机械设计基础 蜗杆传动
- 格式:ppt
- 大小:10.54 MB
- 文档页数:15
机械设计基础之蜗杆传动蜗杆传动是一种高效率的变速传动方式,广泛应用于机械制造、重工业、冶金工业、矿山机械等多个领域。
本文将由以下几个方面来谈论蜗杆传动的基本概念、工作原理以及应用。
一、蜗杆传动的基本概念蜗杆传动是由一对蜗杆与蜗轮组成,通过蜗杆扭转蜗轮的齿轮来实现工作的。
其中蜗轮的斜齿线与蜗杆的螺旋线成一定角度,因此蜗轮只能通过蜗杆旋转而不能回转,同时在传动过程中,蜗轮的速度是滞后于蜗杆的速度,因此能够实现较大的减速比。
蜗杆传动的减速比是由蜗杆设计参数所决定的,包括螺旋角、蜗杆齿数、蜗杆直径等,不同的传动比可以根据具体需要来进行设计。
通常情况下,蜗杆传动的减速比在5-100之间,但也有特殊情况下减速比高达1000以上。
二、蜗杆传动的工作原理蜗杆传动的工作原理是由蜗杆带动蜗轮来实现传动,蜗杆的螺旋线与蜗轮的斜线齿之间的紧密配合可以实现传动功能。
因为蜗杆的螺旋线的斜度比蜗轮的齿线的斜度小很多,所以在传动过程中,螺旋线的每次旋转只能推动蜗轮前进一颗齿,因此能实现大的减速比。
同时由于蜗杆传动的特有设计,使其具有良好的自锁性,可以起到防止倒车的作用。
这种自锁性的原理是钢制蜗杆和铜制蜗轮的制作材料不同,钢的硬度比铜高,蜗杆在向前旋转时,铜制蜗轮受力对硬度较小的钢制蜗杆产生摩擦,并将其牢固紧密地压在一起。
由于钢制蜗杆的硬度高于铜制蜗轮,所以传动的不平衡力可以被牢固地锁住,从而保证了高效稳定的传动效果。
三、蜗杆传动的应用蜗杆传动具有很多优点,如紧凑的结构、高效率、高扭矩、稳定性等。
同时也有一些缺点,如制造难度较大、制造成本高、传动效率低等。
因此,在选择使用蜗杆传动时,需要全面考虑其优缺点和应用情况。
一个常见的应用场景是纺织机械,在制造纤维纺纱机时,采用蜗杆传动来传递较大的扭矩,实现布带收卷以及其他布料加工链环中的转动。
同时,由于蜗杆传动的复杂性,目前也在工业机器人、汽车和液压泵等领域得到广泛应用,也可以用于电动自行车、自行车和其他迷你设备,因其噪声小,结构紧凑等特点。
(a )圆柱蜗杆传动 (b )环面蜗杆传动 (c )锥面蜗杆传动图8.2 蜗杆传动的类型机械设计基础讲义第八章蜗杆传动具体内容 蜗杆传动特点与类型;蜗杆传动的基本参数与几何尺寸计算;蜗杆传动的效率、热平衡计算及润滑;蜗杆传动受力分析与计算载荷;蜗杆传动失效形式与设计准则;蜗杆传动材料与许用应力;蜗杆强度计算;蜗杆刚度计算;蜗杆传动的结构设计。
重点 蜗杆传动的基本参数与几何尺寸计算;蜗杆传动受力分析;蜗杆强度计算;蜗杆刚度计算。
难点 蜗杆传动受力分析。
第一节 蜗杆传动的特点与类型蜗杆传动由蜗杆与蜗轮构成(图8.1),用于传递交错轴之间的运动与动力,通常两轴间的交错角︒=∑90。
通常蜗杆1为主动件,蜗轮2为从动件。
一、蜗杆传动的特点1、优点传动比大;工作平稳,噪声低,结构紧凑;在一定条件下可实现自锁。
