有限单元法第十章
- 格式:doc
- 大小:84.00 KB
- 文档页数:2
《弹性力学问题的有限单元法》弹性力学问题的有限单元法(FiniteElementMethod,简称FEM)是一种经典的多学科跨领域的计算方法,它用于估算连续体结构中非线性材料力学性能,如强度、刚度和破坏。
有限单元法已成为工程和材料科学中最重要的数值计算方法,可用于解决各种复杂多学科优化和设计问题。
有限单元法的基本思想是把复杂的连续体结构划分成许多小的、较容易处理的有限元素,而不是像一般的解析方法那样求取整体的解析解。
基于有限元素重要的性质,即小元素经过一系列的连接后就可以构成整个结构的模型,有限单元法的本质是数值分析,也就是根据模型的物理知识,选择有效的数值化方法,用数值计算的方法求解所要求的结果,从而使这些数值计算结果符合实际结构物理知识。
有限单元法是一种有效计算弹性力学问题的方法,它可以用来求解任意形状的结构问题,无论是有边界条件还是无边界条件,无论是线性或者非线性的形状变化,有限单元法都能够有效地应用。
其优势在于以节省计算时间和消耗的成本,在特殊的材料条件下,它可以比较快速地获得弹性力学问题的有效精确解。
其精度依赖于计算模型元素的类型、形状和几何尺寸等,因此通常需要调节元素的类型、形状和尺寸,以满足计算需要。
在计算机技术的发展下,有限单元法的计算能力越来越强大,可以对更多的复杂问题进行分析,可以更有效地解决工程设计中的实际问题。
由于计算机可以模拟各种变形和应力的变化,因此有限单元法可以为工程设计和材料研究提供更可靠的结果。
有限单元法在工程应用中的实际作用是显而易见的。
它不仅可以用来计算弹性结构中的材料力学特性,还可以分析复杂结构的动态响应。
此外,有限单元法还可以用来计算弹性结构中的表面张力、刚度,以及各种材料的裂缝扩展。
通过有限单元法的应用,可以获得有效的数值结果,从而提高设计效果和工程安全性。
因此,有限单元法对于材料科学和工程设计都具有重要价值,今后还将发挥更多的功能。
有限单元法是多学科跨学科的计算方法,它可以用来有效地分析复杂形状结构的力学特性,计算出精确的结果,从而提高工程设计的效果和安全性。
地球物理算法技术(论文)地球物理中的有限单元法院系:地球物理与信息技术院姓名:刘雅宁学号:2010120053任课老师:张贵宾地球物理中的有限单元法一、有限单元法的介绍在地球物理理论计算中,存在着两类基本问题:正问题和反问题。
给定场源的分布,求解场值的大小,这是正问题,或者称为正演问题。
地球物理正演的数值计算方法,种类很多,最常用的有:有限差分法和有限单元法。
有限单元法是50年代首先在弹性力学中发展起来的方法。
主要优点是,适用于物性参数复杂分布的区域,但计算量大。
随着计算机技术的发展,有限单元法在解决各个工程领域的许多数学物理问题中,得到了广泛的应用,称为一种高效、通用的计算方法。
地球物理中的一些边值问题,也采用了有限单元法,解决了许多从前无法计算的地球物理问题。
有限单元法解决数学物理边值问题的基本思路和过程如下:1、给出地球物理边值问题中的偏微分方程和边界条件(及初始条件)。
这一点看起来似乎容易,但做起来并不容易,特别是边界条件的给定。
只有对地球物理方法的原理和问题有深入的理解,才能给边值问题中的偏微分方程和边界条件以正确的描述。
2、将地球物理边值问题转变为有限元方程。
实现这种转变的主要数学工具是变分法,用变分法得到的有限元法方程称为泛函极值问题。
3、用优先单元法解决泛函极值问题其步骤大致如下:把研究区域剖分成有限个小单元,在每个单元上,把函数简化成线性函数、二次函数或高次函数,这称为单元上函数的插值。
用简化后的函数计算每个单元上的泛函。
各单元之间,通过单元间节点上的函数值相互联系起来。
对各单元的泛函求和,获得整个区域上的泛函。
这样,有限单元法将连续函数的泛函,离散成各单元节点上函数值得泛函。
根据泛函取极值的条件,得到各节点的函数值应满足的线性代数方程组。
