的中点,M 是AD 上一点,且MD =1,P 是BC 上一动点,则PM ﹣PO 的最大值为_____.18.如图,将长方形纸片ABCD 沿对角线BD 翻折后展平;将ABD △翻折,使边落在BD 上与EB 重合,折痕为BG ;再将BCD V 翻折,使BC 边落在BD 上与BF 重合,折痕为BH ,此时GBH ∠的度数为___________.19.如图所示,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,8AD BC ==,7.6EF =,则PEF V 的周长是__________.20.如图,在△ABC 中,AB=5,AC=4,BC=3,分别以点A 、点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交AB 于点O ,连接CO ,则CO 的长为___.21.计算:(1)61266-+; (2)22(5)(2)81-+--;(3)118(1)326⨯--; (4)2(32)(32)(12)+-++.22.如图,四边形ABCD 是矩形,过点D 作DE ∥AC ,交BA 的延长线于点E .求证:∠BDA =∠EDA .23.计算:32231(2)(4)()272----.24.计算:23(27)3-- 25.如图①、图②,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点,图①和图②中的点A 、点B 都是格点.分别在图①、图②中画出格点C ,并满足下面的条件:(1)在图①中,使∠ABC =90°.此时AC 的长度是 .(2)在图②中,使AB =AC .此时△ABC 的边AB 上的高是 .26.如图,一个放置在地面上的长方体,长为15cm ,宽为10cm ,高为20cm ,点B 与点C 的距离为5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是多少?27.ABC ∆在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)将ABC ∆各顶点的横坐标不变,纵坐标乘-1,做出所得到的111A B C ∆;(2)请做出111A B C ∆关于y 轴的对称图形222A B C ∆.(3)222A B C ∆______(填“是”或“不是”)直角三角形.28.已知:在平行四边形ABCD 中,AB ︰BC=3︰2.(1)根据条件画图:作∠BCD 的平分线,交边AB 于点E ,取线段BE 的中点F ,连接DF 交CE 于点G.(2)设,AB a AD b ==u u u r r u u u r r ,那么向量CG u u u r =______.(用向量a r 、b r 表示),并在图中画出向量DG u u u r 在向量AB u u u r 和AD u u u r 方向上的分向量.29.如图点E ,F 分别是矩形ABCD 的边AD ,AB 上一点,若AE=DC=2ED ,且EF ⊥EC .(1)求证:点F 为AB 的中点.(2)延长EF 与CB 的延长线相交于点H ,连接AH ,已知ED=2,求AH 的值.30.如图,在△ABC 中,点D ,E ,F 分别是AB ,BC ,CA 的中点,AP 是边BC 上的高(1)求证:四边形ADEF 是平行四边形;(2)求证:∠DEF=∠DPF参考答案1.B【解析】【分析】作CE∥BD,交AB的延长线于点E,根据平行四边形的性质得到△ACE中,AE=2AB=24,再根据三角形的三边关系即可得到答案.【详解】解:如图,作CE∥BD,交AB的延长线于点E,∵AB=CD,DC∥AB∴四边形BECD是平行四边形,∴CE=BD,BE=CD=AB,∴在△ACE中,AE=2AB=24<AC+CE,∴四个选项中只有A,B符合条件,但是10,34,24不符合三边关系,故选:B.【点睛】此题考查平行四边形的性质,三角形的三边关系,利用平行线将对角线及边转化为三角形是解题的关键.2.C【解析】【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;利用完全平方公式对D进行判断.【详解】解:A 5151255+-==A选项错误;B 5151212+-==,所以B选项错误;C 5114-==,所以C 选项正确;D =,所以D 选项错误. 故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.B【解析】【分析】利用勾股定理的逆定理即可判断.【详解】A .22281517+= ,能组成直角三角形,故该选项不符合题意;B .222468+≠,不能组成直角三角形,故该选项符合题意;C .222345+=,能组成直角三角形,故该选项不符合题意;D .2226810+=,能组成直角三角形,故该选项不符合题意.故选:B .【点睛】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.4.B【解析】【分析】利用菱形的性质以及直角三角形斜边上的中线等于斜边的一半进而得出答案.【详解】∵四边形ABCD 是菱形,∴AB =CD =4,AC ⊥BD ,又∵点E 是边AB 的中点,∴OE =12AB =2. 故选:B .【点睛】此题主要考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半,得出OE=12AB 是解题关键.5.C【解析】【分析】根据题意,先由三角形的中位线求得DE 的长,再由含有30°角的直角三角形求出FD 的长,最后由勾股定理求得EF 的长即可得解.【详解】∵ABC ∆是等边三角形且边长为4∴4AB BC AC ===,60∠=∠=∠=︒A B C∵DF AB ⊥∴30BDF ∠=︒∴90FDE ∠=︒∵点,D E 分别是边,BC AC 的中点 ∴122DE AB ==,2BD =∵sin sin 60FD B BD ∠=︒==∴FD ==∵在Rt FDE ∆中,EF =∴EF ==,故选:C.【点睛】 本题主要考查了等边三角形的性质,三角形中位线,含有30°角的直角三角,勾股定理等相关内容,熟练掌握三角形的相关知识点是解决本题的关键.6.D【解析】【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断.【详解】A3B不是同类二次根式;CD故选D.【点睛】本题考查的是同类二次根式的定义、二次根式的性质,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.7.D【解析】【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【详解】解:A.无限不循环小数是无理数,故本选项是真命题;B.代数式根据二次根式有意义的条件可得1020 xx-≥⎧⎨-≥⎩解得:2x≥x的增大而增大∴当x=21,故本选项是真命题;C . 若22x y a a>,将不等式的两边同时乘a 2,则x y >,故本选项是真命题; D . 有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题;故选D .【点睛】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.8.B【解析】【分析】根据矩形的对边平行和折叠前后的图形对称的性质,逐项进行分析可得出正确结论.