机械设计基础课程设计---通风机的V带传动设计
- 格式:doc
- 大小:370.50 KB
- 文档页数:12
课程设计说明书课程名称创新课程设计2013年1月18日V带传动优化设计任务目录摘要 (2)一、设计任务及要求 (3)二、建立优化设计的数学模型 (4)三、编写程序M文件 (7)四、计算结果 (10)小结 (11)参考文献 (12)摘要带传动是通过中间挠性件胶带,把主动轴的运动和动力传给从动轴的一种机械传动形式,常用于两轴相距较远的场合。
与其他机械传动相比,带传动结构简单,成本低廉和维护方便,是一种很广的机械传动。
忧郁V带传动的摩擦力较大,传递功率也较大,传动结构紧凑,是带传动应用中最为常见的一种传动类型。
V带传动优化设计一般是在满足承载能力的前提条件下,要求传动结构紧凑,即实现带的根数尽量少,带的直径和中心距尽量小。
AbstractThe belt drive is flexible pieces of tape through the middle of the drive shaft movement and power is transmitted to the driven shaft in the form of a mechanical transmission,commonly used in the two-axis distant pared with other mechanical transmission,belt transmission simple structure,low cost and easy maintenance,and wide is a mechanical transmission.Melancholy V-belt drive friction transfer power transmission compact structure,is the most common form of transmission type belt drive applications.Belt transmission optimization design is generally require drive, compact structure,i.e.as little as possible to the root of the number of the belt,with the diameter and center distance as small as possible to meet the carrying capacity of the premise conditions.一、设计任务及要求(1)设计题目设计带式输送机传动装置上的普通V带传动,已知电动机额定功率P=4kW,转速n=1440r/min,传动比i=3,采用A型V带,每天工作不超过10h。
离心风机SP型V带(三角皮带)传动设计方法作者殷洪福正确设计风机皮带传动,可以提高轴承的使用寿命,降低风机成本。
然而,据笔者所知,离心风机皮带传动设计中存在着几个不可忽视的问题:1、传动比(电机转速/风机转速)太小,甚至经常小于1,即增速传动,本来应该用2极电机的却用4极,无端增加成本(功率相同的电机,极数越多价格越高)。
2、风机皮带轮太小,因此,要产生足够的驱动力就必须增加皮带的拉力,而要增加皮带的拉力又必须加大皮带的预紧力,于是皮带的拉力和皮带的预紧力联合作用于轴承,使得轴承的负荷徒然增大,寿命降低。
3、皮带型号过大,或皮带根数过多,直接恶果又是加大成本。
关于皮带传动设计方法,一般的参考资料都有介绍。
笔者利用这些资料,结合风机的特点,总结出一套适用于风机的简明实用的设计方法。
下面是“离心风机SP型V带传动设计方法”。
一.几个设计参数(1)传动比和电机极数皮带传动通常应采用减速传动,即传动比大于1,除非主动轮转速不能提高;最适宜传动比是2~5。
对于风机,选择电机时应使电机转速大于风机转速,除非风机转速达到或超过2极电机的转速。
