20-21第1章§5平行关系的性质
- 格式:ppt
- 大小:13.64 MB
- 文档页数:1
第七章 平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。
同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
34、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a 、b 、c ,则b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n边形的内角和等于(n-2)•180°;任意多边形的外角和等于360°。
第八章幂的运算幂(power)指乘方运算的结果。
a n指将a自乘n次(n个a相乘)。
把a n看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有:am•a n=a m+n (同底数幂相乘,底数不变,指数相加)am÷a n=a m-n (同底数幂相除,底数不变,指数相减)(am)n=a mn (幂的乘方,底数不变,指数相乘)(ab)n=a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a0=1(a≠0) (任何不等于0的数的0次幂等于1)a-n=1/a n (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念:a中,a 叫做底数,求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
1.2.2空间中的平行关系(一)【学习要求】1.掌握空间中两条直线的位置关系.2.理解并掌握基本性质4及等角公理.【学法指导】通过平行直线、基本性质4及等角定理的学习,进一步加深对空间两直线位置关系的理解及运用;通过在平面上画出直线的位置关系,培养空间想象能力.填一填:知识要点、记下疑难点1.基本性质4:平行于同一条直线的两条直线互相平行.2.等角定理:如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.3.空间四边形:顺次连接不共面的四点A,B,C,D所构成的图形,叫做空间四边形.研一研:问题探究、课堂更高效[问题情境]在平面上,我们容易证明“如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补”,在空间中,结论是否仍然成立呢?探究点一平行直线问题1在初中平行直线是怎样定义的?答:我们把在同一平面内不相交的两条直线叫做平行线.问题2初中学过的平行公理的内容是什么?答:过直线外一点有且只有一条直线和已知直线平行.问题3空间中两条直线有几种位置关系?分别是哪几种?答:空间两条直线的位置关系有且只有三种:问题4在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行.在空间中,是否有类似的规律?现在请大家看一看我们的教室,找一下有无不在同一平面内的三条直线两两平行的.答:教室里的地面和墙面相交的两条平行线与墙面和天花板相交的直线不在同一平面内,且三条直线两两平行.小结:基本性质4:平行于同一条直线的两条直线互相平行.基本性质4通常又叫做空间平行线的传递性.问题5基本性质4有什么作用?如何用符号语言表示基本性质4?答:基本性质4作用:判断空间两条直线平行的依据.符号表示:设空间中的三条直线分别为a, b, c,若a∥c,b∥c,则a∥b.例1在长方体ABCD-A1B1C1D1中,已知E,F分别是AB, BC 的中点,求证:EF∥A1C1.证明:如图,连接AC,在△ABC中,E, F分别是AB, BC 的中点,所以EF∥AC.又因为AA1∥BB1且AA1=BB1,BB1∥CC1且BB1=CC1,所以AA1∥CC1且AA1=CC1.即四边形AA1C1C是平行四边形,所以AC∥A1C1,从而EF∥A1C1.小结:本题主要考查两条直线平行的判定,关键是寻找直线平行的条件,可由基本性质4证明.跟踪训练1已知正方体ABCD-A1B1C1D1,E、F分别为AA1、CC1的中点.求证:BF∥ED1.证明:如图,取BB1的中点G,连接GC1、GE.∵F为CC1的中点,∴BG=C1F. ∴四边形BGC1F为平行四边形.∴BF∥GC1.又∵EG∥A1B1,A1B1∥C1D1,∴EG∥D1C1. ∴四边形EGC1D1为平行四边形.∴ED1∥GC1.∴BF∥ED1.探究点二等角定理问题1观察图,在长方体ABCD-A′B′C′D′中,∠ADC与∠A′D′C′,∠ADC 与∠A′B′C′的两边分别对应平行,这两组角的大小关系如何?