【详解】∵将矩形ABCD 沿EF 折叠,使点B 与点D 重合,点A 落在点G 处,∴BF=DF ,∠BFE=∠EFD ,∵//AD BC ,∴∠DEF=∠EFB ,∴∠DEF=∠DFE ,∴DE=DF ,故①正确;同理,∠BEF=∠DEF ,∠EBF=∠AEB ,∠AEB 与∠BEF 不一定相等,∴∠EBF 与∠BEF 不一定相等,FB 与FE 不一定相等,故②错误;//ED BF ,∵BF=DF ,DE=DF,∴DE=BF,又∵//ED BF ,∴四边形BFDE 是平行四边形,∴BE DF =,故③正确;由矩形可知//EG DF ,已证四边形BFDE 是平行四边形,则有//EB DF ,∴B ,E ,G 三点在同一直线上,即④正确;综上正确的有①③④,故选:B【点睛】本题考查了矩形的性质及折叠的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.9.A【解析】【分析】作点B 关于AC 的对称点B ',连接AB ',作B M AB '⊥于点M 交AC 于点N ,则此时MN NB +的值最小,且MN NB MN NB MB ''+=+=,再进一步求出MB '即可得到结论. 【详解】解:如图:作点B 关于AC 的对称点B ',连接AB '、BN ,作B M AB '⊥于点M 交AC 于点N ∵在Rt ABC V 中,1BC =,30BAC ∠=︒∴22AC BC == ∴2222213AB AC BC --=∵B 与B '关于AC 对称∴BN B N '=,3AB AB '==223060BAB BAC '∠=∠=⨯︒=︒∴ABB 'V 是一个等边三角形∵B M AB '⊥∴在Rt AMB 'V 中,132AM AB ==3AB '=∴ 1.5MB '=== ∵BN B N '=,B M AB '⊥∴() 1.5MN NB MB '+==最小值故选:A【点睛】本题考查了轴对称的性质、等边三角形的判定和性质、解直角三角形以及最短路径等知识点.找到点B 关于AC 的对称点B '以及适当的添加辅助线是解题的关键.10.D【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】A 、∵22+32=13≠42,∴此三角形不是直角三角形,故本选项不符合题意;B 、∵22+32=13≠52,∴此三角形不是直角三角形,故本选项不符合题意;C 、∵62+82=100≠92,∴此三角形不是直角三角形,故本选项不符合题意;D 、∵62+82=100=102,∴此三角形是直角三角形,故本选项符合题意.故选:D .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.11.40【解析】【分析】作高线CE ,利用30︒角所对直角边等于斜边的一半求得高CE ,再运用平行四边形的面积公式计算即可.【详解】过C 作CE ⊥AB 于E ,在Rt△CBE中,∠B=30︒,8BC=,∴142CE BC=⨯=,10440 ABCDS AB CE==⨯=Yn.故答案为:40.【点睛】本题考查了平行四边形的性质,解题的关键是熟悉平行四边形的面积公式,熟练运用“30︒角所对直角边等于斜边的一半”求解.12.22.【解析】【分析】根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠BDC=∠DBC=34°.∠BCA=∠DCO=90°﹣34°=56°.∵EF垂直平分BC,∴∠ECF=∠DBC=34°.∴∠ECA=56°﹣34°=22°.故答案为22.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,综合运用上述知识进行推导论证是解题的关键.13.9 8π【解析】【分析】 根据半圆面积公式结合勾股定理,知S 1+S2等于以斜边为直径的半圆面积问题得解.【详解】S 1=12π(2AC )2=18πAC 2,S 2=18πBC 2, 所以S 1+S 2=18π(AC 2+BC 2)=18πAB 2=98π. 故答案为:98π【点睛】本题考查勾股定理,解题的关键是掌握勾股定理的应用. 14.1【解析】【分析】连接DE 并延长交AB 于H ,证明△DCE ≌△HAE ,根据全等三角形的性质可得DE=HE ,DC=AH ,则EF 是△DHB 的中位线,再根据中位线的性质可得答案.【详解】连接DE 并延长交AB 于H .∵CD ∥AB ,∴∠C =∠A ,∵E 是AC 中点,∴DE =EH ,在△DCE 和△HAE 中,C A CE AECED AEH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DCE ≌△HAE (ASA ),∴DE =HE ,DC =AH ,∵F 是BD 中点,∴EF 是△DHB 的中位线,∴EF =12BH , ∴BH =AB −AH =AB −DC =2,∴EF =1.故答案为:1.【点睛】本题考查了三角形中位线定理,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键.15.【解析】【分析】作点Q 关于BD 对称的对称点Q’,连接PQ ,根据两平行线之间垂线段最短,即有当E 、P 、Q’在同一直线上且'EQ AB ⊥ 时,'EP PQ +的值最小,再利用菱形的面积公式,求出EP PQ +的最小值.【详解】作点Q 关于BD 对称的对称点Q’,连接PQ .∵四边形ABCD 为菱形∴'PQ PQ = ,//AB CD∴'EP PQ EP PQ +=+当E 、P 、Q’在同一直线上时,'EP PQ +的值最小∵ 两平行线之间垂线段最短∴当'EQ AB ⊥ 时,'EP PQ +的值最小∵60,6ABC AB ∠=︒=∴6AC = ,2cos30BD =⨯︒⨯∴12S ABCD AC BD =⨯=Y∵'6'S ABCD AB EQ EQ =⨯=Y∴6'183EQ =解得'33EQ =∴EP PQ +的最小值是33 . 故答案为:33.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键.16.x >1.【解析】【分析】根据二次根式被开方数大于等于0和分式分母不能为0即可得出答案.【详解】根据题意得:21010x x +≥⎧⎨-⎩>, 解得:x >1.故答案为:x >1.【点睛】本题主要考查二次根式和分式有意义的条件,掌握二次根式和分式有意义的条件是解题的关键.1713 【解析】【分析】连接MO并延长交BC于P,则此时,PM﹣PO的值最大,且PM﹣PO的最大值=OM,根据全等三角形的性质得到AM=CP=3,OM=OP,求得PB=1,过M作MN⊥BC于N,得到四边形MNCD是矩形,得到MN=CD,CN=DM,根据勾股定理即可得到结论.【详解】解:∵在矩形ABCD中,AD=4,MD=1,∴AM=3,连接MO并延长交BC于P,则此时,PM﹣PO的值最大,且PM﹣PO的最大值=OM,∵AM∥CP,∴∠MAO=∠PCO,∵∠AOM=∠COP,AO=CO,∴△AOM≌△COP(ASA),∴AM=CP=3,OM=OP,∴PB=1,过M作MN⊥BC于N,∴四边形MNCD是矩形,∴MN=CD,CN=DM,∴PN=4﹣1﹣1=2,∴MP22+321313∴OM13.【点睛】本题考查了轴对称-最短路线问题,矩形的性质,勾股定理,全等三角形的判定和性质,正确的作出辅助线是解题的关键.18.45°【解析】【分析】由折叠的性质可得△ABG≌△EBG,△FBH≌△CBH,即可求∠ABG=∠EBG,∠FBH=∠CBH,,再由∠ABC=90°,即可求GBH的度数.【详解】解:∵由折叠的性质可得,∴△ABG≌△EBG,△FBH≌△CBH∴∠ABG=∠EBG,∠FBH=∠CBH,∵∠ABC=90°,∴2∠GBE+2∠FBH=90°,∴∠GBH=45°,故答案为:45°.