泵站计算机自动控制系统结构及原理
- 格式:docx
- 大小:11.83 KB
- 文档页数:2
泵站运行管理的计算机自动控制系统作者:柯绍庆来源:《科技创新导报》2012年第01期摘要:泵站作为水利建设和市政管理工程的主要设施,担负着城市排水防涝的重要任务,设备能否稳定可靠的运行,关系到城市发展及周边环境等重大问题。
为使系统能长期稳定可靠运行,每座泵站设置一套基于可编程序逻辑控制器(PLC)的泵站控制系统和过程监控HMI,做到运行管理过程中免维护或少维护。
本文就阳江市城市防洪工程(首期)马南电排站计算机监控系统作浅述。
关键词:泵站运行管理计算机自动控制系统中图分类号:TP315 文献标识码:A 文章编号:1674-098X(2012)01(a)-0040-021 控制方式泵站设备控制分三层实现:基本控制、就地控制和中央控制。
1.1 基本控制基本控制在设备控制箱(柜)中实现,具有最高的控制优先级。
当设备控制箱(柜)面板上的控制方式手柄处于“手动操作”时,泵站控制系统(PLC)的控制被屏蔽。
现场设备均可以在设备控制箱(柜)的面板上实现手动操作与检查。
这些设备控制箱(柜)提供基本的控制连锁或连动。
基本控制的内容在设备控制柜内实现。
1.2 就地控制利用PLC的逻辑控制功能,提供设备的自动、远动控制及关联设备的联动、连锁控制。
就地控制系统设有操作界面(HMI),通过操作界面可以完成对设备的控制或对控制参数的调整。
就地控制的优先级高于中央控制,具有就地手动和就地自动两种模式。
就地手动模式下,可以在操作界面上直接手动控制设备的运行,就地自动模式下,泵站控制系统根据设定的运行参数、泵站各点液位、设备的状态以及有关运行条件自动操作泵站设备,不需人工干预。
1.3 中央控制中控制室由1#、2#主机和硬盘录象机组成,用网络交换机通过100M的以太网对1#PLC(1#、2#、3#机组,2#PLC(4#、5#机组),3#PLC(泵站公用),4#PLC(1#、2#液压启闭机)进行控制。
中央控制提供系统的宏观调度,协调各下属泵站的运行,处理局部的停机事故和紧急状态,维持系统的整体协调。
排水泵站的智能化监控系统设计随着城市化进程的不断加快和城市建设的不断推进,城市排水工程也显得越来越重要。
城市排水泵站的建设可以大幅度提高城市排水系统的运行效率,缓解城市排水系统的负荷,减少城市水灾。
但是随着城市规模的不断扩大和排水泵站数量的不断增多,传统的排水泵站管理方式已经不能适应现代城市排水工程的需要。
智能化监控系统的引入将有助于提高排水泵站的安全性、运行效率和管理水平。
本文将探讨排水泵站的智能化监控系统的设计,包括技术实现和系统架构。
技术实现智能化监控系统的设计基于计算机技术、网络通信技术和传感器技术。
其中最重要的是传感器技术。
1. 压力传感器:安装在排水管道中,能够实时监测管道中的水位、流量和压力等基本参数,并将数据传输到智能化监控系统中,供管理人员实时监测和管理。
2. 温湿度传感器:安装在泵站室内,能够实时监测室内的温度、湿度等参数,并将数据传输到智能化监控系统中,为管理人员提供良好的工作环境。
3. 气体传感器:能够实时监测泵站内的有毒气体浓度,如果浓度超过安全标准,监控系统就会及时报警,并采取措施以确保泵站的安全。
系统架构智能化监控系统的设计是由数据采集系统、数据处理系统、数据传输系统和数据库系统以及人机交互的终端系统组成。
其中,数据采集系统负责采集排水泵站中的各种参数和数据,数据处理系统负责将采集的数据进行处理和分析,数据传输系统负责将处理后的数据传输到指定的设备或人员,数据库系统负责将历史数据储存到数据库中,人机交互终端系统则负责人员与系统的交互。
在系统架构中,可将排水泵站分为智能中心和分散节点。
智能中心为数据处理和传输系统,拥有多个显示屏、操作工位、报警器等,可以实时显示排水泵站的各种运行参数和状态信息。
分散节点则包括传感器、监测设备和执行器等,用于实时采集、监测和控制排水泵站的各种运行参数和状态信息。