答:从图中可以看出,∠ADC=∠A′D′C′,∠ADC=∠A′B′C′.小结:本题主要考查两条直线的平行的判定,关键是寻找直线平行的条件,可由平行线公理证明.问题2试一试,如何证明等角定理呢?已知:如图所示,∠BAC和∠B′A′C′的边AB∥A′B′,AC∥A′C′,且射线AB与A′B′同向,射线AC与A′C′同向.求证:∠BAC=∠B′A′C′.证明:对于∠BAC和∠B′A′C′在同一平面内的情形,用初中所学的知识容易证明.下面证明两个角不在同一平面内的情形.分别在∠BAC的两边和∠B′A′C′的两边上截取线段AD,AE和A′D′,A′E′,使AD=A′D′,AE=A′E′.因为AD綊A′D′,所以AA′D′D是平行四边形.可得AA′綊DD′.同理可得AA′綊EE′. 于是DD′綊EE′,因此DD′E′E 是平行四边形.可得DE =D′E′. 于是△ADE ≌△A′D′E′,因此∠BAC =B′A′C′.问题3 空间中,如果一个角的两边与另一个角的两边分别对应平行,并且对应边的方向都相反,那么这两个角的大小关系如何?为什么?答:这两个角相等.如图,过∠2的一边作∠1的一边的平行线,则∠1与∠3的对应边分别平行且方向相同,所以∠1=∠3,而∠2与∠3是内错角,所以∠2=∠3,因此∠1=∠2.问题4 空间中,如果一个角的两边与另一个角的两边分别对应平行,如果一组对应边方向相同,另一组对应边方向相反,那么这两个角的大小关系如何?为什么?答:这两个角互补.因为延长一个角的一边,则这个角的补角与另一个角的两条对应边分别平行,且方向相反,所以一个角的补角与另一个角相等,所以这两个角互补.问题5 想一想,由等角定理能推出什么结论?答:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.例2 如图,已知E ,E 1分别是正方体ABCD -A 1B 1C 1D 1的棱AD, A 1D 1的中点.求证:∠C 1E 1B 1 = ∠CEB. 证明:由于E ,E1分别是正方体ABCD -A 1B 1C 1D 1的棱AD, A 1D 1的中点,所以EE 1∥DD 1,且EE 1=DD 1,又因DD 1∥CC 1且DD 1=CC 1, 所以EE 1∥CC 1且EE 1=CC 1,所以四边形EE 1C 1C 是平行四边形. 所以E 1C 1∥EC.同理可得E 1B 1∥EB , 所以由等角定理知∠C 1E 1B 1=∠CEB.小结:有关证明角相等问题,一般采用下面三种途径:①利用等角定理及其推论;②利用三角形相似;③利用三角形全等.本例是通过第一种途径来实现的.请同学们利用第三种途径给予证明.跟踪训练2 已知棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、AD 的中点.求证:(1)四边形MNA 1C 1是梯形; (2)∠DNM =∠D 1A 1C 1.证明:(1)如图,连接AC ,在△ACD 中,∵M 、N 分别是CD 、AD 的中点,∴MN 是三角形的中位线, ∴MN//AC ,MN =12AC. 由正方体的性质得:AC//A 1C 1,AC =A 1C 1.∴MN//A 1C 1,且MN =12A 1C 1,即MN≠A 1C 1, ∴四边形MNA 1C 1是梯形. (2)由(1)可知MN//A 1C 1, 又∵ND//A 1D 1, ∴∠DNM 与∠D 1A 1C 1相等或互补.而∠DNM 与∠D 1A 1C 1均是直角三角形的一个锐角, ∴∠DNM =∠D 1A 1C 1.探究点三 空间四边形的有关概念问题1 阅读教材40页,你能说出什么是空间四边形?什么是空间四边形的顶点?什么是空间四边形的边?空间四边形的对角线?答:顺次连接不共面的四点A 、B 、C 、D 所构成的图形,叫做空间四边形;四个点中的各个点叫做空间四边形的顶点;所连接的相邻顶点间的线段叫做空间四边形的边连接不相邻的顶点的线段叫做空间四边形的对角线问题2 你能画出一个空间四边形,并指出空间四边形的对角线吗?答:如图,是一个空间四边形, AC 、BD 是它的对角线.问题3 空间四边形的常见画法经常用一个平面衬托,你能画出吗?答: 如下图中的两种空间四边形ABCD 和ABOC.例3 如图所示,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.证明:连接BD , 因为EH 是△ABD 的中位线,所以EH ∥BD ,且EH =12BD. 同理FG ∥BD , 且FG =12BD. 因为EH ∥FG , 且EH = FG ,所以四边形EFGH 为平行四边形.