【点睛】本题考查了翻折变换,折叠的性质,矩形的性质,熟练运用折叠的性质是解本题的关键.19.15.6【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得PE=12AD,PF=12BC,然后根据三角形的周长公式代入数据进行计算即可得解.【详解】∵P是对角线BD的中点,E、F分别是AB、CD的中点,∴PE是△ABD的中位线,PF是△BCD的中位线,∴PE=12AD=12×8=4,PF=12BC=12×8=4,∴△PEF的周长=PE+EF+PF=4+7.6+4=15.6.故答案为:15.6.【点睛】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.20.5 2【解析】【分析】根据题意先利用勾股定理的逆定理证明△ABC为直角三角形,∠ACB=90°,再由作法得MN 垂直平分AB,然后根据直角三角形斜边上的中线性质求解.【详解】解:∵AB=5,AC=4,BC=3,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°,由作法得MN垂直平分AB,∴AO=OB,∴OC=12AB=52.故答案为:52.【点睛】本题考查作图-基本作图相关,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21.(1)1(2)-2;(3)(4)10+【解析】【分析】(1)先进行二次根式的除法运算,再进行加减运算即可;(2)先根据二次根式的性质进行化简,再进行加减运算即可;(3)先化简二次根式,再根据乘法分配律去括号,最后进行加减运算即可;(4)先利用乘法公式进行计算,然后进行二次根式的加减运算即可.【详解】解:(1)原式11==(2)原式5292=+-=-;(3)原式6=--=(4)原式921210=-++=+【点睛】本题考查二次根式的混合运算,掌握基本运算法则是解题的关键.22.见解析【解析】【分析】根据矩形的性质和平行线的性质即可得到结论.【详解】∵四边形ABCD是矩形,∴ AC=BD,OA=12AC,OD=12BD,∴ OA=OD,∴∠CAD=∠BDA.∵DE∥AC,∴∠CAD=∠EDA,∴∠BDA =∠EDA【点睛】本题考查了矩形的性质,平行线的性质,正确的识别图形是解题的关键.23.-31【解析】【分析】根据整数指数幂,二次根式立方根的定义,化简计算即可.【详解】原式8443=-⨯+-3243=+-31=-故答案是-31.【点睛】本题考查了实数的运算,将二次根式及整数指数幂化简是解决本题的关键.24.233 -【解析】【分析】根据二次根式的运算法则即可求解. 【详解】原式=3 2333-+=233 -【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的运算法则. 25.(1)作图见解析,26;(2)作图见解析,3或1.4.【解析】【分析】(1)直接利用直角三角形的性质结合勾股定理得出答案;(2)利用等腰三角形的性质结合面积法求得边AB上的高.【详解】(1)如图①,点C即为所求.根据网格的特点知:∠ABC=90°且AB=BC∴22223213AB BC==+=∴2221326AC AB BC =+=⨯=(2)如图②,点C 、C'即为所求.在ABC n 中,5AB AC ==,AC 边上的高为3,设AB 边上的高为h , ∵11322ABC S AC AB h =⨯⨯=⨯⨯n , ∴3h =,在ABC 'n 中,5AB AC ='=, 1117444311432222ABC S '=⨯-⨯⨯-⨯⨯-⨯⨯=n 设AB 边上的高为h ,1175222ABC S AB h h =⨯⨯=⨯⨯=n ∴ 1.4h =,综上:3h =或1.4【点睛】本题考查了作图﹣应用与设计作图.熟记勾股定理,等腰三角形的性质以及利用面积法求高是解题的关键所在.26.需要爬行的最短距离是25cm .【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【详解】(1)把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1.∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:AB2222=+=+=(cm);152025BD AD(2)把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2.∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:AB2222=+=+=(cm);BD AD1025529(3)把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3.∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:AB2222=+=+=(cm).305537AC BC∵25<529537<,∴蚂蚁爬行的最短距离是25cm.答:需要爬行的最短距离是25cm.【点睛】本题考查了平面展开﹣最短路径问题,根据题意画出长方体的侧面展开图,根据勾股定理求解是解答此题的关键.27.(1)答案见解析;(2)答案见解析;(3)不是.【解析】(1)明确111A B C ∆即为ABC ∆关于x 轴的对称图形,画出即可;(2)先作出各顶点坐标的对称坐标,然后连接即可;(3)根据勾股定理逆定理判定即可.【详解】(1)由已知,得111A B C ∆即为ABC ∆关于x 轴的对称图形,如图所示:(2)如图所示:(3)由(2)中图象可知,22222313A B =+=,2222125B C =+=22224225A C =+=()()()222222222A B B C A C +≠ ∴222A B C ∆不是直角三角形.【点睛】此题主要考查轴对称图形的画法以及勾股定理逆定理的运用,熟练掌握,即可解题.28.(1)见解析;(2) CG u u u r =12a -r 34b -r ,画图见解析. 【解析】(1)首先作∠BCD 的平分线,然后作BE 的垂直平分线即可;(2)首先判定△GEF ∽△GCD ,然后根据AB ︰BC=3︰2,得出13EF EG CD CG ==,进而得出13,34EF CD CG CE ==,最后根据向量的运算,即可得出CG u u u r 和DG u u u r ,即可画出分向量. 【详解】(1)根据已知条件,作图如下:(2)∵CE 为∠BCD 的平分线,∴∠BCE=∠DCE又∵AB ∥CD∴∠DCE=∠BEC ,△GEF ∽△GCD又∵AB ︰BC=3︰2∴13EF EG CD CG == ∴13,34EF CD CG CE == 又∵,AB a AD b ==u u u r r u u u r r , ∴,DC AB B a b C AD ====u u u r u u u r u u u r u u u r r r又∵EB BC EC +=uu r uu u r uu u r ,C C GE E G =--uu u r uu u r uu u r∴()3321344324CG EB a a BC b b ⎛⎫=-+=-+=-- ⎪⎝⎭uu u r r uu u r uu r r r r 同理可得,()333213444324AF b DG DF DA a a b ⎛⎫==+=-=- ⎪⎝⎭uu u r uuu r uuu r r uu u r r r r DG u u u r 在向量AB u u u r 和AD u u u r 方向上的分向量,如图所示:【点睛】此题主要考查角平分线的作图以及向量的运算,熟练掌握,即可解题.29.