单分子磁体量子
- 格式:doc
- 大小:13.11 KB
- 文档页数:2
稀土单分子磁体磁各向异性的理论研究
随着近几年来稀土单分子磁体(Rare Earth Single Molecule Magnets,简称RESM)研究热潮的升温,稀土单分子磁体的磁各向异性被越来越多的学者所关注,引起了众人的关注。
因此,磁各向异性的理论研究成为未来稀土单分子磁体的发展一个重要的研究方向。
一、磁各向异性的概念
磁各向异性(magnetic anisotropy),即材料磁性特性随向量旋转方向变化,将其
折射成一种特殊的方向性。
也就是说,材料磁性能力只有在特定的方向上才有强烈的表现力,这就是磁各向异性的作用。
二、磁各向异性的研究目的
研究磁各向异性的目的是为了更加深入的了解磁性材料的性能,并且为磁性材料的微米尺度制造、存储磁记忆等提供研究基础。
三、稀土单分子磁体的磁各向异性
(1)稀土六配位单分子磁体(R6SMs)。
R6SMs试图通过调节其稀土核心结构,来改善其磁各向异性,以增强其磁力及稳定性。
四、磁各向异性的理论研究
(1)基于简单多电子结构的理论模型。
该研究方法借助简单多电子结构对稀土核
心结构进行描述建模,通过调制其结构参数来调控它们的磁各向异性,并加以分析。
总之,就稀土单分子磁体的发展而言,磁各向异性的理论研究就显得极为重要,只有通过深入的理论研究,才能够更好地推动稀土单分子磁体的发展。
单分子磁体与分子自旋电子材料Single-Molecule Magnets and Materials of MolecularSpintronics姜国民陈婷婷史传国江国庆*石玉军*南通大学化学化工学院摘要:近年来,自旋电子和分子电子两个新颖学科在电子学研究中取得了革命性的进展。
这两个领域的基础桥梁是分子磁材料,尤其是单分子磁体。
分子自旋电子是在分子水平上对电子自旋和电荷进行研究,电子装置中包括一个或多个磁性分子,如分子自旋晶体管、分子自旋电子管和分子多量子点装置等。
建立在分子水平上的自旋电子磁材料,在信息储存和量子计算等方面上具有潜在的应用价值。
本文结合自己在这方面的研究和理解,介绍了作为磁性分子的单分子磁体在自旋电子器件研究中的最新成果。
关键词:自旋电子单分子磁体磁性质1、引言在基础和应用研究中,电子和自旋自由度的研究和开发是很有前途的领域[1]。
近十年来,自旋电子学科从基础物理到技术装置已经有了很大的进展[2]。
人们开拓了自旋电子体系这样的事实:电流是由向上和向下两个方向的电子流动产生的,电子的自旋状态实现了信息的编码和磁性材料之间的不同作用。
在没有外场和低能量的条件下,通过自旋的持久性进行信息编码的优势很小。
新的努力方向是直接得到具有持久的量子相干自旋电子装置,这一装置已经从金属、半导体[2,3]到有机材料[4]方面进行了基础研究。
后者在实际中得到了应用,如有机光放射二极管和有机晶体管的研制使电子装置达到了分子水平[5]。
分子自旋电子是用一个或几个磁性分子建立的分子装置[6]。
作为磁性分子的单分子磁体在低温时磁化强度的弛豫时间非常长(2K以下,达到数年时间[7])。
其在高密度信息储存和量子计算方面的优势在于,在分子水平上兼有块状磁材料的性质和长相干时间[8]。
建立在磁学行为的单分子磁体具有丰富的物理效应,如负微分电导特性和完全的电流抑制[9],这些性质可用在电极上。
此外,还可将一些特殊的功能(如作为光和电场的开关等)直接整合到分子水平上。
单分子磁体的制备及其磁性质研究单分子磁体(Single-Molecule Magnets,简称SMMs)是一种具有特殊磁学性质的分子。
由于其特殊的磁学性质,单分子磁体已成为磁性材料研究领域的热点之一。
在此,将介绍单分子磁体的制备及其磁性质研究的相关内容。