跟踪训练3 在例3中,如果再加上条件AC =BD ,那么四边形EFGH 是什么图形?解:四边形EFGH 是菱形.证明如下:由例3可知四边形EFGH 为平行四边形,连接AC ,由题意知HG 为△ADC 的中位线,所以HG =12AC , 又因为EH 是△ABD 的中位线,EH =12BD ,由AC =BD 知,HG =EH.所以四边形EFGH 是菱形. 练一练:当堂检测、目标达成落实处1.下列结论正确的是 ( )A .若两个角相等,则这两个角的两边分别平行B .空间四边形的四个顶点可以在一个平面内C .空间四边形的两条对角线可以相交D .空间四边形的两条对角线不相交解析: 空间四边形的四个顶点不在同一平面上,所以它的对角线不相交,否则四个顶点共面,故选D.2.下面三个命题, 其中正确的个数是 ( )①三条相互平行的直线必共面;②两组对边分别相等的四边形是平行四边形;③若四边形有一组对角都是直角,则这个四边形是圆的内接四边形.A .1个B .2个C .3个 D. 一个也不正确解析: 空间中三条平行线不一定共面,故①错;当把正方形沿对角线折成空间四边形,这时满足两组对边分别相等,也满足有一组对角都是直角,故②、③都错,故选D.课堂小结:1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.另外,我们解决空间有关线线问题时,不要忘了我们生活中的模型,比如说教室就是一个长方体模型,里面的线线关系非常丰富,我们要好好地利用它,它是我们培养空间想象能力的好工具.3.注意:等角定理的逆命题不成立.。
第1章 平行线§1.1同位角、内错角、同旁内角问题:平面上两条直线有哪两种位置关系?(平行和相交) 两条直线和第三条直线相交的关系:像∠1与∠5,它们都在第三条直线 l 3 的同旁,并且分别位于直线l 1,l 2 的相同一侧,这样的一对角叫做同位角。
同位角:∠1和∠5 ∠4和∠8 ∠2和∠6 ∠3和∠7像∠3和∠5分别位于第三条直线l 3 的异侧,并且都在两条直线l 1 与l 2 之间,这样的一对角叫做内错角。
内错角:∠3和∠5 ∠4和∠6像∠3与∠6都在第三条直线l 3 的同旁,并且在直线l 1 与l 2 之间,这样的一对角叫做同旁内角。
同旁内角:∠4和∠5 ∠3和∠6例1 如图,直线DE 截直线AB ,AC ,构成8个角。
指出所有的同位角、内错角和同旁内角。
练一练:1.如图,直线AB ,CD 被直线EF 所截,请找出一对同位角,一对内错角和一对同旁内角。
2.(1)如果把图看成是直线AB ,EF 被直线CD 所截,那么∠1与∠2是一对什么角?∠3与∠4呢?∠ 2与∠4呢? (2)如果把图看成是直线CD ,EF 被直线AB 所截,那么∠1与∠5是一对什么角? (3)哪两条直线被哪一条直线所截,∠2与∠5是同位角?(直线AB 和CD 被直线EF 所截)合作学习:如图1-3:两只手的食子和拇指在同一平面内,它们构成的一对角可以看成是什么角?类似地,你还能用两只手的手指构成同位角和同旁内角吗?例2 如图,直线DE 交∠ABC 的边BA 于点F 。
如果内错角∠1与∠2相等,那么同位角∠1与∠4相等,同旁内角∠1与∠3互补。
请说明理由。
小结: 变式图形,图中的∠1与∠2都是同位角。
图形特征:在形如字母“F ”的图形中有同位角。
变式图形:图中的∠1与∠2都是内错角。
图形特征:在形如“Z ”的图形中有内错角。
3l 1l 2l 1234567812345678A B C D E E FA B DCP Q 12345A BC DE F 1234A BC D E F变式图形:图中的∠1与∠2都是同旁内角。
《机械原理》教案课程名称:机械原理课程性质:技术基础课程授课班级:农机、机制授课教师:林金龙学时54(周4学时)教材:《机械原理》东南七版-----高等教育出版社机械原理是机械类各专业的一门主干技术基础课程。
它在培养学生的机械设计能力和创新能力所需的知识、能力和素质结构中,占有十分重要的地位。
本课程的任务是使学生掌握机构学和机器动力学的基础理论、基本知识和基本技能,学会常用机构的分析和综合方法,并具有进行机械系统运动方案设计的初步能力。
在培养高级机械工程技术人才的全局中,本课程为学生今后从事机械设计、研究和开发创新奠定必要的基础,并且有增强学生对机械技术工作适应能力的作用。
总学时54(周4学时):其中理论课48学时,实验课6学时,实验课内容:1、机构认识实验(课外)2、机构简图测绘;3、齿轮范成实验;4、转子动平衡。
学习《机械原理》课程的要求及有关事项一.本课程为考试课。
?二、平时作业占总成绩的20%,期末考试占总成绩的80%。
?三、按时交作业,每周一上课前交作业,晚交扣分,欠作业1/3者不得参加考试。