(1)证明见解析;(2)2.【解析】【分析】(1)根据全等三角形的判定,证得△AEF≌△DCE,再根据全等三角形的性质,证得DE=AF,进而得证;(2)根据全等三角形的判定方法,证明△AEF≌△BHF,进而求得HB=AB=AE=4,再利用勾股定理求出AH的值即可.【详解】(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°,∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∴∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC,∵AE=DC,∴△AEF≌△DCE(AAS),∴DE=AF,∵AE=DC=AB=2DE,∴AB=2AF,∴F为AB的中点;(2)由(1)知AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF(AAS),∴HB=AE,∵DE=2,且AE=2DE,∴AE=4,∴HB=AB=AE=4,∴222161632AH AB BH=+=+=,∴AH=,故答案为:【点睛】本题考查了全等三角形的判定和性质,勾股定理的应用,矩形的性质应用,全等三角形的判定和性质是解题的关键.30.(1)见解析;(2)见解析.【解析】【分析】(1)根据三角形的中位线定理可得EF∥AB,DE∥AC,再根据平行四边形的判定证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DP=AD,FP=AF,再根据等边对等角可得∠DAP=∠DPA,∠FAP=∠FPA,然后求出∠DPF=∠BAC,等量代换即可得到∠DEF=∠DPF.【详解】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AP是边BC上的高,∴DP=AD,FP=AF,∴∠DAP=∠DPA,∠FAP=∠FPA,∵∠DAP+∠FAP=∠BAC,∠DPA+∠FPA=∠DPF,∴∠DPF=∠BAC,∴∠DEF=∠DPF.【点睛】本题考查了三角形的中位线定理,等腰三角形的性质,直角三角形斜边上中线的性质,平行四边形的判定与性质等,灵活运用各性质并准确识图是解题的关键.。
人教版2020八年级数学下册期中综合复习培优训练(附答案详解) 1.若01x <<,则下列各式中,是二次根式的是( ) A .1x - B .2x -C .21xx - D .1x --2.下列二次根式中与是同类二次根式的是( )A .B .C .D .3.如图,▱ABCD 的对角线AC ,BD 相交于O ,EF 经过点O ,分别交AD ,BC 于E ,F ,已知▱ABCD 的面积是220cm ,则图中阴影部分的面积是( )A .12 2cmB .10 2cmC .28cmD .25cm4.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是( )A .5米B .6米C .7米D .8米5.以下列长度的线段为边,能构成直角三角形的是( ) A .1,2,3B .3,4,5C .5,6,7D .7,8,96.如图,在矩形ABCD 中,AB=a ,AD=b ,分别延长AB 至E ,AD 至F ,使得AF=AE=c (b <a <c ).连结EF ,交BC 于M ,交CD 于N ,则△AMN 的面积为( )A .12c (a+b ﹣c ) B .12c (b+c ﹣a ) 117.如图,在矩形ABCD 中,2BC AB =,ADC ∠的平分线交边BC 于点E ,AH DE ⊥于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O .给出下列命题:①AEB AEH ∠=∠;②22DH EH =;③12HO AE =;④2BC BF EH -=.其中正确命题为( )A .①②B .①③C .①③④D .①②③④8.已知231,3a b ab -=-=,则()1(1)a b +-的值为( ) A .3-B .33 C .321- D .31-9.在直角坐标系中,以坐标原点为圆心的⊙O 的半径为1,则直线y=-2x+5与⊙O 的位置关系是( ) A .相离B .相交C .相切D .无法确定10.下列计算错误的是 A .22--=-B .(a 2)3=a 5C .2x 2+3x 2=5x 2D .822=11.如图,矩形OABC 的边OC 在y 轴上,边OA 在x 轴上,C 点坐标为(0,3),点D 是线段OA 的一个动点,连接CD ,以CD 为边作矩形CDEF ,使边EF 过点B ,已知所作矩形CDEF 的面积为12,连接OF ,则在点D 的运动过程中,线段OF 的最大值为__.12.比较大小:2______5(填“>,<,=”).13.菱形的一个内角是60°,边长为5cm ,则这个菱形较短的对角线长是_____cm . 14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=2222221[()]42a b ca b+--.现已知△ABC的三边长分别为1,2,5,则△ABC的面积为______.15.化简:32(0)4a bb≥的结果是____.16.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=5,则BC=_____.17.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将ΔEBF沿EF所在直线折叠得到ΔEB' F,连接B' D,则B' D的最小值是_____.18.如图,在△ABC中,∠BAC=90°,AB=4,tan∠ACB=23,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于点F,则四边形AFBD的面积为______.19.如果43x=,那么x=________.20.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的长为_____.21.计算: ()42112-++-22.计算 (1)124336÷+⨯; (2)2760253-+; (3)2(23)(23)(2233)+-++; (4)(32126)2352--⨯+.23.如图,在平面直角坐标系中,点A (0,4)、B (﹣3,0),将线段AB 沿x 轴正方向平移n 个单位得到菱形ABCD .(1)画出菱形ABCD ,并直接写出n 的值及点D 的坐标; (2)已知反比例函数y =k x 的图象经过点D ,▱ABMN 的顶点M 在y 轴上,N 在y =kx的图象上,求点M 的坐标;(3)若点A 、C 、D 到某直线l 的距离都相等,直接写出满足条件的直线解析式.24.如图,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,求证:∠BAE=∠DCF .25.如图,在正方形ABCD 中,点E 在射线AB 上,点F 在射线AD 上.(1)若CE CF ⊥,求证:CE CF =;(2)若CE CF =,则CE CF ⊥是否成立?若成立,请给出证明,若不成立,请画图说明.26.如图,边长为1的菱形中,,连结对角线,以为边作第二个菱形,使,连结,再以为边作第三个菱形使…按此规律所作的第2019个菱形的边长是__________.27.