一、单分子磁体的概念及特征单分子磁体一般由一个或多个金属离子和有机配体组成。
所含的磁性金属离子在配体的帮助下,可以形成具有磁性的“单分子”。
与普通的磁性材料不同,单分子磁体是非常小的,其大小一般在数纳米以下。
单分子磁体的最大特征是具有磁性滚珠的行为。
即在外层磁场的作用下,单分子磁体的自旋可以上下翻转,呈现类似于磁滚珠的磁性行为。
而SMMs磁滚珠的大小一般在几个纳米左右,这使得其具有优异的磁性性质。
二、单分子磁体的制备单分子磁体的制备是一个非常复杂的过程,需要设计新的配体分子并通过化学合成制备。
一般而言,单分子磁体的制备分为以下几个步骤:1、选择合适的金属离子。
通常使用的金属离子如铁、锰、铜、铬以及钴等。
2、制备配体分子。
常见的配体分子如porphyrin、phthalocyanine等。
3、将金属离子与配体分子作用。
制备单分子磁体是一种典型的自组装过程,金属离子与配体分子之间的作用力进而促进单分子磁体的形成。
4、对制备好的单分子磁体进行物理和化学表征。
磁学能级结构测量是单分子磁体表征的核心之一。
一般情况下,磁学测量需要通过其他技术手段(如电子顺磁共振、核磁共振等)来进行协助。
三、单分子磁体的磁性质研究单分子磁体的磁性质涵盖了多方面。
其中最重要的特征之一是单分子磁体对于外部磁场的响应行为。
对于磁斯托克差分(Magnetization)行为的研究被认为是研究SMMs的入门关键。
研究表明,单分子磁体的磁滚珠行为是非常稳定的,通常具有极长的自旋时间(spin relaxation)这也让单分子磁体成为了可高拓展的磁存储设备的一个热门发展方向。
此外,单分子磁体还具有潜在的应用价值,例如可应用于磁性催化、量子计算和磁性能量转换等领域。
作为单分子磁体的金属氧簇合物的研究进展1江国庆1,2 王素娜1李菲菲1白俊峰1*游效曾11南京大学配位化学国家重点实验室 南京 2100932南通大学化学化工学院 南通 226003E-mail:bjunfeng@摘要:在过去的几年中,金属氧簇合物作为单分子磁体引起了科学家的浓厚兴趣,本文将从合成、结构和性质等方面,结合最新进展对Mn和Fe金属氧簇合物作一简要概述。
关键词:单分子磁体, 金属氧簇合物, 纳米材料,磁性1.引言自从1993年人们发现首例单分子磁体[Mn12O12(O2CMe)16(H2O)4]·2(CH3COOH)·4H2O[1,2]以来,作为单分子磁体(SMMs)的金属氧簇合物因其独特的磁性质引起了科学家的关注[3-8],并取得了很大的进展。
单分子磁体提供了由单个分子构成的第一个真正意义上的单分散的纳米磁体,即由分立的、从磁学意义上讲是没有相互作用的纳米尺寸的分子单元而不是由三维扩展晶格(如金属、金属氧化物等)构成的磁体。
单分子磁体是一种可磁化的磁体,在阻塞温度下,显示磁滞现象,其显示的磁量子隧穿效应(QTM)[3,4]是解释磁现象的量子力学和经典力学之间的桥梁[4-7]。
另外,单分子磁体有各种潜在的用途,如高密度信息储备和量子计算[8]。
大多数单分子磁体是高核金属簇合物,可由相对简单的试剂通过溶液法或水热法[9,10,11,12]制得,且容易提纯,溶解性好(能溶解常用有机溶剂如MeCN、CHCl2),在溶液2中能保持其结构,并可以包埋在聚合物中,这正迎合了未来应用的要求,例如在薄膜上的应用。
本文列举了几个近期报道的Mn、Fe簇合物,对其组装、结构与磁性质作以综述。