?本课程有3个选作的大作业,需编程上机完成后,可在100分的基础上加分,但不得抄袭。
?四、严格考勤制度,病假事先托同学交上假条,否则按旷课处理。
五、各班选一名课代表(责任心强的同学),负责收发作业,及时反映同学意见与建议。
《机械原理》教案1《机械原理》教案2《机械原理》教案3《机械原理》教案4《机械原理》教案5《机械原理》教案6注:本章平面连杆机构运动分析的解析法及平面连杆机构的解析设计,在理论教学中只介绍方法,具体应用在课程设计中。
《机械原理》教案7《机械原理》教案8注:本章中凸轮廓线的解析设计,在理论教学中只介绍方法,具体应用在课程设计中。
《机械原理》教案9《机械原理》教案10《机械原理》教案11《机械原理》教案12《机械原理》教案13《机械原理》教案14《机械原理》教案15《机械原理》教案16《机械原理》教案17《机械原理》教案18《机械原理》教案19。
第五章相交线与平行线教材分析一、教材所处地位分析:本单元处于人教版七年级下册得第5章,本章主要研究平面内两条直线得位置关系,重点就是垂直与平行关系,以及有关平移变换得内容.这时在学生认识了点与线段,以及射线、直线得基础上安排得,也就是进一步学习空间与图形得重要基础之一二、教材得内容分析1、本章得课时安排:本章共安排了四个小节以及三个选学内容,教学时间约需13课时,具体分配如下:5、1 相交线3课时5、2 平行线3课时5、3 平行线得性质3课时5、4 平移2课时数学活动小结2课时2、本章知识结构如下图所示:3.考试对本章得要求考试水平A层次:能对所学知识有初步得认识,能举例说明对象得有关特征,并能在具体情境中进行辨认,或能描述对象得特征,并能指出与有关对象得区别或联系;B层次:能在理解得基础上,把知识与技能运用到新得情景中,解决有关得数学问题与简单得实际问题;C层次:能通过观察、实验、推理与运算等思维活动,发现对象得某些特征或与其她对象得区别与联系;能综合运用知识,灵活、合理地选择与运用有关得方法,实现对特定得数学问题或实际问题得分析与解决。
4、教材得知识呈现方式分析本章首先通过台球桌面上得角,创设有利于学习补角、余角、对顶角等得问题情景,展开相交线得有关几何事实,使学生在直观得、现实得情景中,认识相交线所成得角及基本结论;然后,通过设置一些探索性活动,按照“先探索直线平行得条件,再探索平行线得特征”得顺序呈现有关内容,并试图在探索活动与解决问题中,加深对平行得理解,进一步发展学生得空间观念、与老人教版得教材处理方式相比,本章教材在呈现具体内容时,教材为学生提供了生动有趣得现实情景,并穿插安排了观察、操作、交流等活动;在探索直线平行条件之前自然引入了“三线八角”,而不就是孤立地处理有关内容。
这种编排方式,一就是为了发展学生得合情推理能力,二就是在直观得基础上进行简单得说理与初步得推理,充分体现直观与简单推理(仅限一步推理)相结合。
初中数学高效课堂案例——平行线的性质一、实施背景本节课是2010-2011学年度第二学期开学第二周本人在贺集中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程标准实验教科书七年级数学(下册)。
二、主题分析与设计本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。
本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、教学目标1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、过程与方法:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
四、教学重、难点1、重点:对平行线性质的掌握与应用2、难点:对平行线性质1的探究五、教学用具1、教具:多媒体平台及多媒体课件2、学具:三角尺、量角器、剪刀六、教学过程(一)创设情境,设疑激思1、播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:5.3平行线的性质(板书)(二)数形结合,探究性质1、画图探究,归纳猜想教师提要求,学生实践操作:任意画出两条平行线( a ∥ b),画一条截线c 与这两条平行线相交,标出8个角。