阅读理解:如图1,如果四边形ABCD 满足AB =AD ,CB =CD ,∠B =∠D =90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图1所示的“完美筝形”纸片ABCD 先折叠成如图2所示形状,再展开得到图3,其中CE ,CF 为折痕,∠BCE =∠ECF =∠FCD ,点B′为点B 的对应点,点D′为点D 的对应点,连接EB′,FD′相交于点O. 简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是 ; (2)当图3中的∠BCD =120°时,∠AEB′= ; 拓展提升:(3)当图2中的四边形AECF 为菱形时,对应图3中的四边形CD′OB′是否是“完美筝形”?请说明理由.28.如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm .求AC 的长.29.先化简,再求值:(1111x x++-)÷2221x xx x--+,其中21.30.(12分)若三角形的三个内角的比是1:2:3,最短边长为1,最长边长为2.求:(1)这个三角形各内角的度数;(2)另外一条边长的平方.参考答案1.C 【解析】 【分析】根据二次根式的定义(根指数是2,被开方数是非负数)判断即可. 【详解】∵形如a (a≥0)的式子叫二次根式, ∵01x <<, ∴x-1<0,∴1x -不是二次根式,故选项A 错误; ∵01x <<, ∴x-2<0,∴2x -不是二次根式,故选项B 错误; ∵01x <<, ∴210>xx-, ∴21xx-是二次根式,故选项C 正确; ∵01x <<, ∴-210<<x --,1x --不是二次根式,故选项D 错误;故选C . 【点睛】本题考查了对二次根式的定义的应用,能根据二次根式的定义得出关于x 的不等式是解此题的关键,形如a (a≥0)的式子叫二次根式. 2.B 【解析】试题分析:分别化简后找到被开方数是2的二次根式即可. 解:A 、化简得:2,故与不是同类二次根式;B 、化简得:3,故与是同类二次根式;C 、化简得:,故与不是同类二次根式;D 、化简得:,故与不是同类二次根式;故选B .考点:同类二次根式. 3.D 【解析】 【分析】利用□ABCD 的性质得到AD ∥BC ,OA=OC ,且∠EAC=∠ACB (或∠AEO=∠CFO ),又∠AOE=∠COF ,然后利用全等三角形的判定方法即可证明△AOE ≌△COF ,再利用全等三角形的性质即可证明结论. 【详解】∵四边形ABCD 是平行四边形, ∴AD ∥BC ,OA=OC ,∴∠EAC=∠ACB (或∠AEO=∠CFO ), 又∵∠AOE=∠COF , 在△AOE 和△COF 中,AOE COF OA OCEAC ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF , ∴S △AOE =S △COF,∴阴影部分的面积= S △BOC =14×S □ABCD =14×20=52 c m . 故选:D 【点睛】此题把全等三角形放在平行四边形的背景中,利用平行四边形的性质来证明三角形全等,最后利用全等三角形的性质解决问题. 4.D 【解析】【分析】由题意得:在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度. 【详解】∵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处,∴折断的部分=5,∴折断前高度为5+3=8(米). 故选D . 【点睛】本题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力. 5.B 【解析】 【分析】根据勾股定理的逆定理对每个选项进行判断即可. 【详解】解:A.1+2=3,不能构成三角形,故选项错误; B.32+42=52,能构成直接三角形,故选项正确; C.52+62≠72,不能构成直角三角形,故选项错误; D.72+82≠92,不能构成直接三角形,故选项错误. 故选B. 【点睛】本题考点:勾股定理的逆定理. 6.A 【解析】试题分析:根据题意求出FN=(c ﹣a ),(c ﹣b ),c (c ﹣a (c ﹣b )b c 与Rt △EAF 的斜边上的高h=2c ,代入三角形面积公式AMN S V =12MN•h=12b c )c=12c (a+b﹣c ). 故选A考点:1、矩形的性质;2、三角形的面积 7.B 【解析】在矩形ABCD 中,AD BC ===,∵DE 平分∠ADC ,∴∠ADE =∠CDE =45°,∵AD ⊥DE ,∴△ADH 是等腰直角三角形,AD ∴= ,∴AH =AB =CD .∵△DEC 是等腰直角三角形,DE ∴=,∴AD =DE ,∴∠AED =67.5°, ∴∠AEB =180°−45°−67.5°=67.5°,∴∠AED =∠AEB . 故①正确; 设DH =1,则AH =DH =1,AD DE ==,1HE ∴= ,)11∴=≠ ,故②错误;∵∠AEH =67.5°,∴∠EAH =22.5°. ∵DH =CD ,∠EDC =45°,∴∠DHC =67.5°,∴∠OHA =22.5°,∴∠OAH =∠OHA ,∴OA =OH ,∴∠AEH =∠OHE =67.5°,∴OH =OE ,12OH AE ∴=,故③正确; ∵AH =DH ,CD =CE , 在△AFH 与△CHE 中,∵∠AHF =∠HCE =22.5°,∠F AH =∠HEC =45°,AH =CE ,∴△AFH ≌△CHE ,∴AF =EH . 在△ABE 与△AHE 中,∵AB =AH ,∠BEA =∠HEA ,AE =AE ,∴△ABE ≌△AHE ,∴BE =EH , ∴BC −BF =(BE +CE )−(AB −AF )=(CD +EH )−(CD −EH )=2EH , 故④错误,所以①,③正确,故选B【点睛】本题考查了相似三角形的判定与性质, 角平分线的性质, 等腰三角形的判定与性质, 等腰直角三角形, 矩形的性质.根据矩形的性质得到AD BC ===,由DE 平分∠ADC ,得到△ADH 是等腰直角三角形,△DEC 是等腰直角三角形,得到2DE CD =,得到等腰三角形求出 ∠AED=67.5°,∠AEB=180°-45°-67.5°=67.5°,得到①正确;设DH=1,则AH=DH=1,2AD DE == ,求出21HE =-,得到()2222211HE =-≠,故②错误;通过角的度数求出△AOH 和△OEH 是等腰三角形,从而得到③正确;由△AFH ≌△CHE ,到AF=EH ,由△ABE ≌△AHE ,得到BE=EH ,于是得到BC-BF=(BE+CE )-(AB-AF )=(CD+EH )-(CD-EH )=2EH ,从而得到④错误.8.A【解析】【分析】把原式化简为含ab 、a-b 的形式,再整体代入计算.【详解】∵231,3a b ab -=-=,∴(a+1)(b−1)=ab−a+b−1=ab−(a−b)−1=3 −(23−1)−1=−3.故选:A.【点睛】此题考查二次根式的化简求值,解题关键在于掌握运算法则.9.C【解析】如图所示,过O 作OC ⊥直线AB ,垂足为C ,对应直线5令x=0,解得:5y=0,解得:5, ∴A 5,0),B (05,即5,5在Rt △AOB 中,根据勾股定理得:52=, 又S △AOB =12AB•OC=12OA•OB , ∴OC=2152OA OB AB⋅==, 又圆O 的半径为1,则直线与圆O 的位置关系是相切.