2.组装策略目前报道的单分子磁体有Mn84[13]、Mn30 [14,15]、 Mn25[16]、Mn21[17]、Fe9[18]、Fe4[19,20]等,其合成策略主要有:(1)选择合适的配体与金属盐反应后重结晶得到,例如,[Mn25O18(OH)2(N3)12(pdm)6(pdmH)6](Cl)2•12MeCN是用MnCl2•4H2O与pdmH2(pdmH2是2,6-吡啶甲二醇)和NaN3在MeOH/MeCN溶液中,用NMe4OH处理得到;单分子磁体[Fe9(N3)2(O2CMe)8{( 2-py)2 CO2}4]是用Fe(O2CMe)2·1.75H2O与配体(2-py)2CO2(py是吡啶)通过简单的溶液法反应得到。
单分子磁体近日,国际上出现了“单分子磁体”,它是利用“人造分子”制造出的超导材料,单个分子有磁矩,分子间相互作用力大于斥力,构成一种新的材料。
单分子磁体具有许多优点:不但磁性能量高,且磁场稳定,几乎不受温度影响;由于单个分子的电磁力特别强,因此特别容易制成磁体。
单分子磁体的分子结构十分简单,可以自组织排列起来,形成一种均匀的三维网状结构,能在常温下达到超导态,形成特殊的单分子磁体。
单分子磁体具有许多优点:不但磁性能量高,且磁场稳定,几乎不受温度影响;由于单个分子的电磁力特别强,因此特别容易制成磁体。
单分子磁体的分子结构十分简单,可以自组织排列起来,形成一种均匀的三维网状结构,能在常温下达到超导态,形成特殊的单分子磁体。
单分子磁体对实验物理学和基础物理学都有重要意义,是最佳材料之一,有着广阔的应用前景。
我想,在未来世界,电脑能像打字机那样轻松地进行文字输入和数据处理,那时我们人类就不再被困在办公室里了。
在自然界中,所有的生物都靠不停地吞食外界的物质才能生存,没有了食物,它们只能死亡。
但是,动物在长期的进化过程中,逐渐掌握了通过消化道摄取营养物质的本领,并保证其在各个生命阶段都能顺利获得充足的营养。
随着科技的发展,新型材料不断被发现。
比如“磁性树脂”能让一般磁铁在空气中自由悬浮,还能吸收太阳能,转换成电能,这使得人类将太阳能利用到极致,可谓“一石三鸟”。
而同时也意味着人类的生存环境将得到极大改善。
作为一名科学家,我希望在未来的科技研究中,能更多地运用先进的单分子磁体材料。
单分子磁体代表着一种崭新的发展方向。
从某种角度说,它甚至可以称得上是我们的祖先留给我们的遗产。
当前,很多国家都在加紧对这一新材料的研究。
美国科学家提出“纳米晶体”概念,旨在利用纳米技术把传统材料做成纳米尺寸。
纳米材料具有表面积大、比表面积高、导电导热性能好等特点。
研究人员认为,纳米材料与金属材料或半导体材料相比,在光电器件、传感器及信息储存、显示等方面具有独特优势。
(完整)分子磁体的磁性编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)分子磁体的磁性)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)分子磁体的磁性的全部内容。
1。
单分子磁体的磁性来源于分子本身, 每一个分子相当于一个孤立的“磁畴"。
未磁化时,单分子磁体具有分子磁化强度相反取向的双稳态, 两者布居数相当, 磁化强度的矢量和为零; 当施加一个磁场时双稳态的平衡被打破, 与磁场平行的能态具有更低的能量和更多的布居数, 磁化强度的矢量和不为零; 去磁时,在分子磁化强度矢量重新取向时产生一个能量壁垒,当温度降低甚至低于翻转的能垒时, 翻转速率会减慢, 产生磁化强度的慢磁弛豫行为.翻转能垒的高度决定了单分子磁体的阻塞温度。
对于阻塞温度, 通常认为是在该温度下表现出磁体的行为,但是严格来说有 3 种定义[9]: (1)交流磁化率的虚部在特定的频率出现峰值的温度; (2)样品能观察到磁滞回.出现峰值的温度. 这三种方法确定的阻塞温度可能会相差很多, 文献最常报道的阻塞温度则是指观察到磁滞回线的温度, 另外文献中也常把弛豫时间达到 100 s 时的温度定义为阻塞温度. 在本文中, 阻塞温度指的是观察到磁滞回线的温度。