智能化监控系统的优势排水泵站的智能化监控系统可以有效提高排水系统的安全性和管理水平。
泵站计算机自动控制系统结构及原理泵站计算机自动控制系统是一种采用计算机技术和自动控制技术相结合的系统,用于实现对泵站设备进行自动控制和监测。
该系统通过计算机对泵站设备进行智能化的控制,大大提高了泵站设备的运行效率和稳定性,同时减少了人工操作的工作量,是当今泵站设备控制的一种主流技术。
一、系统结构泵站计算机自动控制系统一般由计算机系统、控制设备和监测设备三部分组成。
1. 计算机系统计算机系统是泵站自动控制系统的大脑,主要由工控计算机、硬件设备和控制软件组成。
工控计算机是泵站控制系统的核心,可以完成整个控制系统的数据处理和决策任务。
硬件设备包括各种传感器、执行器、通信设备等,用于获取泵站的运行状态信息并控制相关设备。
控制软件是泵站控制系统的操作系统,负责实时监测泵站设备的运行状态,实现对泵站设备的自动控制。
2. 控制设备控制设备是指用于对泵站设备进行控制的各种执行器和传感器,包括变频器、继电器、电磁阀等。
这些设备通过计算机系统的指令实现对泵站设备的开关、调速等操作,从而实现对泵站设备的自动控制。
二、工作原理泵站计算机自动控制系统的工作原理主要包括数据采集、数据处理和控制执行三个环节。
1. 数据采集泵站计算机自动控制系统通过各种传感器和仪表对泵站设备的运行状态和环境参数进行实时采集。
这些传感器和仪表可以获取泵站设备的各种参数,包括压力、流量、温度、液位等,从而实现对泵站设备的实时监测。
2. 数据处理泵站计算机自动控制系统通过计算机系统对采集到的数据进行处理和分析,并根据设定的控制策略进行决策。
计算机系统可以根据采集到的数据判断泵站设备的运行状态,并根据设定的控制算法进行控制操作,从而实现对泵站设备的自动控制。
三、系统优势泵站计算机自动控制系统相对于传统的手动控制系统具有如下优势:1. 提高泵站设备的运行效率和稳定性。
通过计算机系统对泵站设备进行智能化的控制,可以根据实时的运行状态和环境参数进行精确的控制,从而提高了泵站设备的运行效率和稳定性。
泵站及闸门自动化控制系统根据灌区泵站及闸门控制现状,利用智能终端与互联网相结合方法,实施取水、输水、供水、灌溉、排水、防洪和水资源管理等自动控制系统,实现骨干渠道灌排闸门现场及远程自动控制和远程监测监视,达到计划配水、精准灌溉,高效利用水资源目标。
(1)闸站监控平台根据灌区闸站控制现状,利用智能终端与互联网相结合方法,建设灌区闸站智能管控平台,实现取水、输水、供水、灌溉、排水、防洪及水资源管理等自动控制系统,实现灌区部分泵站和骨干渠系闸门现场及远程自动控制。
其它分支渠系针对重要取、用、排水闸,实现远程自动控制、运行监测和视频监控,改善灌区工作人员的工作方式,提高工作效率。
闸站智能监控平台主要包括闸站智能控制方案、信息采集处理、信息查询、水闸远程自动控制系统、泵站远程自动控制系统、安全管理、监测报警、故障诊断、信息上传等功能模块。
根据操作权限,设置中心站远程集中调度层、管理段监控层和现地控制层。
主要功能如下:①闸站智能控制方案主要是根据调配方案,自动生成闸站控制方案,实现闸站的自动化远程控制,精确控制灌区水源、渠系、用水户等的水位水量关系。
②信息采集处理是自动采集多种数据、参数包括各闸站的运行状态、电量参数、闸站上下游水位、视频、雨量、闸门开度、泵站流量等信息,经过分析处理,将数据存入数据库,反馈至水量调度决策支持系统,实现水量调度闭环控制,实时调整水量调度方案,使得整个灌区实现水量的平衡调度,使得灌溉系统始终处于最佳工作状态。
③信息查询是为灌区管理人员以及有操作权限的调度人员提供信息查询服务,包括闸站的基本情况、工程布置、运行情况、上下游水位、视频、雨量、开度、流量等信息以及各种统计报表。