故选C点睛:本题考查了直线与圆的位置关系与数量之间的联系.设圆的半径为r,圆心到直线的距离为d,(1)直线与圆相交,则有d<r ,直线与圆相切,d=r 则有,直线与圆相离,则有d>r ,反之也成立.10.B【解析】根据绝对值,幂的乘方,合并同类项,二次根式化简运算法则逐一计算作出判断: A 、22--=-,本选项计算正确;B 、(a 2)3=a 6,本选项计算错误;C 、2x 2+3x 2=5x 2,本选项计算正确;D=故选B .11.【解析】【分析】连接BD ,由矩形的性质得出S 矩形CDEF =2S △CBD =12,S 矩形OABC =2S △CBD ,得出S 矩形OABC =12,可求OA=4=BC ,由∠CFB=90°,C 、B 均为定点,F 可以看作是在以BC 为直径的圆上,取BC 的中点M ,则OF 的最大值=OM+12. 【详解】连接BD,取BC中点M,连接OM,FM,∵S矩形CDEF=2S△CBD=12,S矩形OABC=2S△CBD,∴S矩形OABC=12,∵C点坐标为(0,3),∴OC=3,∴BC=4,∵∠CFB=90°,C、B均为定点,∴F可以看作是在以BC为直径的圆上,且点M是BC中点,则MF=12BC=CM=2,OM22+CM9+4OC===13,当点O,点F,点M三点共线时,OF的值最大.∴OF的最大值=OM+12BC=13+2,故答案为:13+2【点睛】本题考查了矩形的性质、坐标与图形性质、勾股定理、直角三角形的性质以及最值问题等知识;熟练掌握矩形的性质,求出矩形OABC的面积是解题的关键.12.>【解析】因为,52=25,28>25,所以2>5.13.5【解析】菱形的一个内角是60°,根据菱形的性质得,60°角所对的对角线与菱形的两边构成的三角形是一等边三角形,故这个菱形较短的对角线长是5cm.故答案为5.14.1【解析】【分析】把题中的三角形三边长代入公式求解.【详解】∵S∴△ABC 的三边长分别为1,2△ABC 的面积为:S, 故答案为1.【点睛】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答. 15 【解析】【分析】根据二次根式的性质即可化简.【详解】∵0b ≥,∴a>02 【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质.16.;【解析】【分析】根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,利用勾股定理即可得出答案.【详解】∵四边形ABCD是矩形,∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,∴AO=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2 AO=10,在Rt△ABC中,由勾股定理得,BC=.故答案为:【点睛】本题考查了矩形的性质及勾股定理.根据矩形的性质及∠AOB=60°得出△AOB是等边三角形是解题的关键.17.2.【解析】【分析】如图所示,点B'在以E为圆心EA为半径的圆上运动,当D、B'、E共线时,B'D的值最小,根据勾股定理求出DE,根据折叠的性质可知B'E=BE=2,即可求出B'D.【详解】如图所示点B'在以E为圆心EA为半径的圆上运动,当D、B'、E共线时,B'D的值最小,根据折叠的性质,△EBF≌△EB'F,∴∠B=∠EB'F,EB'=EB.∵E是AB边的中点,AB=4,∴AE=EB'=2.∵AD=6,∴DE=,∴B'D2.故答案为102.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B'在何位置时,B'D的值最小是解决问题的关键.18.12【解析】分析:根据AF∥BC,证明△AEF≌△DEC(AAS),得到AF=CD,可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.详解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,AFC FCDAEF DEC AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,tan∠ACB=23,AB=4,∴AC=tan ABACB∠=6,∴S △ABC =12AB•AC=12×4×6=12, ∴S 四边形AFBD =12.故答案为12.点睛:本题考查平行四边形的性质与判定,掌握全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识是解题的关键.19.81【解析】【分析】根据已知43x =得到4x 3=,求出即可【详解】∵43x =所以4x 381==故填81【点睛】本题考查了四次方根的定义,熟练掌握定义是解题关键20.2【解析】【分析】根据三角形中位线定理得MN=12AD ,根据直角三角形斜边中线定理得BM=12AC ,由此即可证明BM=MN .再证明∠BMN=90°,根据BN 2=BM 2+MN 2即可解决问题.【详解】在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,MN =12AD , 在Rt △ABC 中,∵M 是AC 中点,∴BM =12AC , ∵AC =AD ,∴MN =BM ,∵∠BAD =60°,AC 平分∠BAD ,∴∠BAC =∠DAC =30°,∴BM =12AC =AM =MC , ∴∠BMC =∠BAM +∠ABM =2∠BAM =60°,∵MN ∥AD ,∴∠NMC =∠DAC =30°,∴∠BMN =∠BMC +∠NMC =90°,∴222BN BM MN =+,∴MN =BM = 12AC =1,∴BN = ..【点睛】本题主要考查三角形中位线定理,直角三角形斜边上的中线是斜边的一半,灵活运用是关键.21.5-【解析】试题分析:分别计算绝对值、零次幂和算术平方根,然后再进行加减运算即可.试题解析:原式==5-22.(1)2;(2)3;(3)34+(4)18-.【解析】【分析】(1)根据二次根式的乘、除法公式和合并同类二次根式法则计算即可;(2)根据二次根式的乘、除法公式和合并同类二次根式法则计算即可;(3)根据平方差公式、完全平方公式、二次根式的乘法公式和合并同类二次根式法则计算即可;(4)根据乘法分配律、二次根式的乘法公式和合并同类二次根式法则计算即可;【详解】解:(1)原式==+2=(2)原式=3=-3=(3)原式()23827=-++135=-++34=+(4)原式(=-⨯+63=-⨯-18=--【点睛】此题考查的是二次根式的混合运算,掌握平方差公式、完全平方公式、二次根式的乘、除法公式和合并同类二次根式法则是解决此题的关键.23.(1)n =5,点D 坐标为(5,4);(2)M (0,83);(3)y =﹣2x +9. 【解析】【分析】 (1)由勾股定理和菱形的性质可得AB =BC =CD =AD =5,即可求n 的值及点D 的坐标;(2)过点N 作NH ⊥OA 于点H ,由平行四边形的性质可得AN =BM ,AN ∥BM ,可得∠BMO=∠NAH ,由“AAS”可证△ANH ≌△MBO ,可得HN =BO =3,MO =AH ,即可求点M 坐标;(3)由点A 、C 、D 到某直线l 的距离都相等,可得直线l 是△ACD 的中位线所在直线,由待定系数法可求直线解析式.