平行线判定和性质以及四大模型汇总第一部分平行线的判定判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第二部分平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补第三部分平行线的四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.第四部分平行线的四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.第五部分平行线的四大模型的应用案例1如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .2如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.3如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .4如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .5如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 .6 如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = .7如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.8如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).9如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .10如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.11如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.12如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°133如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .14如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .15 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.16已知AB∥EF,求∠l-∠2+∠3+∠4的度数.17如图(l ),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n ,∠B 1、∠B 2…∠B n -1之间的 关系.(2)如图(2),己知MA 1∥NA 4,探索∠A 1、∠A 2、∠A 3、∠A 4,∠B 1、∠B 2之间的关系. (3)如图(3),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n 之间的关系.如图所示,两直线AB ∥CD 平行,求∠1+∠2+∠3+∠4+∠5+∠6.18如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第六部分 平行线的四大模型实战演练1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5. 6. 7.8.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .9.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .10.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .11.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.第七部分平行线的性质和判定综合应用1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD =95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°2.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°3.如图,AE∥BF,∠1=110°,∠2=130°,求∠3的度数为()4.如图,∠B+∠C=180°,∠A=50°,∠D=40°,则∠AED=.5.如图,如果∠C=70°,∠B=135°,∠D=110°,那么∠1+∠2=6.如图,AB∥CD,求∠1+∠2+∠3+∠4=7.如图,AB∥CD,试找出∠B、∠C、∠BEC三者之间的数量关系.8.如图,三角形ABC中,点E为BC上一点(1)作图:过点E作EM∥AC交AB于M,过点E作EN∥AB交AC于N;(2)求∠A+∠B+∠C的度数,写出推理过程.9.如图,AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED.10.如图,AC∥BD.(1)作图,过点B作BM∥AP交AC于M;(2)求证:∠PBD﹣∠P AC=∠P.11.如图,AB∥CD,∠B=∠C,求证:BE∥CF.12.如图①,木杆EB与FC平行,木杆的两端B,C用一橡皮筋连接,现将图①中的橡皮筋拉成下列各图②③的形状,请问∠A、∠B、∠C之间的数量关系?。