2、缺点发热大,磨损严重,传动效率低(通常为0.7~0.9);蜗轮齿圈常使用铜合金制造,成本高。
二、蜗杆传动的类型根据蜗杆形状的不一致,蜗杆传动可分为圆杆蜗杆传动、环面蜗杆传动与锥面蜗杆传动三种类型,如图8.2所示。
图8.1 蜗杆传动 1-蜗杆,2-蜗轮根据加工方法不一致,圆柱蜗杆传动又分为阿基米德蜗杆传动(ZA型)、法向直廓蜗杆传动(ZN型)、渐开线蜗杆传动(ZI型)与圆弧圆柱蜗杆传动(ZC型)等。
前三种称之普通圆柱蜗杆传动,见图8.3所示。
(a)阿基米德蜗杆(b)法向直廓蜗杆(c)渐开线蜗杆图8.3 普通蜗杆的类型第二节圆柱蜗杆传动的基本参数与几何尺寸计算在普通圆柱蜗杆传动中,阿基米德蜗杆传动制造简单,在机械传动中应用广泛,而且也是认识其他类型蜗杆传动的基础,故本节将以阿基米德蜗杆传动为例,介绍蜗杆传动的一些基本知识与设计计算问题。
一、蜗杆传动的基本参数通过蜗杆轴线并垂直于蜗杆轴线的平面称之中间平面,见图6.4。
在中间平面内,蜗杆与蜗轮的啮合相当于齿条与齿轮的啮合。
因此,设计圆柱蜗杆传动时,均取中间平面上的参数与几何尺寸作为基准。
机械设计基础第12章蜗轮蜗杆蜗轮蜗杆是一种常见的传动机构,广泛应用于机械设备中。
蜗轮蜗杆传动具有体积小、传动比大、传动平稳等特点,在机械设计中有着重要的应用价值。
蜗轮蜗杆传动是一种通用型的不可逆传动,典型的结构包括蜗轮和蜗杆两个部分。
蜗轮是一种螺旋状的齿轮,其齿面与蜗杆的蜗杆螺旋面相配合。
蜗杆是一种具有螺旋线形状的轴,其作为传动元件,通过旋转运动驱动蜗轮。
蜗轮齿与蜗杆螺旋线的位置关系使得蜗轮只能顺时针旋转,而无法逆时针旋转。
这种结构特点决定了蜗轮蜗杆传动是一种不可逆传动。
蜗轮蜗杆传动的主要工作原理是靠蜗杆的螺旋面与蜗轮的齿轮面的啮合来实现传动。
在传动过程中,蜗杆通过旋转带动蜗轮转动,从而实现动力传递。
由于蜗杆的螺旋面与蜗轮的齿轮面接触面积小,所以传动效率相对较低。
为了提高传动效率,降低摩擦损失,需要在蜗轮齿面和蜗杆螺旋面之间添加润滑油。
蜗轮蜗杆传动具有很高的传动比,可达到1:40以上,因此在机械设备中常常使用蜗轮蜗杆传动来实现大速比的传动。
例如在起重机构中,通常采用蜗轮蜗杆传动来提高起重高度。
此外,蜗轮蜗杆传动还可以实现两个轴的不同速度传动,例如在机械车床中使用蜗轮蜗杆传动来实现工件的不同转速。
在机械设计中,蜗轮蜗杆传动的设计需要根据实际应用情况确定传动比、工作环境要求等参数。
首先需要确定传动比,在确定传动比的同时要考虑传动效率和传动正反转的能力。
其次,需要根据工作环境来选择蜗杆和蜗轮的材料,以提高传动的可靠性和耐用性。
还需要注意蜗杆和蜗轮的几何尺寸和配合精度,以保证传动的准确性和稳定性。
此外,在设计过程中还需要进行强度校核、轴承选择等工作,以确保传动的安全可靠。
总之,蜗轮蜗杆传动在机械设计中具有重要的应用价值。
它的特点是传动比大、传动平稳,适用于需要大速比、不可逆传动的场合。
在设计蜗轮蜗杆传动时,需要根据实际应用情况,确定传动比、材料、尺寸、配合精度等参数,以保证传动的稳定性和可靠性。