由于风机转速较高(相对于其它皮带传动的机械而言),尤其是中小规格风机,为了使传动系结构不至于过分庞大,取传动比等于1.5~3较为适宜;当然,如果风机转速接近或超过2极电机的转速,传动比只能小于1.5,甚至小于1——这样做纯属不得已而为之。
对于转速很低的风机,譬如特大型的或按特殊要求而降低转速的,可以考虑取较大传动比。
基于上述考虑,对于转速超过1100 rpm的风机,一般地应选用2极电机,其余应选用4极电机,只有当转速不超过500 rpm才考虑采用6极电机(表1)。
表1 电机极数选用风机转速rpm 选用电机极数<500 6500~1100 4>1100 2(2)皮带型号选择皮带型号所依据的基本参数有两个:设计功率(P)和小皮带轮转速(n1)。
设计功率等于传动功率的若干倍,这个倍数称为“工况系数”。
第三节 V带传动的设计一、设计准则和单根V 带的基本额定功率带传动的主要失效形式是打滑和传动带的疲劳破坏。
1、带传动的设计准则:在不打滑的条件下,具有一定的疲劳强度和寿命。
2.单根V 带的基本额定功率带传动的承载能力取决于传动带的材质、结构、长度,带传动的转速、包角和载荷特性等因素。
单根V 带的基本额定功率P0是根据特定的实验和分析确定的。
实验条件:传动比i=1、包角α=180°、特定长度、平稳的工作载荷。
即不打滑也不疲劳前提下,单根V 带所能传递的功率为:1000FV P =满足疲劳强度的条件:[]11b c σσσσ--≤则保证不打滑的条件:≤工作F )(σασe A 111- 联立上面两式得满足不打滑又有足够疲劳强度的功率P 0[][]()[]1000)11(10max ασσσv f b C eA V P P ---==由带传动的疲劳实验分析得知:[]CN m=σ[]mN C=⇒σ式中:m -指数,对V 带,m =11;N -循环次数,hd vt Z N hP 3600=;C 特定条件下得实验常数。
由公式求出,影响承载能力的因素由1b σ-型号增强,半径弯曲应力增加,基本额定动载荷下降;基准直径增加,弯曲应力下降,功率增加。
二、设计内容: 设计的原始数据为:功率P ,转速n1、n2(或传动比i ),传动位置要求及工作条件等。
涉及内容包括确定带的类型和截型、长度L 、根数Z 、传动中心距a 、带轮基准直径及其它结构尺寸 等。
由于单根V带基本额定功率P0是在特定条件下经实验获得的,因此,在针对某一具体条件进行带传动设计时,应根据这一具体的条件对所选定的V带的基本额定功率P 0进行修正,以满足设计要求。
三、V 带传动的设计步骤1、 设计功率的计算:P K p A ca =式中:P ——标称传动功率; A K ——工作情况系数,表8-6。
2、选取V 带的型号 小带轮的转速1n 已知,根据d p 和1n 查图8—8选型。
目录第一章: 机械原理课程设计摘要和前言前言 (3)设计任务书 (4)第二章:机械原理课程设计过程1.传动装置总体设计 (7)1.1传动方案 (8)1.2 传动方案的优缺点 (8)2.原动机的选择 (8)2.1选择电动机 (8)2.2计算总传动比并分配各级传动比 (9)2.3计算传动装置的运动和动力参数 (10)3普通V带传动 (11)3.1 失效形式及设计准则 (11)3.2带轮材料 (13)3.3带论正常工作满足条件 (15)3.4 设计要求 (16)3.5设计步骤 (17)附V带优化方案 (18)4.高速齿轮齿轮的设计计算 (18)4.1选定齿轮材料 (19)4.2确定各计算公式中数值 (19)4.3几何尺寸计算及校核 (21)5.高速齿轮的设计 (23)5.1选定齿轮材料 (23)5.2确定各计算公式中数值 (24)5.3几何尺寸计算 (26)5.4 齿轮实际圆周速度 (26)5.5校核齿面接触疲劳强度 (27)6.输入轴的设计 (27)6.1选定材料确定最小直径 (27)6.2 轴系的初步设计 (27)6.3 轴的结构设计 (28)6.4 轴的受力校核 (28)7.