解代数方程组,得到各节点的函数值。
有限单元法的主要优点是,适用于物性复杂分布的地球物理问题,而且,其解题过程也比较规范化。
这些优点是有限单元法在地球物理中获得广泛的应用。
有限单元法人们常说:“教学有法,教无定法。
”的确,要提高语文课堂教学的质量,要提高学生的语文素养,教师不能一味地把知识灌输给学生,而应该为学生营造轻松、自主、开放的课堂氛围,从而提高学生的学习兴趣。
如何将课堂活动落到实处?语文老师们苦思冥想,找出了许多种教学方法,但这些教学方法都存在一个共同的问题:一节课下来,学生的知识似乎没有增加多少,他们好像只懂得了听讲,对知识点不求甚解,效果可见不佳。
那么怎样才能让学生在有限的时间内既扎实基础又培养能力呢?有限单元法可以助你一臂之力。
这就是有限单元法。
在上《夏天里的成长》这篇课文时,我把全班分成了三组,每一组负责查阅《大自然的语言》《夏天里的成长》和《童年的水墨画》三篇课文。
每个小组安排一名组员负责摘抄三篇课文中具有代表性的段落,并把它们进行分类整理,写出自己的感受。
这一环节引导学生在课外对课文进行深入地了解,发挥了课本学习的延伸作用。
《夏天里的成长》一课中,安排了三次关于“蝉鸣”的交流讨论,我告诉学生“不同的季节会听到不同的蝉声,我们所熟悉的蝉声就来自这个春天……”“请大家拿出各自的工具书,通过字典或百度来了解一下‘蝉’这个字的含义。
”“‘鸣’的古意是什么?”通过交流与探讨,同学们纷纷表示会收集“鸣”的资料,丰富自己的知识。
整个过程轻松愉快,活跃了课堂气氛,培养了学生读书的好习惯。
除了这些,我还用了有限单元法设计了“一石激起千层浪”这一环节,精心创设教学情境,使学生置身于具体的情境之中,受到熏陶,得到启迪。
在交流讨论时,有同学提出“有的蝉是好几年才叫一次的,一辈子就叫一回,也有的蝉在一年中的不同时候都叫……那么蝉为什么叫的次数不同呢?”面对这样的问题,我们没有急于给出答案,而是鼓励学生继续查阅资料,多思考,相信他们肯定会带着这个问题走进下一课。
这一环节的设计巧妙利用了网络资源,拓宽了学生的视野,开阔了学生的思路,学生仿佛一下子解开了心中的疑惑,收获良多。
有限单元法智慧树知到课后章节答案2023年下山东科技大学山东科技大学绪论单元测试1.有限元法的核心思想是“数值近似”和“离散化”。
( )A:错 B:对答案:对第一章测试1.下列属于平面应力问题的是()。
A:挡土墙 B:受内水压力作用的圆管 C:平板坝的平板支墩 D:重力水坝答案:平板坝的平板支墩2.平衡方程研究的是()之间关系的方程式。
A:应力和位移 B:应力和应变 C:应变和位移 D:应力和体力答案:应力和体力3.弹性力学的边界条件有()。
A:应力边界条件 B:位移边界条件 C:混合边界条件 D:应变边界条件答案:应力边界条件;位移边界条件;混合边界条件4.弹性力学的基本假定有()。
A:假设物体是连续的 B:假设物体的变形是很小的 C:假设物体是完全弹性的 D:假设物体内无初应力 E:假设物体是均匀的和各向同性的答案:假设物体是连续的;假设物体的变形是很小的;假设物体是完全弹性的;假设物体内无初应力;假设物体是均匀的和各向同性的5.在体力为常量时,平衡方程、相容方程及应力边界条件中均不含弹性常数E和μ,故我们可以由一种材料替代另一种材料,用平面应力问题替代平面应变问题作实验,得到的应力是完全一样的。
()A:对 B:错答案:对第二章测试1.一维变带宽存储的存储量()。
A:与结点编号有关 B:与结点编号和单元编号有关 C:与单元编号有关 D:与存储上三角或者下三角有关答案:与结点编号有关2.应变矩阵与()。
A:材料参数有关 B:单元几何尺寸和材料参数都有关 C:单元几何尺寸和材料参数都无关 D:单元几何尺寸有关答案:单元几何尺寸有关3.单元刚度矩阵建立了单元的与之间的关系。
()A:应力,结点位移 B:应力,应变 C:结点力,结点位移 D:应变,结点位移答案:结点力,结点位移4.为了保证有限元解的收敛性,位移函数要满足()条件。