(专升本)机械设计基础之蜗杆传动习题与答案Sunny smile一、选择题1 与齿轮传动相比较,不能作为蜗杆传动的优点。
A. 传动平稳,噪声小B. 传动效率高C. 可产生自锁D. 传动比大2 阿基米德圆柱蜗杆与蜗轮传动的模数,应符合标准值。
A. 法面B. 端面C. 中间平面3 蜗杆直径系数q=。
A. q=d l/mB. q=d l mC. q=a/d lD. q=a/m4 在蜗杆传动中,当其他条件相同时,增加蜗杆直径系数q,将使传动效率。
A. 提高B. 减小C. 不变D. 增大也可能减小z,则传动效率。
5 在蜗杆传动中,当其他条件相同时,增加蜗杆头数1A. 提高B. 降低C. 不变D. 提高,也可能降低z,则滑动速度。
6 在蜗杆传动中,当其他条件相同时,增加蜗杆头数1A. 增大B. 减小C. 不变D. 增大也可能减小z,则。
7 在蜗杆传动中,当其他条件相同时,减少蜗杆头数1A. 有利于蜗杆加工B. 有利于提高蜗杆刚度C. 有利于实现自锁D. 有利于提高传动效率8 起吊重物用的手动蜗杆传动,宜采用的蜗杆。
A. 单头、小导程角B. 单头、大导程角C. 多头、小导程角D. 多头、大导程角9 蜗杆直径d1的标准化,是为了。
A. 有利于测量B. 有利于蜗杆加工C. 有利于实现自锁D. 有利于蜗轮滚刀的标准化10 蜗杆常用材料是。
A. 40CrB. GCrl5C. ZCuSnl0P1D. L Y1211 蜗轮常用材料是。
A. 40Cr B.GCrl5C. ZCuSnl0P1D. L Yl212 采用变位蜗杆传动时 。
A. 仅对蜗杆进行变位B. 仅对蜗轮进行变位C. 同时对蜗杆与蜗轮进行变位13 采用变位前后中心距不变的蜗杆传动,则变位后使传动比 。
A. 增大B. 减小C. 可能增大也可能减小。
14 蜗杆传动的当量摩擦系数f v 随齿面相对滑动速度的增大而 。
A. 增大B. 减小C. 不变D. 可能增大也可能减小15 提高蜗杆传动效率的最有效的方法是 。
第二节蜗杆传动的类型按蜗杆的形状蜗杆传动可分为:圆柱蜗杆传动、环面蜗杆传动和锥蜗杆传动等。
(a)圆柱蜗杆传动 (b)环面蜗杆传动 (c)锥面蜗杆传动一、圆柱蜗杆传动圆柱蜗杆传动分为普通圆柱蜗杆传动和圆弧圆柱蜗杆传动。
1、普通圆柱蜗杆传动普通圆柱蜗杆传动多用直母线刀刃加工。
按齿廓曲线的不同,普通圆柱蜗杆传动可分为四种。
(1) 阿基米德蜗杆(ZA蜗杆) 蜗杆的齿面为阿基米德螺旋面,在轴向剖面Ⅰ-Ⅰ上具有直线齿廓,端面齿廓为阿基米德螺旋线。
加工时,车刀切削平面通过蜗杆轴线。
车削简单,但当导程角大时,加工不便,且难于磨削,不易保证加工精度。
一般用于低速、轻载或不太重要的传动。
(2) 渐开线蜗杆(ZI蜗杆)蜗杆齿面为渐开螺旋面,端面齿廓为渐开线。
加工时,车刀刀刃平面与基圆相切。
可以磨削,易保证加工精度。
一般用于蜗杆头数较多,转速较高和较精密的传动。
(3) 法向直廓蜗杆(ZN蜗杆)蜗杆的端面齿廓为延伸渐开线,法面N-N齿廓为直线。