安边中学 高一 年级 上学期 数学 学科导学稿 执笔人: 王广青 总第 课时 备课组长签字: 包级领导签字: 学生: 上课时间: 14 周集体备课一、课题: 5.2平行关系的性质(1)二、学习目标1、掌握直线与平面平行的性质定理;2、能用文字语言、符号语言、图形语言准确地描述线面平行性质定理;3、能用性质定理证明一些空间线面平行的简单问题。
三、落实目标【自主预习】问题1、线面平行的判定定理是什么?请分别用符号语言、图形语言表示。
【合作探究】阅读课本P31页,完成下列问题。
问题1、如果一条直线a 与一个平面α平行,那么直线a 平面α与内的直线有哪些位置关系?由线面平行定义,如果一条直线a 与平面α平行,那么α内的任何直线与 。
(填交点情况)这样,平面α内的直线与直线a 只能是 或者 。
问题2、如图:直线11D A ∥平面ABCD ,经过11D A 的平面11BCD A 与平面ABCD 的交线是BC ,这时11D A ∥BC ,同理:11D A ∥ ,11D A ∥ ,11D A ∥ 。
直线与平面平行的性质定理:文字语言图形语言问题3、如图,已知直线a ,b ,平面α,且a //b ,a //α,a ,b 都在平面α外。
求证:b//α【检测反馈】1、若直线l 与平面α的一条平行线平行,则l 和α的位置关系是( )A :α⊂lB :α//lC :αα//l l 或⊂D :相交和αl2、若直线上有两点P 、Q 到平面α的距离相等,则直线l 与平面α的位置关系是 ( )A :平行B :相交C :平行或相交D : 或平行、或相交、或在符号语言 ________________________________⎫⎪⇒⎬⎪⎭反思栏。
最新华师大版初中数学教科书目次之袁州冬雪创作七年级上第1章走进数学世界数学伴我们成长人类离不开数学人人都能学会数学第2章有理数§2.1 有理数1. 正数与负数2. 有理数§2.2 数轴§2.3 相反数§2.4 相对值§2.5 有理数的大小比较§2.6 有理数的加法1. 有理数的加法法则2. 有理数加法的运算律§2.7 有理数的减法§2.8 有理数的加减混合运算1. 加减法统一成加法2. 加法运算律在加减混合运算中的应用§2.9 有理数的乘法1. 有理数的乘法法则2. 有理数乘法的运算律§2.10 有理数的除法§2.11 有理数的乘方§2.12 迷信记数法§2.13 有理数的混合运算§2.14 近似数第3章整式的加减§3.1 列代数式1. 用字母暗示数2. 代数式3. 列代数式§3.2 代数式的值§3.3 整式1. 单项式2. 多项式3. 升幂摆列与降幂摆列§3.4 整式的加减1. 同类项2. 合并同类项3. 去括号与添括号4. 整式的加减第4章图形的初步认识§4.1 生活中的平面图形§4.2 平面图形的视图1. 由平面图形到视图2. 由视图到平面图形§4.3 平面图形的概况展开图§4.4 平面图形§4.5 最基本的图形-点和线1. 点和线2. 线段的长短比较§4.6 角1. 角2. 角的比较和运算3. 余角和补角第5章相交线与平行线§5.1 相交线1. 对顶角2. 垂线3. 同位角、内错角、同旁内角§5.2 平行线1. 平行线2. 平行线的断定3. 平行线的性质七年级下第6章一元一次方程§6.1 从实际问题到方程§6.2 解一元一次方程1. 等式的性质与方程的简单变形2. 解一元一次方程§6.3 实践与探索第7章一次方程组§7.1 二元一次方程组和它的解§7.2 二元一次方程组的解法*§7.3 三元一次方程组及其解法§7.4 实践与探索第8章一元一次不等式§8.1 认识不等式§8.2 解一元一次不等式1. 不等式的解集2. 不等式的简单变形3. 解一元一次不等式§8.3 一元一次不等式组第9章多边形§9.1 三角形1. 认识三角形2. 三角形的内角和与外角和3. 三角形的三边关系§9.2 多边形的内角和与外角和§9.3 用正多边形铺设地面1. 用相同的正多边形2. 用多种正多边形第10章轴对称、平移与旋转§10.1 轴对称1. 生活中的轴对称§10.2 平移1. 