中间轴的设计计算 (28)7.1 选择轴的材料及确定材料 (28)7.2 确定最小直径 (28)7.3 轴系的初步设计 (28)7.4 轴的设计 (29)7.5 轴的受力分析 (30)8.输出轴的设计 (32)8.1确定选用材料 (32)8.2确定最小直径 (32)8.3轴系的初步设计 (33)8.4轴的结构设计 (33)8.5轴的强度校核 (34)9.轴上键的设计计算 (40)9.1输入轴上键的选择及强度验算 (40)9.2输入轴上键的选择及强度验算 (40)10.箱体的设计计算 (40)11.减速器的润滑设计 (42)11.1齿轮的润滑设计 (42)11.2轴承的润滑设计 (43)12.密封 (44)第三章: 机械原理课程设计总结设计感言 (44)参考文献 (45)致谢书 (46)前言前言课程设计是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程.随着科学技术发展的日新日异,变速器已经成为当今机械应用中空前重要的领域,在生活中可以说得是无处不在。
机械设计设计说明书设计题目:V带传动设计机械与能源工程学院机械设计制造及其自动化专业班级学号设计人指导老师李兴华完成日期2012 年 3 月24 日同济大学目录1.确定计算功率P ca (2)2.选择V带的类型 (2)3.确定带轮的基准直径d d并验算带速v (2)4.确定V带的中心距a和基准长度L d (2)5.验算小带轮上的包角α1 (3)6.计算带的根数z (3)7.计算单根V带的初拉力的最小值(F0)min (3)8.计算压轴力F P (3)9.设计结果 (3)10.带轮结构设计 (4)11.设计小结 (5)12.参考文献 (5)根数:4根带长:L d =2000 mm带轮基准直径:d d1=118 mm d d2=250 mm带传动中心距:a=708 mm作用在轴上的压力:(F p)min=1123 N10.带轮结构设计1)带轮材料的选择。
本设计中转速要求不高,故材料选用铸铁,牌号为HT150。
2)带轮的结构形式。
本方案中小带轮基准直径为118mm,为中小尺寸(d d≤300mm),故选用腹板轮。
3)轮槽截面尺寸(部分)如下。
查表8-10及表9-1(机械设计课程设计书)得各数据:轮槽截面尺寸尺寸大小(mm)b d11.0h a 2.75h f8.7e15f10ψ34°δ6c10d168B65l82对小带轮:d d1=118 mm,d a1=2×h a+d d1=123.5 mm对大带轮:d d2=250 mm,d a1=2×h a+d d2=255.5 mm4)键槽尺寸如下。
查表14-1(机械设计课程设计书)得各数据:键槽截面尺寸尺寸大小(mm)d38h8b10t 5.0t1 3.311.设计小结通过本次设计,我了解了V带设计的基本方法和步骤,为以后的学习和实践打下了坚实的基础。
在完成本次设计的过程中,我体会到了设计的严谨性,有时候稍不注意就容易设计出错,导致前后矛盾,使设计出现各种问题。
机械设计课程设计报告——V带式输送机传动系统设计院系及专业:设计者:指导老师:目录一、设计任务书 (4)二、传动装置的总体设计 (5)(一)、电动机的选择 (5)(二)、传动比的分配及转速校核 (7)(三)、减速器各轴转速、功率、转矩的计算 (10)三、传动零件的设计计算 (12)(一)、V带设计 (12)(一)、V带轮的结构设计 (12)(二)、V带的计算设计 (13)(二)、齿轮传动的设计 (16)(一)、高速级齿轮传动设计计算 (16)(二)、高速级齿轮传动的几何尺寸 (21)(三)、低速级齿轮传动设计计算 (21)(四)、低速级齿轮传动的几何尺寸 (26)四、轴的设计: (26)(一)、高速轴 (26)(一)、高速轴的设计 (26)(二)、高速轴的计算与校核 (29)(二)、中间轴 (32)(一)、中间轴的设计 (32)(二)、中间轴的计算与校核 (34)(三)、低速轴 (36)(一)、低速轴的设计 (36)(二)、低速轴的计算与校核 (38)五、轴承校核: (40)六、箱体的设计计算 (44)七、减速器的润滑设计 (45)(一)齿轮的润滑设计 (45)(二)、轴承的润滑及设计 (46)八、密封 (46)九、结束语 (47)一、设计任务书带式输送机传动系统设计1.设计任务设计带式输送机传动系统。