车削时车刀刀刃平面置于螺旋线的法面上,加工简单,可用砂轮磨削,常用于多头精密蜗杆传动。
(4) 锥面包络蜗杆(ZK蜗杆) 蜗杆齿面是圆锥面族的包络曲面,在各个剖面上的齿廓都呈曲线。
加工时,采用盘状铣刀或砂轮放置在蜗杆齿槽的法向面内,由刀具锥面包络而成。
切削和磨削容易,易获得高精度。
目前应用广泛。
2、圆弧圆柱蜗杆传动(ZC型)圆弧圆柱蜗杆的齿形分为两种:其一是蜗杆轴向剖面为圆弧形齿廓,用圆弧形车刀加工,切削时,刀刃平面通过蜗杆轴线(图a)。
另一种蜗杆用轴向剖面为圆弧的环面砂轮,装置在蜗杆螺旋线的法面内,由砂轮面包络而成(图b),可获很高的精度,我国正推广后者。
圆弧圆柱蜗杆传动,在中间平面上蜗杆的齿廓为内凹弧形,与之相配的蜗轮齿廓则为凸弧形,是一种凹凸弧齿廓相啮合的传动(图c),综合曲率半径大,承载能力高,一般较普通圆柱蜗杆传动高50~150%;同时,由于瞬时接触线与滑动速度交角大(图d),有利于啮合面间的油膜形成,摩擦小,传动效率高,一般可达90%以上;能磨削,精度高。
154第12章 蜗杆传动12.1 考点提要12.1.1 重要的术语和概念蜗杆的传动特点和分类、蜗杆的效率、蜗杆的头数、导程角、直径系数、12.1.2蜗杆传动的滑动速度和效率蜗杆主动时的机构效率为:)(v tg tg ϕγγη+-=)96.095.0( (12-1) 蜗杆的功率损耗一般由啮合摩擦,轴承损耗及零件搅油和飞溅损耗。
计算效率时,需要用到当量摩擦角v ϕ,其数值可通过arctgf v =ϕ算出,再结合相对滑动速度查表确定。
增加蜗杆的头数会使导程角增大,从而使效率增大,同时滑动速度也增大;如果增大蜗杆的分度圆直径将使导程角减小,从而使效率下降,而蜗杆的刚度提高。
蜗轮主动的效率为)(’v tg tg ϕγγη-= (12-2) 显然若v ϕγ≤,则0≤‘η,机构自锁,显然,如果反行程(蜗轮主动)自锁,正行程的效率(蜗杆主动)一定不大于50O O /。
蜗杆机构总的效率为啮合效率与轴承效率及搅油效率的乘积。
在设计之初,为近似求出蜗轮的转矩2T ,η数值可按表14-1数值估计。
表14-1 效率与蜗杆头数关系1Z 12 3 4 总效率0.7 0.8 0.85 0.9 影响蜗杆传动啮合效率的几何因素有:蜗杆的头数Z1,蜗杆的直径系数q﹑蜗杆分度圆直径〔或模数﹑Z1﹑q〕。
由于传动多是减速传动,所以蜗杆多处于高速级。
当蜗杆头数较少时,反行程效率低,机构自锁。
只有蜗杆头数多时才有较高的效率,反行程不自锁(可以蜗轮为主动件),但蜗轮和蜗杆的滑动速度过大,对材料要求很高,易出现磨损和胶合,因此很少采用。
12.1.3普通圆柱蜗杆传动的主要参数和几何尺寸计算蜗杆蜗轮的正确啮合条件有:1)蜗杆的轴向模数ma1=蜗轮的端面模数mt2且等于标准模数;2)杆的轴向压力角αa1=蜗轮的端面压力角αt2且等于标准压力角;3)蜗杆的导程角γ=蜗轮的螺旋角β且均可用γ表示,蜗轮与蜗轮的螺旋线方向相同。
通过蜗杆轴线并与涡轮端面垂直的平面称中间平面。