第一章 有限单元法的简要介绍和发展历史
- 格式:ppt
- 大小:1.52 MB
- 文档页数:40
Abaqus-基础与应用-第一章概述第1章概述有限元分析是使用有限元方法来分析静态或动态的物体或系统。
在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点所组成的几何模型。
在这种方法中这些独立的点的数量是有限的,因此被称为有限元。
1.1有限元分析简介本节首先简要介绍有限元分析的基本概念,然后简要阐述其发展和应用概况。
1.1.1有限元分析的基本概念在工程技术领域内,有许多问题归结为场问题的分析和求解,如位移场、应力场、应变场、流场和温度场等。
这些场问题虽然已经得出应遵循的基本规律(微分方程)和相应的限制条件(边界条件),但因实际问题的复杂性而无法用解析方法求出精确解。
由于这些场问题的解是工程中迫切所需要的,人们从不同角度去寻找满足工程实际要求的近似解,有限元方法就是随着计算机技术的发展和应用而出现的一种求解数理方程的非常有效的数值方法。
有限元分析的基本思想是用离散近似的概念,把连续的整体结构离散为有限多个单元,单元构成的网格就代表了整个连续介质或结构。
这种离散化的网格即为真实结构的等效计算模型,与真实结构的区别主要在于单元与单元之间除了在分割线的交点(节点)上相互连接外,再无任何连接,且这种连接要满足变形协调条件,单元间的相互作用只通过节点传递。
这种离散网格结构的节点和单元数目都是有限的,所以称为有限单元法。
在单元内,假设一个函数用来近似地表示所求场问题的分布规律。
这种近似函数一般用所求场问题未知分布函数在单元各节点上的值及其插值函数表示。
这样就将一个连续的有无限自由度的问题,变成了离散的有限自由度的问题。
根据实际问题的约束条件,解出各个节点上的未知量后,就可以用假设的近似函数确定单元内各点场问题的分布规律。
有限元方法进行结构分析主要涉及三个问题:(1)网格剖分和近似函数的选取选用合适单元类型和单元大小的问题。
合适的单元类型能在满足求解精度的条件下提高求解的效率,反之则可能会事倍功半。
数值分析结课论文有限元的发展历程及其特点论文题目:有限元的发展历程及其特点学院:专业:学号:姓名:有限元法发展综述及其特点摘要:1965年“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。
有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。
关键词:有限元,积分法,加权余值法,边值,伽辽金(Galerkin)法。
引言有限元法是一种高效能、常用的计算方法.有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。
自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系.有限元法的孕育过程及诞生和发展大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。
虽然,积分运算与有限元技术对定义域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。
在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。
这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。
在18世纪,另一位数学家拉格郎日提出泛函分析。
泛函分析是将偏微分方程改写为积分表达式的另一途经。
在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。
1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。