采用V带传动及两级圆柱齿轮减速器。
2.传动系统参考方案(见图)带式输送机由电动机驱动。
电动机1通过V带传动将动力传入两级圆柱齿轮减速器3,再通过联轴器4将动力传至输送机滚筒5,带动输送带6工作。
3.原始数据:输送带有效拉力F= 6800N输送带工作速度v= 0.48m/s (允许误差±5%) 输送机滚筒直径d= 425 mm 减速器设计寿命为5年。
4、工作条件:两班制,常温下连续工作;空载起动,工作载荷平稳;三相交流电源,电压为380/220伏。
二、传动装置的总体设计(一)、电动机的选择一、选择电动机,确定传动方案及计算运动参数:(一) 电动机的选择:(1)、选择电动机类型:按工作要求和条件,选用三箱笼型异步电动机,封闭式结构,电压380V ,Y 型。
机械设计基础课程设计
设计题目
学院专业
班级学号
设计者
指导教师
完成日期年月日成绩
目录
一、设计任务书 (3)
二、设计计算书……………………………………4-10
三、设计小结 (11)
四、参考文献 (11)
机械设计作业任务书
题目:通风机的V带传动设计
一、设计通风机(如图所示)的普通V带传动,设计内容应包括:普通V带与带轮的设计计
算和选择;V带传动总图的设计,带轮的零件图设计;设计计算说明书的编写。
结构图如下图:
二、课程设计的要求与数据
1)机器工作平稳,单向回转,成批生产。
带传动设计成开式带传动。
设计的带传动有一个是实心式带轮,一个是腹板式带轮。
2)原始数据
三、课程设计应完成的工作
1)带传动设计(计算过程)
2)设计工作量零件图一张。
设计计算说明书一份。
设计计算说明书
十、带轮结构设计
1. 带轮材料选择
本设计中转速要求不高,材料选用 HT200; 2. 带轮结构形式
本方案中带轮为中小尺寸,选用腹板轮。
3. 带轮结构尺寸
查表13-10得; 3.5a h = 10.8f h = 190.4e =±
7.5δ= 11.5f =
3.510.81
4.3a f H h h mm =+=+=
小带轮 1121402 3.5147a a d d h mm =+=+⨯= 大带轮 2223152 3.5322a a d d h mm =+=+⨯=
32B e f =+= 319211.5⨯+⨯= 80mm
0()/2(84103.4)/293.7h r d d d mm =+=+=
V 带两侧面夹角均为38°。
190.4e =±
B = 80 mm
38ϕ=
十一、零件与装配图绘制
(另附页)
十二、附表
表-1Y系列三相异步电动机的型号及相关数据
K
表2.工作情况系数
A
d
表3. V带带轮最小基准直径
d
min
表4. 包角修正系数Kα
K
表5. 弯曲影响系数
b
十三、设计小结
通过本次设计,我初步了解了V带设计的基础方法和基本步骤,为以后的学习打下坚实的基础。
完成本次设计的过程中,遇到很多问题,设计是需要耐心的,稍不注意就容易出错。
同时需要对课本知识掌握了解清楚,才能做到少出错,缩短设计时间。
十四、参考文献
[1] 机械设计手册第二版徐灏主编北京机械工业出版社2000
[2] 机械设计吴克坚于晓红钱瑞明主编北京高等教育出版社2004
V带轮的结构
V带轮是普通V带传动的重要零件,它必须具有足够的强度,但又要重量轻,质量分布均匀;轮槽的工作面对带必须有足够的摩擦,又要减少对带的磨损。
V带轮的结构与齿轮类似,直径较小时可采用实心式(图10-12a);中等直径的带轮可采用腹板式(图10-12b);直径大于350mm时可采用轮辐式(图10-13)。
,H、d见表10-8,S=(0.2~0.3)B、S1≥1.5S,S2≥0.5S
L=(1.5~2)ds
图10-12 实心式和腹板式带轮。