A:位移函数应能反映单元的常应变状态 B:位移函数应包含刚体位移 C:位移函数在单元内要连续,在单元边界上要协调。
弹塑性有限单元法汽车车体冲压件通常使用弹塑性材料,在冲压过程中,这种材料的变形成形过程非常复杂,一般用刚塑性FEM与弹塑性FEM二种方法来评价整个冲压成形过程。
在刚塑性FEM中,忽略弹性变形,仅将塑性应变作为计算指标。
因此,在冲压成形过程中,当材料放置到模具上因自重产生的弯曲挠度,从模具中取出冲压件厚产生的弹性恢复等材料变形不能进行计算。
因此,有人提出了根据刚塑性FEM的计算结果,再用弹性FEM计算其卸载过程,但是,刚塑性FEM很难正确地预测在冲压过程中产生的缺陷。
弹塑性FEM可以再空间上时间上交替考虑弹性变形与塑性变形,从理论上讲可以正确地描述整个冲压过程,所以弹塑性FEM可以说是评价冲压过程的最好解析方法。
现有的弹塑性FEM,根据其时间积分方法的不同,可分为“静态显函数法”“静态隐函数法”和“动态显函数法”。
讲加速度项加入平衡方程式求解的称为动态,反之,平衡方程式中不包含加速度项的解法称为静态。
隐函数与显函数是常微分方程数值计算方法中的数学用语。
显函数求方程的解不需要反复计算,而隐函数常微分方程求解时需要迭代多次逼近其解。
显函数解法要求增分补偿不能取得太大,解析冲压成形过程需要较多的计算解析次数。
隐函数解法通常可以保证应力平衡方程式成立,因而增分步长可以取得较大些,以减少解析计算次数。
各种弹塑性FEM的优缺点如下:动态显函数法:该方法求解各节点的独立性运动方程以获得节点变形,因而不需要组成刚度矩阵,即使单元划分得再细,节点再多也占用的计算内存较少,并且每一模拟步骤的计算速度也比其他方法快,因此可以计算对象的单元分割得很细。
但是这种方法是用动态的冲击求解变形问题,时间增量需控制在10-6秒以下,要模拟一秒钟的冲压过程,就需要计算10^6次,实际上这种计算方法十分耗时,为减少运算时间,常常将物理意义不十分清楚的衰减项加入到运动过程,人为地将质量附以加权常数以减少模拟计算次数。
此外,即使在方程式中加入了衰减项,应力值还是会发生振动,增加了弹性恢复计算的难度。
复习题
10.8如何利用一个单元模型对K 非奇异性和s K 奇异性进行估计?为什么说仅是
估计?两种情况下,一个单元的模型有何区别?为什么?
解:由于不可能事先规定单元数和自由度数,常采用如下公式:
K 非奇异性b b s s e n d n d N +≥——○1
s K 奇异性s s
n d j <或1s s j r n d =>——○2
e N
一个单元仅给予刚体运动约束后的自由度数。
j 在已形成部分网格的基础上再增加一个单元所增加的自由度数。
r
奇异性指标,r 越大表示s K 的奇异性越高。
○1式不是K 非奇异性的必要条件,也不是充分条件;○2不是s
K 奇异性的充分条件,因为具有不同网格和边界约束情况的实际系统的自由度数N 既可能小于,
也肯能大于○
2式中的自由度数j 推算出的M j ⨯。
两种情况?
10.9什么是用于Mindlin 板单元的假设剪切应变方法?如何选择它的取样点和插值函数?
如同Timoshenko 梁情况,为避免剪切锁死,可以从分析造成锁死的根源出发,另行假设剪切应变场以代替原泛函中按应变和位移的几何关系得到的剪切应变场。
C型拉格朗日单元的方法构造,8,12
节点Serendipity单元可按Serendipity单元的方法构造。
即分别按两个方向一维拉格朗日插值函数相乘的方法和变结点的方法构造。
练习题
10.5 同上题分析的四边固支的方板受均布载荷q 作用。
板边长L,厚度t。
由于对称取1/4进行分析,网格分别取2×2,4×4,6×6;L/t 分别取100,300,500;对4 节点,8 节点,9 节点的Mindlin 板单元是否发生剪切锁死情况进行检验并对结果进行分析。
解:
10.6 问题同题10.5,只是板的四边改为简支。
解:。