稀土单分子磁体是一类特殊的单分子磁体. 与过渡金属相比,稀土离子的 f 电子由于其未淬灭的较大的轨道角动量而具有相对较大的磁矩和磁各向异性。
另一方面, 由于稀土离子的 f 电子受外层 s, d 层电子的屏蔽因而磁相互作用较弱, 因此在许多簇合物以及聚合物的体系中, 稀土离子依然表现出单离子的性质,体系的总角动量也仅仅是每个角动量的加和, 而忽略彼此之间的耦合. 尽管稀土离子间的磁相互作用很弱,但是对它的弛豫机制仍然会产生明显的贡献, 依然是研究的重点.稀土单分子磁体的特点和研究方向可以分为 4 个方面:首先, 通过设计稀土离子的晶体场和磁相互作用来构筑具有高能垒高阻塞温度的单分子磁体;其次,稀土单分子磁体常常表现出复杂的多弛豫现象,对它们的弛豫机理至今还没有合理统一的解释,因此许多课题组都在研究它们的磁动力学行为,揭示它们的弛豫机理;再次, 基于稀土单分子磁体的磁动力学行为对它的结构非常敏感,微小的结构变化包括溶剂分子的释放、物理状态的改变等都会对它的磁性产生影响, 因此可以通过修饰端基配体、掺杂,以及外界光、电、热的刺激来对它的磁行为进行调控;最后, 结合稀土自身的荧光特性以及配体的光学活性,以及聚合物三维骨架的气体吸附、离子交换的性质而设计新颖的多功能材料。
单分子磁体量子
近几年,单分子磁体量子(SMM)在研究中受到了越来越多的关注,它具有独特的机械性质,其磁性和化学性质可操控,从而具有重要的应用价值。
体的研究始于20世纪60年代,目前大多数研究集中在具有极高磁性的材料上,例如铁磁性金属铁素体以及稀土磁性合金。
然而,随着技术的不断发展,研究者可以利用单个分子来实现磁体。
单分子磁体(SMM)是指由一种单分子构成的磁体,它们具有独
特的机械性质,可以在单个分子层次上进行操控。
一方面,SMM可以将复杂的有机分子转化为简单易维护的磁性结构;另一方面,它可以提供有关磁性性质的新信息,也可能对科学发展和实际应用都有重要的意义。
最早发现的单分子磁体是在1995年发现的碳链磁性分子[1],后来还发现了多种其他的磁性分子,包括铁键分子、稀土分子等等,它们都具有极强的磁性。
除了磁性外,它们还具有其他能量状态或化学性质,可以用来模拟物理和化学过程。
SMM对单子分子的磁性进行控制,从而可以调控制单子分子的化学性质,使得它们在特定的磁场中具有可控的行为。
它们的发现为制备高度精密的分子结构,设计新的分子材料和改变材料性能提供了新的机会。
具体来讲,目前最受关注的SMM应用包括能源存储和转换、生物传感、环境检测、纳米机器人、磁性探测器等。
例如,研究者可以利用SMM来改变纳米机器人的移动速度和转弯能力,它们也可以作为磁
性传感器用于检测磁场的大小和方向。
同样,SMM还可以作为能源存储和转换的器件,用于有效地将太阳能转换成可以用于其他应用的能量,这对于未来的能源技术研究具有重要意义。
SMM有着巨大的应用前景,其中最有希望的方面是有机分子分子磁体。
有机分子磁体可以实现更为灵活的结构,它们也具有很好的包覆性和良好的磁性,提供了另一种潜在的电子器件。
新近发现的有机分子磁体包括芳烃分子、碳链分子、硅烷分子和酞菁等。
近几年,我国也在单分子磁体方面取得了大量的研究成果,其中最突出的是研究有机分子磁体的新进展,这些新发现的有机分子磁体为磁体物理和材料制备提供了一个新的框架。
未来,SMM将在上述应用领域发挥重要作用,为科学发展和实际应用都提供新思路。
综上所述,单分子磁体量子(SMM)是一种具有独特机械特性的分子,其具有可控的磁性和化学性质,具有重要的应用价值。
近年来,SMM的应用研究取得了许多突破,他们在能源存储和转换,生物传感,环境检测,纳米机器人,磁性探测器等领域有着巨大的应用前景,有望发挥重大作用。