【详解】解:(1)如图,∵点A (0,4)、B (﹣3,0),∴AO =4,BO =3,∴AB 22AO BO =5,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5,∵将线段AB 沿x 轴正方向平移n 个单位得到菱形ABCD ,∴n =5,点C 坐标为(2,0),点D 坐标为(5,4);(2)∵反比例函数y =k x的图象经过点D , ∴k =4×5=20, ∵N 在y =x20的图象上, ∴设点N (a ,20a ), 如图,过点N 作NH ⊥OA 于点H ,∵四边形ABMN是平行四边形∴AN=BM,AN∥BM,∴∠BMA=∠NAM,∴∠BMO=∠NAH,且AN=BM,∠BOM=∠NHA=90°,∴△ANH≌△MBO(AAS),∴HN=BO=3,MO=AH,∴HN=a=3,HO=20203a,∴OM=AH=HO﹣AO=83,∴点M(0,83);(3)∵点A、C、D到某直线l的距离都相等,∴直线l是△ACD的中位线所在直线,如图所示:若直线l过线段AC,CD中点,∴直线l的解析式为:y=2,若直线l过线段AD,AC中点,即直线l过点(52,4),点(1,2),设直线l的解析式为:y=mx+n∴54=22m nm n⎧+⎪⎨⎪=+⎩,解得:m=43,n=23,∴直线l的解析式为:y=42 33x+,若直线l过线段AD,CD中点,即直线l过点(52,4),点(2,2),设直线l解析式为:y=kx+b∴54=2722k bk b ⎧+⎪⎪⎨⎪=+⎪⎩,解得:k=﹣2,b=9,∴直线l的解析式为:y=﹣2x+9.【点睛】本题为函数与四边形综合题,考查了菱形的性质,全等三角形的判定和性质,平行四边形的性质,待定系数法求解析式,熟练运用这些性质进行推理是解题的关键.24.见解析【解析】【详解】证明:∵四边形ABCD是平行四边形∴AB∥CD且AB=CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=900∴Rt△ABE≌Rt△CDF∴∠BAE=∠DCF25.(1)证明见解析(2)答案见解析【解析】【分析】(1)首先由正方形的性质得CB=CD ,利用全等三角形的ASA 判定得△BCE 和△DCF 全等,由全等三角形的性质得出结论;(2)根据正方形的性质和全等三角形的判定和性质进行证明即可.【详解】(1)证明:∵四边形ABCD 是正方形∴CB CD =,90ABC BCD D ∠=∠=∠=︒,∴90EBC ∠=︒∵CE CF ⊥∴90ECF ∠=︒∴90BCE DCF BCF ∠=∠=︒-∠∴BCE DCF ∆≅∆,∴CE CF =.(2)若CE CF =,则CE CF ⊥不一定成立当点E 在线段AB 上,且点F 在AD 延长线上或当点E 在AB 延长线上,且点F 在线段AD 上时CE CF ⊥成立.证明如下:∵四边形ABCD 是正方形∴CB CD =,90ABC BCD D ∠=∠=∠=︒,∴90EBC ∠=︒∵CE CF =∴Rt Rt BCE DCF ∆≅∆,∴BCE DCF ∠=∠,90ECF BCD ∠=∠=︒∴CE CF ⊥当点E 在线段AB 上,且点F 在线段AD 上或当点E 在线段AB 延长线上,且点F 在AD 延长线上时,CE CF ⊥不成立,如下图所示【点睛】此题考查全等三角形的判定与性质、正方形的性质,解题关键在于利用全等三角形的ASA 判定与正方形的性质.26.【解析】【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第2015个菱形的边长.【详解】:连接DB,如图所示:∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为,则所作的第2019个菱形的边长为.故答案为:.【点睛】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力,解决本题的关键是发现规律.27.(1)正方形;(2)80°;(3)四边形CD′OB′是“完美筝形”,理由详见解析.【解析】【分析】(1)根据“完美风筝”的定义判断即可得到结果;(2)根据根据∠BCE=∠ECF=∠FCD,可得到∠BCE=13∠BCD=40°,由三角形的内角和可得∠BEC=50°,根据对折得到∠BEC=∠B′EC,根据邻补角即可求解;(3)根据“完美筝形”的定义得出线段、角相等,转化到四边形ODCB中,即可.【详解】解:(1)∵若四边形ABCD是正方形,∴AB=AD,CB=CD,∠B=∠D=90°,∴正边形一定是“完美筝形”(2)由对折有,∠BEC=∠B′EC,∵∠BCE=∠ECF=∠FCD,且∠BCD=120°,∴∠BCE=13∠BCD=40°,∴∠BEC=90°﹣∠BCE=50°,∴∠BEB′=100°∴∠AEB′=80°,(3)四边形CD′OB′是“完美筝形”.理由:∵四边形ABCD是“完美筝形”,∴CB=CD,∠B=∠D=90°.由折叠可知,CD′=CD,CB′=CD,∠CD′O=∠CB′O=90°,∴CD′=CB′,∠OD′E=∠OB′F=90°.∵四边形AECF为菱形, ∴CE=CF,∴D′E=B′F,在△OED′和△OFB′中,,,.OD E OB FEOD FOBD E B F∠=∠⎧⎪∠=∠'''''⎨='⎪⎩∴△OED′≌△OFB′(AAS ),∴OD′=OB′,∴四边形CD′OB′是“完美筝形”.故答案为(1)正方形;(2)80°;(3)四边形CD′OB′是“完美筝形”,理由详见解析.【点睛】此题是四边形的综合题,主要考查了特殊平行四边形的性质和判定,解本题的关键是“完美筝形”的定义的条件,难点是对折中找出相等量.28.【解析】【分析】如图,连接AD,根据垂直平分线的性质可得BD=AD,进而得到∠DAC的度数和DC的长,再根据勾股定理求出AC的长即可.【详解】如图,连接AD,∵ED是AB的垂直平分线,∴AD=BD=4,∴∠BAD=∠B=30°,∴∠DAC=30°,∵DC=AD=2,∴AC=.故答案是.【点睛】 本题主要考查垂直平分线的性质以及三角函数,求出∠DAC 的大小是解题的关键. 29.21x +,2. 【解析】【分析】先将括号里的分式进行通分进行加法计算,再进行分式除法计算进行化简 ,将x 的值代入即可求解.【详解】原式=(()()()()111111x x x x x x -+++-+-)÷()()211x x x --, =()()211x x x +-×()1x x-, =21x +, 当x =2﹣1,时,原式=2.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式通分和分式加减乘除运算法则.30.(1)三个内角的度数分别为30°,60°,90°;(2)另外一条边长的平方为3【解析】解:(1)因为三个内角的比是, 所以设三个内角的度数分别为. 由,得,所以三个内角的度数分别为.(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2. 设另外一条直角边长为,则,即.所以另外一条边长的平方为3.。
期中复习专题
期中专题(一) 二次根式
1.计算:
(1)
(9)
(10)
202π-+(
(12)+ (13) 2
2.已知,a =b =
(1)22a b -; (2)11a b
+; (3)22a ab b -+ .
3.已知22446100x y x y +--+=,求(5y - 的值.
期中专题(二) 勾股定理
1.在△ABC 中,∠C =90°,∠A =60°,BC
=3+,BD 平分∠ABC 交AC 于D .求AD 的长.
2.如图,在△ABC 中,AB =AC =10,BC =16,AD ⊥AC 交BC 于D ,求DB 的长.