④闸门自动控制系统是根据控制方案、操作方式的选择和闸门当前状态等信息,在管理段、分中心、中心站等处实现远程控制闸门开度,实现对灌区闸门的远程自动控制,实现对水源、渠系的水位、流量的精准控制,可实现闸门远程开度控制、远程水位控制、远程流量控制、渠道控制等多种控制模式,控制模式可相互切换。
潜水泵自动化控制系统一、概述潜水泵站综合自动控制系统采用自动控制、计算机信息网络、实时在线检测、数据库及专家智能软件等先进技术组成,系统软件使用恒大自控集团开发的HD智能控制软件平台,配套使用恒大自控自主研制的潜水泵专用综合保护仪HD-200SB,配合视频电视监控系统,使泵站运行做到“无人值班”,实现对矿井泵站运行过程自动优化控制、安全联锁保护和综合信息管理。
二、系统结构和配置泵站自动化控制系统由地面中央控制(调度)室监控上位机操作站(工程师站)、大屏幕投影拼接墙系统、网络设备、井下矿用隔爆兼本安型控制器(PLC)、矿用隔爆型远程监控箱、水位传感器、压力传感器、流量计、安装附件和管线敷设设施等。
视频电视监控系统由工业摄像仪、视频控制主机等设备组成。
1、地面中央控制(调度)室上位机操作站、大屏幕投影拼接墙系统等布置在矿调度室(控制室)内。
系统设上位机操作站两套,实现双机互备,其中一套可兼做工程师站,另2套操作站设置在矿长室。
大屏幕系统拼接墙由6套50”的Visionpro C-DGC60X2+投影单元、1套Digicom® Ark1200多屏处理器系统、1套LED显示屏及控制管理软件、视频矩阵、RGB矩阵等附属的外围组成。
显示单元规格如下:单屏面积:1000mm (宽) ×750mm (高) ≈0.75m2²整屏面积:1000mm (宽) ×3 ×750mm (高) ×2=3000mm (宽) ×1500mm (高) ≈4.5m2²2、井下峒室井下矿用隔爆兼本安型控制器(PLC)、矿用隔爆型远程监控箱安装在井下峒室内。
系统设矿用隔爆兼本安型控制器1套、矿用隔爆型远程监控箱1套,矿用隔爆型远程监控箱上设有控制按钮和LCD显示屏,实现对水泵的控制及各类参数的显示;矿用隔爆兼本安型控制器包括PLC、网络设备、串口服务器等,除完成水泵的控制和参数采集功能外,还可以实现与HD-200SB潜水泵保护仪、高爆开关综保等设备的通讯。
一体化预制泵站是目前城市污水、雨水、排水、废水处理常见的科学模式。
一体化预制泵站的“一体化”就可以说明出它的重点作用。
无论要求干式或湿式泵坑,或者两者的结合体,这种泵站都可以预制出,关键是过硬的技术。
一、一体化污水预制泵站之总体设计原理由压力传感器或者浮球反馈泵站的液位信息到控制系统,再由控制系统设定的运行参数调节水泵开关运行。
当液位达到系统设定的开启水泵液位时,控制系统会控制水泵启动,这样污水便从泵站抽到市政污水管路出口;当污水抽送低于系统设定液位时,系统会控制水泵停运。
这样循环反复,使得一体化污水预制泵站顺利运行。
二、一体化污水预制泵站之防滑盖设计原理防滑顶盖盖板材料由GRP制成。
盖板内外表面平整,不允许有深度2mm以上的裂纹,不允许有分层脱层,纤维祼露、树脂结节、异物夹杂、色泽明显不匀等现象。
可有效防止长时间裸露在太阳光下面老化。
整体顶盖有防滑措施,如防滑花纹或颗粒,并刷有防腐漆。
三、一体化污水预制泵站之筒体设计原理玻璃钢筒体筒体以无碱玻璃纤维无捻粗纱及其制品为增强材料,热固性树脂为高标号树脂,采用计算机控制缠绕工艺,确保厚度均匀并达到设计要求,结构层厚度由结构设计确定。
浙江贝德泵业的一体化预制泵站之泵站筒体结构由纤维缠绕玻璃钢(GRP)制成,采用意大利(VEM)公司设备,全自动化控制连续缠绕型,确保厚度均匀并达到设计的刚度,质量稳定优良。
四、一体化污水预制泵站之污渍流通原理采用CFO流场计算,使得尽可能把淤泥等固体颗粒排出设备。
另外,因输送介质为含有大量砂、油脂类和各种生活杂物,特别是污水中氯离子浓度高,据此,特别要求粉碎格栅机的切割刀片材质除了具有高强度和硬度的条件,还需要耐腐蚀。
粉碎型格栅应能每日24小时连续运转,确保切割后的固体颗粒粒径应在15-16mm以上,不能切碎颗粒小于10mm,防止固体颗粒直接通过污水处理厂的提升格栅。