图形的平移2. 平移的特征§10.3 旋转1. 图形的旋转2. 旋转的特征3. 旋转对称图形§10.4 中心对称§10.5 图形的全等八年级上第11章数的开方§11.1 平方根与立方根1. 平方根2. 立方根§11.2 实数第12章整式的乘除§12.1 幂的运算1. 同底数幂的乘法2. 幂的乘方3. 积的乘方4. 同底数幂的除法§12.2 整式的乘法1. 单项式与单项式相乘2. 单项式与多项式相乘3. 多项式与多项式相乘§12.3 乘法公式1. 两数和乘以这两数的差2. 两数和(差)的平方§12.4 整式的除法1. 单项式除以单项式2. 多项式除以单项式§12.4 因式分解第13章全等三角形§13.1 命题、定理与证明1. 命题2. 定理与证明§13.2 三角形全等的断定1. 全等三角形2. 全等三角形的断定条件3. 边角边4. 角边角5. 边边边6. 斜边直角边§13.3 等腰三角形1. 等腰三角形的性质2. 等腰三角形的断定§13.4 尺规作图1. 作一条线段等于已知线段2. 作一个角等于已知角3. 作已知角的平分线4. 颠末一已知点作已知直线的垂线5. 作已知线段的垂直平分线§13.5.抗命题与逆定理1. 互抗命题与互逆定理2. 线段垂直平分线3. 角平分线第14章勾股定理§14.1 勾股定理1. 直角三角形三边的关系2. 直角三角形的断定3. 反证法§14.2 勾股定理的应用第15章数据的收集与暗示§15.1 数据的收集1. 数占有用吗2. 数据的收集§15.2 数据的暗示1. 扇形统计图2. 操纵统计图表传递信息八年级下第16章分式§16.1 分式及其基赋性质1. 分式2. 分式的基赋性质§16.2 分式的运算1. 分式的乘除法2. 分式的加减法§16.3 可化为一元一次方程的分式方程§16.4 零指数幂与负整数指数幂1.零指数幂与负整数指数幂2. 迷信记数法第17章函数及其图象§17.1 变量与函数§17.2 函数的图象1. 平面直角坐标系2. 函数的图象§17.3 一次函数1. 一次函数2. 一次函数的图象3. 一次函数的性质4. 求一次函数的表达式§17.4 反比例函数1. 反比例函数2. 反比例函数的图象和性质§17.5 实践与探索第18章平行四边形§18.1 平行四边形的性质§18.2 平行四边形的断定第19章矩形、菱形与正方形§19.1 矩形1. 矩形的性质2. 矩形的断定§19.2 菱形1. 菱形的性质2. 菱形的断定§19.3 正方形第20章数据的整理与初步处理§20.1 平均数1. 平均数的意义2. 用计算器求平均数3. 加权平均数§20.2 数据的集中趋势1. 中位数和众数2. 平均数、中位数和众数的选用§20.3 数据的团圆程度1. 方差2. 用计算器求方差九年级上第21章二次根式§21.1 二次根式§21.2 二次根式的乘除法1. 二次根式的乘法2. 积的算术平方根3. 二次根式的除法§21.3 二次根式的加减法第22章一元二次方程§22.1 一元二次方程§22.2 一元二次方程的解法1. 直接开平方和因式分解法2. 配方法3. 公式法4. 一元二次方程的根的辨别式*5. 一元二次方程的根与系数的关系§22.3 实践与探索第23章图形的相似§23.1 成比例线段1. 成比例线段2. 平行线分线段成比例§23.2 相似图形§23.3 相似三角形1. 相似三角形2. 相似三角形的断定3. 相似三角形的性质4. 相似三角形的应用§23.4 中位线§23.5 位似图形§23.6 图形与坐标1. 用坐标确定位置2. 图形的变换与坐标第24章解直角三角形§24.1 丈量§24.2 直角三角形的性质§24.3 锐角三角函数1. 锐角三角函数2. 用计算器求锐角三角函数值§24.4 解直角三角形第25章随机事件的概率§25.1 在重复试验中观察不确定现象§25.2 随机事件的概率1. 概率及其意义2. 频率与概率3. 罗列所有机会均等的成果 九年级下第26章 二次函数 §26.1 二次函数§26.2 二次函数的图象与性质1. 二次函数2y ax =的图象与性质2. 二次函数2y ax bx c =++的图象与性质3. 求二次函数的表达式§26.3 实践与探索 第27章 圆 §27.1 圆的认识1. 圆的基本元素2. 圆的对称性3. 圆周角§27.2 与圆有关的位置关系1. 点与圆的位置关系2. 直线与圆的位置关系3. 切线§27.3 圆中的计算问题 §27.4 正多边形和圆 第28章 样本与总体 §28.1 抽样调查的意义1. 普查和抽样调查2. 这样选择样本合适吗§28.2 用样本估计总体1. 简单随机抽样2. 简单随机抽样调查靠得住吗§28.3 借助调查作决议计划1. 借助调查做决议计划2. 容易误导读者的统计图。