3.如图,在△ABC 中,AB =AC ,BD ⊥AC 于D ,BD =4,CB =5,求AB 的长.
4.如图,在△ABC 中,∠B =45°,∠
A =15°,BC 1,求AC ,A
B 的长.
5.如图,在四边形ABCD 中,∠A =60°,∠B =∠D =90°,AB =2,CD =1,求BC 和AD 的长.
6.如图,点E ,F 分别为正方形ABCD 的边BC ,CD 上一点,且AE 平分∠BEF ,连AF .
(1)求证:∠EAF =45°;
(2)若点E 为BC 的中点,AB =6,求AEF S
.
期中专题(三)特殊四边形的简单证明
1.如图,在ABCD中,点E,F在AC上,且AE=CF.
(1)求证:四边形BEDF为平行四边形;
(2)若需四边形BEDF为菱形,则原四边形对角线之间需添加什么条件?
2.如图,AD为△ABC的平分线,DE∥AB交AC于E,DF∥AC交AB于F,判断四边形AEDF 的形状并证明.
3. (2013乌鲁木齐)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AE平分∠BAC,分别与BC,CD交于点E,F,EH⊥AB于点H,连接FH.求证:四边形CFHE是菱形.
4.如图,在△ABC中,D是BC边上一点,E是AD中点,过A作BC的平行线交BE的延长线于F,且AF=DC,连CF.
(1)求证:D是BC的中点.
(2)若AB=AC,求证:四边形ADCF为矩形.
5.在矩形ABCD中,对角线AC,BD相交于O点,∠AOB=60°,AE平分∠BAD交BC于E.
(1)求证:△AOB是等边三角形;
(2)求证:AC=2BE;
(3)求∠COE的度数.
期中专题(四) 正方形中的证明与计算
1.如图,正方形ABCD 的边长为2,△ABE 是等边三角形. (1)求∠ACE 的度数;(2)求AF 的长.
2.如图,点M 是正方形ABCD 的边AB 的中点,连接DM .将△ADM 沿DM 翻折得到△A /DM ,延长MA /交DC 的延长线于点E .
(1)求证:EM =ED ;
(2)求//A D A E
.
3.如图,正方形ABCD中,E,F分别为AB,AD上的点,AF=BE.CE,BF交于H,O为AC 的中点.
(1)求证:CE⊥BF;
(2)求∠OHF的度数;
(3)探究线段OH,CH,BH之间的数量关系.
4.如图,在边长为4的正方形ABCD中,P、Q分别在AD、CD上,BF⊥PQ于F,且BF=AB.
(1)求证:△DPQ的周长等于正方形ABCD的周长的一半;
(2)PQ、BC的延长线相交于点M,若AP=1,求BM的长.
期中专题(五) 几何常规辅助线小结
一、截长法
1. 如图,在正方形ABCD中,AE=AD,∠DAE=60°,BE交AC于点F.
(1)求证:AF+BF=EF;(2)若AB=6,求EF的长.
二、补短法
2. 如图,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°.
(1)求证:BE+DF=EF; (2)若BE=3,DF=2,求AB的长.
三、延长法
3. 如图,在四边形ABCD中,AD∥BC,∠ABC=90°,BD=BC,F是CD的中点,求证:∠BAF=∠BCF.
四、构造三角形中位线
4. 如图,CD是⊿ABC的中线,点E是AC上一点,AE=2EC,DF∥AC交BE于F,BE交CD于G.
(1)求证:AC=3DF; (2)求证:BE平分CD.
五、构造斜边上的中线
5. 如图,∠ACB=120°,以AC、BC为边长向外作等边⊿ACF和等边⊿BCE,点P、M、N分别为AB、CF、CE的中点.(1)求证:PM=PN;(2)求证:∠MPN=60°
期中专题(六) 45°角的基本图形探究
基本图形:正方形ABCD 中,E 、F 分别为BC 、CD 上一点,连接AE 、AF 、EF .
基本结论:①若EF =BE +DF ,则∠EAF =45°;(补短法可证)
②若AE 平分∠BEF 或AF 平分∠DFE ,则∠EAF =45°.(作垂线可证) 探究:在正方形ABCD 中,点E 、F 分别为BC 、CD 上一点,点M 为EF 上一点,
D 、M 关于直线AF 对称.
1. 求证:B 、M 关于AE 对称;
2.如图,若∠EFC 的平分线交AE 的延长线于G ,求证:2AG AF .
3.如图,连接CG ,在第二题的条件下,求证:2CG DF .
4.如图,若F 为CD 的中点,求BE
CE 的值.
5. 如图,连接DM 并延长交AE 的延长线于N ,求证:45AND .
6.如图,连接CN ,试探究:AN 、CN 、DN 之间的数量关系,并证明;
7.求证:212ADCN S DN 四.
期中专题(七) 动态问题——点的运动
1. 已知,在另行ABCD中,=60
ABC,点O是对角线AC的中点,点P为直线AC上一点,M为BC延长线上一点,且CM=AP .
(1)如图1,当点P在OC上(不与O、C重合)移动时.
①求证:PD=PM;②DPM的度数是否发生变化?试证明你的结论;
(2)如图2,当点P在OC的延长线上时,(1)中的两个结论是否成立?请自己画图证明.
2.(2008·武汉·中考)在正方形ABCD中,点O是对角线AC的中点,P为对角线AC上
一动点,过点P作PF⊥DC于点F,如图1,当P于O重合时,显然有DF=CF.
(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E;
①求证:DF=EF;②写出线段PC、P A、CE之间的一个等量关系式,并证明你的结论.
(2)若点P在线段OC上(不与点C、O重合), PE⊥PB且PE交CD于点E;请完成图
3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明).
期中专题(八) 坐标系中的正方形
1.如图1,在平面直角坐标系中,A(a,b)在第一象限内,且a、b满足条件:2
-2
b a a,AB⊥y轴于B,AC⊥x轴于C,E为OB上一点,过A作AF⊥AE交x轴于F,连接EF.
(1)求证:AEF为等腰直角三角形;
(2)如图2,ED平分∠OEF交OA于D,过
D作DG⊥EF于G,求
AD
EF
的值.
2.已知,在平面直角坐标系中,正方形ABCD的顶点在原点.
(1)如图1,若点C的坐标为(-1,3),求A点的坐标;
(2)如图2,点F在AC上,AB交x轴于E,EF、OC的延长线交于点G,EG=OG,求∠EOF的大小;
(3)如图3,将正方形ABCD绕O点旋转时,过C点作CN⊥y轴于N,M为AO的中点,问∠MNO的大小是否发生变化?请说明理由.。