五、一体化污水预制泵站之传动轴的设计原理传动轴表面硬度应达60HRC以上,拉伸张力不小于1,027 kPa;抗泥砂磨损。
泵站计算机自动控制系统结构及原理
随着科学技术的不断发展,人类对自动化技术的需求也日益增加。
在工程领域中,泵站计算机自动控制系统被广泛应用于各种水利工程、市政工程、农业灌溉等领域,为工程运行和管理提供了便利。
本文将对泵站计算机自动控制系统的结构及原理进行探讨。
泵站计算机自动控制系统一般包括以下几个主要部分:传感器、执行机构、控制器、通信设备和计算机。
下面我们分别对这几个部分进行详细介绍。
1. 传感器
传感器是泵站计算机自动控制系统的重要组成部分,它的主要作用是将各种物理量转换成电信号,供控制器进行处理。
在泵站中,常用的传感器有压力传感器、流量传感器、液位传感器等。
这些传感器可以实时监测泵站的各项参数,为自动控制系统提供准确的数据支持。
2. 执行机构
执行机构是根据控制器的指令,完成对泵站设备的操作。
在泵站中,常用的执行机构有阀门、电机、液压马达等。
通过这些执行机构,控制器可以远程操作泵站设备,实现自动控制的目的。
3. 控制器
控制器是泵站计算机自动控制系统的核心部分,它的主要作用是根据传感器的反馈信号,对泵站设备进行控制。
控制器通常包括信号处理模块、控制逻辑模块、执行机构驱动模块等部分,其中信号处理模块负责对传感器信号进行处理,控制逻辑模块负责根据预定的控制策略进行决策,执行机构驱动模块负责输出控制信号驱动执行机构进行操作。
4. 通信设备
通信设备是泵站计算机自动控制系统与外部系统进行信息交换的关键环节。
通过通信设备,泵站计算机自动控制系统可以获取外部环境的实时数据,或者将内部状态信息传输给远程监控中心。
常用的通信设备有以太网、无线通讯模块等。
5. 计算机
计算机是泵站计算机自动控制系统的智能决策中心,它可以对大量的数据进行处理和分析,生成控制指令并实时调整。
计算机还可以对泵站进行故障诊断和预测,提高泵站设备的可靠性和安全性。
泵站计算机自动控制系统的原理是基于控制理论和计算机技术的结合,通过对泵站设
备的各个参数进行监测和调节,实现对泵站设备的自动控制。
下面我们对泵站计算机自动
控制系统的原理进行详细介绍。
1. 控制理论基础
泵站计算机自动控制系统的原理基础是控制理论,主要包括反馈控制、前馈控制、模
糊控制、遗传控制等多种控制方法。
反馈控制是泵站计算机自动控制系统的核心方法,它
根据传感器获取的实时数据反馈给控制器,通过对控制器进行调整,使系统的输出符合预
期的目标值。
2. 控制策略设计
控制策略设计是泵站计算机自动控制系统的重要环节,它根据泵站的实际运行情况和
要求,设计出相应的控制策略。
常用的控制策略包括PID控制、模糊控制、遗传控制等。
PID控制是泵站计算机自动控制系统最常用的控制策略,它包括比例、积分、微分三个控
制器,可以根据系统当前的误差和变化率进行调节,使系统的稳态性和动态性达到最佳状态。
3. 实时监测与调整
泵站计算机自动控制系统通过传感器实时监测泵站的运行状态,将收集到的数据传输
给控制器和计算机进行处理和分析,通过对数据进行处理和分析,计算机可以实时调整控
制器的控制参数和控制策略,使系统的输出能够及时符合预期的目标值。
4. 故障诊断与预测
泵站计算机自动控制系统通过对泵站设备的运行状态进行分析和诊断,可以发现潜在
的故障并实现对故障的预测。
一旦发生故障,系统可以及时发出警报并采取相应的措施,
保障泵站设备的安全运行。
结论
泵站计算机自动控制系统以其高效、可靠的特点,已经成为各类水利工程、市政工程、农业灌溉等领域的重要装备。
通过对传感器、执行机构、控制器、通信设备和计算机的结
构及原理进行探讨,我们了解到泵站计算机自动控制系统是基于控制理论和计算机技术的
结合,通过实时监测和调整,实现对泵站设备的自动控制,提高了工程设备的运行效率和
安全性。
希望本文对读者对泵站计算机自动控制系统有所帮助。